
Gaussian Derivative Package

Markus van Almsick
Technische Universiteit Eindhoven
©2006

Version 2.5.7

Prefix

TimeStamp "MathVisionTools`GaussianDerivative "̀ 2006, 6, 1, 17, 11, 0

The preamble of the package containing all kinds of remarks about authorship, contence, and copyright.

GaussianDerivative.nb 1

:Name: MathVisionTools`GaussianDerivative`

:Author: Bart M.ter Haar Romeny Ph.D.and Markus van Almsick

:Email address: B.terHaarRomeny tue.nl, M.v.Almsick tue.nl

:Context: MathVisionTools`GaussianDerivative`

:Package Version: 2.5 .7

:Mathematica Version: 5.0

:Copyright: Copyright 2001 2006, Technische Universiteit Eindhoven

:Title: Gaussian Kernel, Gaussian Derivative, and Gaussian Filter

:Summary: This package implements the Gaussian derivative for Scale

Space theory. "Front End Vision and Multiscale Image Analysis"

by Bart M.ter Haar Romeny, Springer, 2003.

:Keywords: Gaussian, Gaussian derivatives, multiscale,

scale space, computer vision, differential operator

:Requirements: None

:Source: "Front End Vision and Multiscale Image Analysis",

by Bart M.ter Haar Romeny, Springer,2003

:History: Version 1.0 by Bart M.ter Haar Romeny and Markus van Almsick,

October 2001

Version 1.1 by Bart M.ter Haar Romeny and Markus van Almsick, May 2002

Version 1.2 by Bart

M.ter Haar Romeny and Markus van Almsick, Sept 2002

Version 2.0 by Bart M.ter Haar Romeny and Markus van Almsick, Dec 2002

Version 2.1 by Bart M.ter Haar Romeny and Markus van Almsick, Jan 2003

Version 2.2 by Bart M.ter Haar Romeny and Markus van Almsick, Nov 2003

Version 2.4 by Bart M.ter Haar Romeny and Markus van Almsick, Jan 2004

Version 2.5 by Bart M.ter

Haar Romeny and Markus van Almsick, April 2006

:Limitations:

:Discussion:

:To do: Recursive Implementation, Directional, Parallel

Begin Package

Declaring the package and unlocking all symbols defined in the code.

GaussianDerivative.nb 2

Utilities`Notation`AutoLoadNotationPalette False;

BeginPackage

"MathVisionTools`GaussianDerivative "̀,

"MathVisionTools`Common`MathVisionToolsCommon "̀,

"MathVisionTools`Convolve "̀,

"MathVisionTools`ImageFrame "̀,

"Utilities`Notation`"

Unprotect

G,

NGaussianKernel,

GaussianKernel,

AngularGaussianKernel,

GaussianKernelRange,

NGaussianDKernel,

GaussianDKernel,

GaussianD,

GaussianDerivative,

GaussianDerivativeAt,

Method,

KernelRange,

ImageBoundary,

Convolve,

Fourier,

Cyclic,

Truncate,

Reflective,

Constant

GaussianDerivative.nb 3

Online Help and Options

DefaultScaleParameter::usage

"The default linear scale parameter t
2

2
. Thus the

width or standard deviation of the Gaussian kernel is 1."

G::usage "Gt x is a short input notation for GaussianKernel t,

x . Gt
n x is a short input notation for GaussianDKernel t,n,x ."

GaussianKernel::usage

"GaussianKernel t,x renders the gaussian kernel numerically

and symbolically. Note that t is half the variance, which

is the square of the Gaussian kernel width ."

AngularGaussianKernel::usage

"AngularGaussianKernel t, renders the angular gaussian kernel numerically and

symbolically. The angular kernel is the Greens function of the diffusion

equation on the interval , with periodic boundary conditions. Note, that

t is half the variance, which is the square of the Gaussian kernel width ."

NGaussianKernel::usage

"NGaussianKernel t,x renders the gaussian kernel numerically

for Real t and x with compiled code. Note that t is half the

variance, which is the square of the Gaussian kernel width ."

GaussianDKernel::usage

"GaussianDKernel t,n,x . Note that t is half the variance, which is the

square of the Gaussian kernel width . n is the derivative order."

NGaussianDKernel::usage

"NGaussianDKernel n t,x renders the nth derivative of the

gaussian kernel numerically for non negative Integer n and

Real t and x with compiled code. Note that t is half the

variance, which is the square of the Gaussian kernel width ."

GaussianD::usage

"GaussianD img, x,t,n performs the nth Gaussian partial derivation on image img

with respect to x. The Gaussian kernel variance is 2t. GaussianD img, x,

tx,nx , y,ty,ny ,... is the nxth Gaussian partial derivation with respect

to x, the nyth Gaussian partial derivation with respect to y, and so on."

GaussianDerivative::usage

"GaussianDerivative tx,nx , ty,ny ,... img repesents the

nx,ny th Gaussian derivative of image img. The Gaussian

kernel variance is 2tx in x and 2ty in y direction."

GaussianDerivativeAt::usage

"GaussianDerivativeAt x,tx,nx , y,ty,ny ,... img repesents

the nx,ny th Gaussian derivative of image img at the specified

location x,y in scale space. The Gaussian kernel variance is 2tx
in x and 2ty in y direction. To determine Gaussian derivatives at

GaussianDerivative.nb 4

more than one location enter GaussianDerivativeAt x1,tx1,nx1 ,

y1,ty1,ny1 ,... , x2,tx2,nx2 , y2,ty2,ny2 ,... ,... img ."

KernelRange::usage

"KernelRange is an option of GaussianD and GaussianDerivative. It

determines the default range of the kernel used in the convolution."

ImageBoundary Option

If

Head ImageBoundary::usage MessageName,

ImageBoundary::usage

"ImageBoundary is an option of GaussianD and GaussianDerivative

working with the Convolve method. ImageBoundary determines the

handling of an image frame in a convolution.",

If

Not StringMatchQ ImageBoundary::usage, " GaussianDerivative " ,

ImageBoundary::usage

ImageBoundary::usage "\nImageBoundary is also an option of GaussianD and

GaussianDerivative working with the Convolve method. ImageBoundary

determines the handling of an image frame in a convolution."

Convolve Option

If

Head Convolve::usage MessageName,

Convolve::usage

"Is a value for the GaussianDerivative option Method. It calls upon the

ListConvolve command to perform the convolution of the Gaussian derivation.",

If

Not StringMatchQ Convolve::usage, " GaussianDerivative " ,

Convolve::usage

Convolve::usage "\nIt is also a value for the GaussianDerivative

option Method. It calls upon the ListConvolve command to

perform the convolution of the Gaussian derivation."

Fourier Option

If

Not StringMatchQ Fourier::usage, " GaussianDerivative " ,

Fourier::usage Fourier::usage "\nFourier is also an option value

for the GaussianDerivative Method. The convolution of the Gaussian

derivative is performed via multiplication in the Fourier domain."

Cyclic Option

If

Head Cyclic::usage MessageName,

Cyclic::usage "Is a value for the GaussianDerivative

option ImageBoundary. It calls upon the ListConvolve command

to perform a cyclic convolution to maintain the image size.",

If

Not StringMatchQ Cyclic::usage, " GaussianDerivative " ,

Cyclic::usage

GaussianDerivative.nb 5

Cyclic::usage "\nIt is also a value for the GaussianDerivative option

ImageBoundary. It calls upon the ListConvolve command to perform a cyclic

convolution to maintain the image size."

Truncate Option

If

Head Truncate::usage MessageName,

Truncate::usage "Is a value for the GaussianDerivative option

ImageBoundary. It calls upon the ListConvolve command to truncate the

incomplete convolution of the Gaussian kernel at the image boundary.",

If

Not StringMatchQ Truncate::usage, " GaussianDerivative " ,

Truncate::usage

Truncate::usage "\nIt is also a value for the GaussianDerivative option

ImageBoundary. It calls upon the ListConvolve command to truncate the

incomplete convolution of the Gaussian kernel at the image boundary."

Reflective Option

If

Head Reflective::usage MessageName,

Reflective::usage

"Is a value for the GaussianDerivative option ImageBoundary. It calls upon

the ListConvolve command to ap prepend the reflected image on each image

boundary before performing the convolution of the Gaussian kernel.",

If

Not StringMatchQ Reflective::usage, " GaussianDerivative " ,

Reflective::usage

Reflective::usage "\nIt is also a value for the GaussianDerivative

option ImageBoundary. It calls upon the ListConvolve command

to ap prepend the reflected image on each image boundary

before performing the convolution of the Gaussian kernel."

Constant Option

If

Not StringMatchQ Constant::usage, " GaussianDerivative " ,

Constant::usage

Constant::usage "\nIt is also a value for the GaussianDerivative

option ImageBoundary. It calls upon the ListConvolve to

extend the value of each boundary pixel to infinity."

Options GaussianDerivative KernelRange Automatic, Method Convolve,

ImageBoundary Cyclic, WorkingPrecision Log 10, 2^16. ;

Options GaussianDerivativeAt KernelRange Automatic,

ImageBoundary Cyclic, WorkingPrecision Log 10, 2^16. ;

GaussianDerivative.nb 6

Package Code

Starting the private context of the package.

Begin "`Private`"

Open the palette for Gaussian Derivatives if started from a local kernel.

If Not $Remote , NotebookOpen First FileNames "GaussianDerivativePalette.nb",

ToFileName $UserAddOnsDirectory, "Applications", "MathVisionTools",

"FrontEnd", "Palettes" , ToFileName $AddOnsDirectory,

"Applications", "MathVisionTools", "FrontEnd", "Palettes" ;

Gaussian Kernel

NOTE: we use the linear scale parameter t 2 2 to denote the width of the Gaussian bell shape kernel.

 is the

standard deviation and 2 the variance of the kernel.

Gaussian Kernel

4; global factor for the scaling parameter t, default is 4 or 1

DefaultScaleParameter 2 ;

Numeric Implementation

Implementing a compiled version of the Gaussian kernel to speed up evaluation by a factor 3.

Numeric Implementation

NGaussianKernel Compile t, _Real , x, _Real , Exp x^2 t Sqrt Pi t ;

GaussianKernel 0 1 Sqrt Pi t ;

GaussianKernel x_?NumberQ : NGaussianKernel DefaultScaleParameter, x

GaussianKernel 0 0., x_?NumberQ DiracDelta x ;

GaussianKernel t_?NumberQ, x_?NumberQ : NGaussianKernel t, x

Symbolic Implementation

Symbolic Implementation

GaussianKernel 0, x__ DiracDelta x ;

GaussianKernel 0, x_ DiracDelta x ;

GaussianKernel t_: DefaultScaleParameter, x_ Exp x^2 t Sqrt Pi t ;

GaussianKernel : Derivative 0, n_ GaussianKernel : GaussianDKernel n, #1, #2 &

GaussianDerivative.nb 7

Multidimensional Implementation

Multidimensional Implementation

GaussianKernel x_List : Apply Times, Map GaussianKernel, x

GaussianKernel t_List, x_List :

Inner GaussianKernel, t, x, Times ; Dimensions t Dimensions x

GaussianKernel t_, x_List : Apply Times, Map GaussianKernel t, # &, x

GaussianKernel Input Notation

Notation G x__ GaussianKernel x__

GaussianKernel Input Notation

MakeExpression RowBox lhs___, "G", " ", x__, " ", rhs___ , StandardForm :

MakeExpression RowBox lhs, RowBox "GaussianKernel", " ",

RowBox " ", Utilities`Notation`Private`stripSpuriousRowBox x , " " ,

" " , rhs , StandardForm

MakeBoxes GaussianKernel x__ , StandardForm : RowBox "G", " ",

Utilities`Notation`Private`makeHeldRowBoxOfBoxes x , StandardForm, None , " "

Notation G x_ GaussianKernel x_

GaussianKernel Input Notation

MakeExpression RowBox lhs___, "G", " ", x_, " ", rhs___ , StandardForm :

MakeExpression

RowBox lhs, RowBox "GaussianKernel", " ", x, " " , rhs , StandardForm

MakeBoxes GaussianKernel x_ , StandardForm :

RowBox "G", " ", MakeBoxes x, StandardForm , " "

Notation Gt_ x__ GaussianKernel t_, x__

MakeExpression RowBox lhs___, SubscriptBox "G", t_ , " ", x_RowBox, " ", rhs___ ,

StandardForm :

MakeExpression RowBox lhs, RowBox "GaussianKernel", " ", RowBox t, ",",

RowBox " ", Utilities`Notation`Private`stripSpuriousRowBox x , " " ,

" " , rhs , StandardForm

MakeBoxes GaussianKernel t_, x__ , StandardForm :

RowBox SubscriptBox "G", MakeBoxes t, StandardForm , " ",

Utilities`Notation`Private`makeHeldRowBoxOfBoxes x , StandardForm, None , " "

Notation Gt_ x_ GaussianKernel t_, x_

GaussianDerivative.nb 8

MakeExpression RowBox lhs___, SubscriptBox "G", t_ , " ", x_, " ", rhs___ ,

StandardForm : MakeExpression

RowBox lhs, RowBox "GaussianKernel", " ", RowBox t, ",", x , " " , rhs ,

StandardForm

MakeBoxes GaussianKernel t_, x_ , StandardForm :

RowBox SubscriptBox "G", MakeBoxes t, StandardForm ,

" ", MakeBoxes x, StandardForm , " "

Notation Gt__ x__ GaussianKernel t__ , x__

MakeExpression RowBox lhs___, SubscriptBox "G", t__ , " ", x__, " ", rhs___ ,

StandardForm : MakeExpression RowBox lhs, RowBox "GaussianKernel", " ",

RowBox RowBox " ", Utilities`Notation`Private`stripSpuriousRowBox t , " " ,

",", RowBox " ", Utilities`Notation`Private`stripSpuriousRowBox x ,

" " , " " , rhs , StandardForm

MakeBoxes GaussianKernel t__ , x__ , StandardForm : RowBox SubscriptBox "G",

Utilities`Notation`Private`makeHeldRowBoxOfBoxes t , StandardForm, None , " ",

Utilities`Notation`Private`makeHeldRowBoxOfBoxes x , StandardForm, None , " "

Angular Gaussian Kernel

Symbolic Implementation

Symbolic Implementation

AngularGaussianKernel 0, _ DiracDelta ;

AngularGaussianKernel t_: DefaultScaleParameter, _
1

2
EllipticTheta 3, 2, t ;

Gaussian Derivative Kernel

Gaussian Derivative Kernel

Numeric Implementation

To obtain efficient formulas for the n-th derivative of the Gaussian kernel we apply the Horner scheme to the hermite

polynomials that occur when differentiating 1
t

x2

t .

Algebra`Horner`

We also apply the substitution x2

t y2 for even n, and x

t
y for odd n.

EfficientGaussianKernel n_?EvenQ :

Horner Simplify D GaussianKernel t, x , x, n . x y2 t
t n 1 2

y2

y2

t n 1
. t t

GaussianDerivative.nb 9

EfficientGaussianKernel n_?OddQ :

Horner Simplify D GaussianKernel t, x , x, n . x y t
t n 1 2

y2

y2

t n 1 2
. t t

EfficientGaussianKernel 3 InputForm

(y*(12 - 8*y^2))/(E^y^2*Sqrt[Pi]*t^2)

The resulting formulas are placed into the body of a compiled function for the first 12 n.

GaussianDerivative.nb 10

Numeric Implementation

NGaussianDKernel 0

Compile t, _Real , x, _Real , Exp x^2 t Sqrt Pi t ;

NGaussianDKernel 1 Compile t, _Real , x, _Real ,

With y x Sqrt t , 2 y E^y^2 Sqrt Pi t , y, _Real ;

NGaussianDKernel 2 Compile t, _Real , x, _Real ,

With y x^2 t , 2 4 y E^y Sqrt Pi t ^3 , y, _Real ;

NGaussianDKernel 3 Compile t, _Real , x, _Real , With y x Sqrt t ,

y 12 8 y^2 E^y^2 Sqrt Pi t ^2 , y, _Real ;

NGaussianDKernel 4 Compile t, _Real , x, _Real ,

With y x^2 t , 12 y 48 16 y E^y Sqrt Pi t ^5 , y, _Real

NGaussianDKernel 5 Compile t, _Real , x, _Real , With y x Sqrt t ,

y 120 y^2 160 32 y^2 E^y^2 Sqrt Pi t ^3 , y, _Real ;

NGaussianDKernel 6 Compile t, _Real , x, _Real , With y x^2 t ,

120 y 720 y 480 64 y E^y Sqrt Pi t ^7 , y, _Real ;

NGaussianDKernel 7 Compile t, _Real , x, _Real ,

With y x Sqrt t , y 1680 y^2 3360 y^2 1344 128 y^2

E^y^2 Sqrt Pi t ^4 , y, _Real ;

NGaussianDKernel 8 Compile t, _Real , x, _Real ,

With y x^2 t , 1680 y 13440 y 13440 y 3584 256 y

E^y Sqrt Pi t ^9 , y, _Real ;

NGaussianDKernel 9 Compile t, _Real , x, _Real , With y x Sqrt t ,

y 30240 y^2 80640 y^2 48384 y^2 9216 512 y^2

E^y^2 Sqrt Pi t ^5 , y, _Real ;

NGaussianDKernel 10 Compile t, _Real , x, _Real , With y x^2 t ,

30240 y 302400 y 403200 y 161280 y 23040 1024 y

E^y Sqrt Pi t ^11 , y, _Real ;

NGaussianDKernel 11

Compile t, _Real , x, _Real , With y x Sqrt t , y 665280

y^2 2217600 y^2 1774080 y^2 506880 y^2 56320 2048 y^2

E^y^2 Sqrt Pi t ^6 , y, _Real ;

NGaussianDKernel 12

Compile t, _Real , x, _Real , With y x^2 t , 665280 y

7983360 y 13305600 y 7096320 y 1520640 y 135168 4096 y

E^y Sqrt Pi Sqrt t ^13 , y, _Real ;

NGaussianDKernel n_Integer?Positive Compile t, _Real , x, _Real ,

With y x Sqrt t ,

HermiteH n, y Sqrt Pi Sqrt t ^ n 1 Exp y^2

, y, _Real ;

GaussianDerivative.nb 11

Refer to the numeric implementation whenever the Gaussian kernel is called with numerical arguments.

GaussianDKernel 0, x_?NumberQ : NGaussianKernel DefaultScaleParameter, x

GaussianDKernel n_Integer, x_?NumberQ :

NGaussianDKernel n DefaultScaleParameter, x ; 1 n 12

GaussianDKernel 0 0., n_Integer, x_ : Derivative n DiracDelta x

GaussianDKernel t_?NumberQ, 0, x_?NumberQ : NGaussianKernel t, x

GaussianDKernel t_?NumberQ, n_Integer, x_?NumberQ :

NGaussianDKernel n t, x ; 1 n 12

Symbolic Implementation

For non-numeric arguments one has to render symbolic formulas. We consider 3 different cases:

numeric order of differentiation, symbolic order of differentiation, and kernel of zero width resulting in a Dirac delta

distribution.

Symbolic Implementation

GaussianDKernel t_: DefaultScaleParameter, 0, x_ : GaussianKernel t, x

GaussianDKernel t_: DefaultScaleParameter, n_Integer?NonNegative, x_ :

Simplify HermiteH n, x Sqrt t Sqrt Pi Sqrt t ^ n 1 Exp x^2 t

GaussianDKernel t_: DefaultScaleParameter, n_Symbol, x_ :

If

N t 0.,

Derivative n DiracDelta x ,

HermiteH n, x Sqrt t Sqrt Pi Sqrt t ^ n 1 Exp x^2 t

GaussianDKernel : Derivative 0, 0, n_ GaussianDKernel :

GaussianDKernel #1 n, #2, #3 &

GaussianDerivative.nb 12

Multidimensional Implementation

Multidimensional Implementation

GaussianDKernel::dimfail1

"The number of variables and the number of derivative indices do not match.";

GaussianDKernel::dimfail2 "The number of variables, the number of

derivative indices, and the number of scale parameters do not match.";

GaussianDKernel 0 .. , x_List : GaussianKernel x ;

GaussianDKernel n_List, x_List :

Inner GaussianDKernel, n, x, Times ; Dimensions n Dimensions x ;

GaussianDKernel n_List, x_List :

Message GaussianDKernel::dimfail1 ; Throw $Failed ;

Dimensions n Dimensions x ;

GaussianDKernel t_List, 0 .. , x_List : GaussianKernel t, x ;

GaussianDKernel t_List, n_List, x_List :

Apply Times, Apply GaussianDKernel, Transpose t, n, x , 1 ;

Dimensions n Dimensions t Dimensions x ;

GaussianDKernel t_List, n_List, x_List :

Message GaussianDKernel: dimfail2 ; Throw $Failed ;

Not Dimensions n Dimensions t Dimensions x ;

GaussianDKernel t_, 0 .. , x_List : GaussianKernel t, x ;

GaussianDKernel t_, n_List, x_List :

Apply Times, Apply GaussianDKernel t, ## &, Transpose n, x , 1 ;

Dimensions n Dimensions x ;

GaussianDKernel t_, n_List, x_List :

Message GaussianDKernel: dimfail2 ; Throw $Failed ;

Dimensions n Dimensions x ;

GaussianDKernel Input Notation

Notation G x_ GaussianDKernel 1, x_

GaussianDKernel Input Notation

MakeExpression RowBox lhs___, SuperscriptBox "G", " " , " ", x_, " ", rhs___ ,

StandardForm : MakeExpression

RowBox lhs, RowBox "GaussianDKernel", " ", RowBox "1", ",", x , " " , rhs ,

StandardForm

MakeBoxes GaussianDKernel 1, x_ , StandardForm :

RowBox SuperscriptBox "G", " ", MultilineFunction None ,

" ", MakeBoxes x, StandardForm , " "

GaussianDerivative.nb 13

Notation Gt_ x_ GaussianDKernel t_, 1, x_

MakeExpression

RowBox lhs___, SubsuperscriptBox "G", t_, " " , " ", x_, " ", rhs___ ,

StandardForm : MakeExpression

RowBox lhs, RowBox "GaussianDKernel", " ", RowBox t, ",", "1", ",", x , " " ,

rhs , StandardForm

MakeBoxes GaussianDKernel t_, 1, x_ , StandardForm :

RowBox SubsuperscriptBox "G", MakeBoxes t, StandardForm , " ",

MultilineFunction None , " ", MakeBoxes x, StandardForm , " "

Notation G x_ GaussianDKernel 2, x_

MakeExpression RowBox lhs___, SuperscriptBox "G", " " , " ", x_, " ", rhs___ ,

StandardForm : MakeExpression

RowBox lhs, RowBox "GaussianDKernel", " ", RowBox "2", ",", x , " " , rhs ,

StandardForm

MakeBoxes GaussianDKernel 2, x_ , StandardForm :

RowBox SuperscriptBox "G", " ", MultilineFunction None ,

" ", MakeBoxes x, StandardForm , " "

Notation Gt_ x_ GaussianDKernel t_, 2, x_

MakeExpression

RowBox lhs___, SubsuperscriptBox "G", t_, " " , " ", x_, " ", rhs___ ,

StandardForm : MakeExpression

RowBox lhs, RowBox "GaussianDKernel", " ", RowBox t, ",", "2", ",", x , " " ,

rhs , StandardForm

MakeBoxes GaussianDKernel t_, 2, x_ , StandardForm :

RowBox SubsuperscriptBox "G", MakeBoxes t, StandardForm , " ",

MultilineFunction None , " ", MakeBoxes x, StandardForm , " "

Notation G n_ x_ GaussianDKernel n_, x_

MakeExpression

RowBox lhs___, SuperscriptBox "G", TagBox RowBox " ", n_, " " , Derivative ,

" ", x_, " ", rhs___ , StandardForm : MakeExpression

RowBox lhs, RowBox "GaussianDKernel", " ", RowBox n, ",", x , " " , rhs ,

StandardForm

MakeBoxes GaussianDKernel n_, x_ , StandardForm :

RowBox SuperscriptBox "G", TagBox RowBox " ", MakeBoxes n, StandardForm , " " ,

Derivative , MultilineFunction None , " ", MakeBoxes x, StandardForm , " "

Notation Gt_
n_

x_ GaussianDKernel t_, n_, x_

GaussianDerivative.nb 14

MakeExpression RowBox

lhs___, SubsuperscriptBox "G", t_, TagBox RowBox " ", n_, " " , Derivative ,

" ", x_, " ", rhs___ , StandardForm : MakeExpression

RowBox lhs, RowBox "GaussianDKernel", " ", RowBox t, ",", n, ",", x , " " ,

rhs , StandardForm

MakeBoxes GaussianDKernel t_, n_, x_ , StandardForm :

RowBox SubsuperscriptBox "G", MakeBoxes t, StandardForm ,

TagBox RowBox " ", MakeBoxes n, StandardForm , " " , Derivative ,

MultilineFunction None , " ", MakeBoxes x, StandardForm , " "

Notation G n__ x__ GaussianDKernel n__ , x__

MakeExpression

RowBox lhs___, SuperscriptBox "G", TagBox RowBox " ", n__, " " , Derivative ,

" ", x__, " ", rhs___ , StandardForm :

MakeExpression RowBox lhs, RowBox "GaussianDKernel", " ",

RowBox RowBox " ", Utilities`Notation`Private`stripSpuriousRowBox n , " " ,

",", RowBox " ", Utilities`Notation`Private`stripSpuriousRowBox x ,

" " , " " , rhs , StandardForm

MakeBoxes GaussianDKernel n__ , x__ , StandardForm :

RowBox SuperscriptBox "G",

TagBox RowBox " ", Utilities`Notation`Private`makeHeldRowBoxOfBoxes n ,

StandardForm, None , " " , Derivative , MultilineFunction None , " ",

Utilities`Notation`Private`makeHeldRowBoxOfBoxes x , StandardForm, None , " "

Notation Gt_
n__

x__ GaussianDKernel t_, n__ , x__

MakeExpression RowBox

lhs___, SubsuperscriptBox "G", t_, TagBox RowBox " ", n__, " " , Derivative ,

" ", x__, " ", rhs___ , StandardForm :

MakeExpression RowBox lhs, RowBox "GaussianDKernel", " ", RowBox t, ",",

RowBox " ", Utilities`Notation`Private`stripSpuriousRowBox n , " " , ",",

RowBox " ", Utilities`Notation`Private`stripSpuriousRowBox x , " " ,

" " , rhs , StandardForm

MakeBoxes GaussianDKernel t_, n__ , x__ , StandardForm :

RowBox SubsuperscriptBox "G", MakeBoxes t, StandardForm ,

TagBox RowBox " ", Utilities`Notation`Private`makeHeldRowBoxOfBoxes n ,

StandardForm, None , " " , Derivative , MultilineFunction None , " ",

Utilities`Notation`Private`makeHeldRowBoxOfBoxes x , StandardForm, None , " "

Notation Gt__
n__

x__ GaussianDKernel t__ , n__ , x__

GaussianDerivative.nb 15

MakeExpression RowBox

lhs___, SubsuperscriptBox "G", t__, TagBox RowBox " ", n__, " " , Derivative ,

" ", x__, " ", rhs___ , StandardForm :

MakeExpression RowBox lhs, RowBox "GaussianDKernel", " ",

RowBox RowBox " ", Utilities`Notation`Private`stripSpuriousRowBox t , " " ,

",", RowBox " ", Utilities`Notation`Private`stripSpuriousRowBox n , " " ,

",", RowBox " ", Utilities`Notation`Private`stripSpuriousRowBox x ,

" " , " " , rhs , StandardForm

MakeBoxes GaussianDKernel t__ , n__ , x__ , StandardForm :

RowBox SubsuperscriptBox "G",

Utilities`Notation`Private`makeHeldRowBoxOfBoxes t , StandardForm, None ,

TagBox RowBox " ", Utilities`Notation`Private`makeHeldRowBoxOfBoxes n ,

StandardForm, None , " " , Derivative , MultilineFunction None , " ",

Utilities`Notation`Private`makeHeldRowBoxOfBoxes x , StandardForm, None , " "

GaussianD

N-dimensional Gaussian derivative

N dimensional Gaussian derivative

Summation rule:

GaussianD img1_ img2_, stn : _Symbol _Slot, _, _ : 0 .., opts___Rule :

GaussianD img1, stn, opts GaussianD img2, stn, opts

Constant factor:

GaussianD c_ img_, stn : _Symbol _Slot, _, _ : 0 .., opts___Rule :

c GaussianD img, stn, opts ; Apply And, Map FreeQ c, First # &, stn

Concatenation of Gaussian derivations:

GaussianD

GaussianD img_, stn1 : _Symbol _Slot, _, _ : 0 .., opts1___Rule ,

stn2 : _Symbol _Slot, _, _ : 0 .., opts2___Rule

:

GaussianD

img,

Sequence Map

Cases stn1 , #, __ . 0 Cases stn2 , #, __ . 0 &,

Union Map First, stn1 , Map First, stn2

,

Sequence Union opts1 , opts2

; Length stn1 Length stn2 Map First, stn1 Map First, stn2

Processing a List of functions:

GaussianD img_List, stn : _Symbol _Slot, _, _ : 0 .., opts___Rule :

Map GaussianD #, stn, opts &, img

Gaussian derivation via Fourier transformation:

GaussianDerivative.nb 16

GaussianD img_, stn : _, _, _Integer : 0 .., opts___Rule :

Module

result, xs, ts, ns,

ys Table Unique "y" , Length stn ,

s Table Unique " " , Length stn ,

xs, ts, ns Transpose stn ;

result ;

If

FreeQ

result FourierTransform img . Thread xs ys , ys, s , FourierTransform

,

ts, ns Transpose Map Rest, stn ;

FreeQ

result InverseFourierTransform

FullSimplify

Apply Times, s ns Exp ts. s2 result,

Prepend Thread ts 0 , Element s, Reals

,

s, ys

. Thread ys xs ,

InverseFourierTransform

,

False

GaussianD GaussianDerivative tn__ img_ s__Symbol , stn : _Symbol, _, _ : 0 ..,

opts___Rule : GaussianDerivative Apply Sequence, tn Replace s ,

Append Map First # Rest # &, stn , _ 0, 0 , 1 , opts img s

GaussianD img_Symbol s : __Symbol __Slot , stn : _Symbol _Slot, _, _ : 0 ..,

opts___Rule : GaussianDerivative Apply Sequence, Replace s ,

Append Map First # Rest # &, stn , _ 0, 0 , 1 , opts img s

GaussianD img_?NumericQ, stn : _Symbol, _, _ : 0 .., opts___Rule 0;

GaussianD Input Notation

Notation Gt_ x_ f_ GaussianD f_, x_, t_, 1

GaussianD Input Notation

MakeExpression

RowBox lhs___, SubscriptBox " ", RowBox SubscriptBox "G", t_ , " ", x_, " " ,

f_, rhs___ , StandardForm :

MakeExpression RowBox lhs, RowBox "GaussianD", " ", RowBox f, ",", RowBox

" ", RowBox x, ",", t, ",", "1" , " " , " " , rhs , StandardForm

MakeBoxes GaussianD f_, x_, t_, 1 , StandardForm :

RowBox SubscriptBox " ", RowBox SubscriptBox "G", MakeBoxes t, StandardForm ,

" ", MakeBoxes x, StandardForm , " " , Parenthesize f, StandardForm, D

Notation Gt_ x_
n_

f_ GaussianD f_, x_, t_, n_

GaussianDerivative.nb 17

MakeExpression RowBox

lhs___, SubsuperscriptBox " ", RowBox SubscriptBox "G", t_ , " ", x_, " " ,

RowBox " ", n_, " " , f_, rhs___ , StandardForm :

MakeExpression RowBox lhs, RowBox "GaussianD", " ", RowBox f, ",",

RowBox " ", RowBox x, ",", t, ",", n , " " , " " , rhs , StandardForm

MakeBoxes GaussianD f_, x_, t_, n_ , StandardForm : RowBox

SubsuperscriptBox " ", RowBox SubscriptBox "G", MakeBoxes t, StandardForm ,

" ", MakeBoxes x, StandardForm , " " , RowBox

" ", MakeBoxes n, StandardForm , " " , Parenthesize f, StandardForm, D

Notation Gt1_,t2_ x1_,x2_
n1_,n2_

f_ GaussianD f_, x1_, t1_, n1_ , x2_, t2_, n2_

MakeExpression

RowBox lhs___, SubsuperscriptBox " ", RowBox SubscriptBox "G", RowBox

t1_, ",", t2_ , " ", RowBox x1_, ",", x2_ , " " ,

RowBox " ", RowBox n1_, ",", n2_ , " " , f_, rhs___ , StandardForm :

MakeExpression RowBox lhs, RowBox "GaussianD", " ", RowBox

f, ",", RowBox " ", RowBox x1, ",", t1, ",", n1 , " " , ",", RowBox

" ", RowBox x2, ",", t2, ",", n2 , " " , " " , rhs , StandardForm

MakeBoxes GaussianD f_, x1_, t1_, n1_ , x2_, t2_, n2_ , StandardForm :

RowBox SubsuperscriptBox " ", RowBox SubscriptBox "G",

RowBox MakeBoxes t1, StandardForm , ",", MakeBoxes t2, StandardForm , " ",

RowBox MakeBoxes x1, StandardForm , ",", MakeBoxes x2, StandardForm , " " ,

RowBox " ", RowBox MakeBoxes n1, StandardForm , ",",

MakeBoxes n2, StandardForm , " " , Parenthesize f, StandardForm, D

Notation Gt_ x1_,x2_
n1_,n2_

f_ GaussianD f_, x1_, t_, n1_ , x2_, t_, n2_

MakeExpression RowBox lhs___, SubsuperscriptBox " ",

RowBox SubscriptBox "G", t_ , " ", RowBox x1_, ",", x2_ , " " ,

RowBox " ", RowBox n1_, ",", n2_ , " " , f_, rhs___ , StandardForm :

MakeExpression RowBox lhs, RowBox "GaussianD", " ",

RowBox f, ",", RowBox " ", RowBox x1, ",", t, ",", n1 , " " , ",", RowBox

" ", RowBox x2, ",", t, ",", n2 , " " , " " , rhs , StandardForm

MakeBoxes GaussianD f_, x1_, t_, n1_ , x2_, t_, n2_ , StandardForm : RowBox

SubsuperscriptBox " ", RowBox SubscriptBox "G", MakeBoxes t, StandardForm , " ",

RowBox MakeBoxes x1, StandardForm , ",", MakeBoxes x2, StandardForm , " " ,

RowBox " ", RowBox MakeBoxes n1, StandardForm , ",",

MakeBoxes n2, StandardForm , " " , Parenthesize f, StandardForm, D

Notation Gt1_,t2_,t3_ x1_,x2_,x3_
n1_,n2_,n3_

f_

GaussianD f_, x1_, t1_, n1_ , x2_, t2_, n2_ , x3_, t3_, n3_

GaussianDerivative.nb 18

MakeExpression

RowBox lhs___, SubsuperscriptBox " ", RowBox SubscriptBox "G", RowBox

t1_, ",", t2_, ",", t3_ , " ", RowBox x1_, ",", x2_, ",", x3_ , " " ,

RowBox " ", RowBox n1_, ",", n2_, ",", n3_ , " " , f_, rhs___ ,

StandardForm : MakeExpression RowBox lhs, RowBox "GaussianD", " ",

RowBox f, ",", RowBox " ", RowBox x1, ",", t1, ",", n1 , " " ,

",", RowBox " ", RowBox x2, ",", t2, ",", n2 , " " , ",", RowBox

" ", RowBox x3, ",", t3, ",", n3 , " " , " " , rhs , StandardForm

MakeBoxes GaussianD f_, x1_, t1_, n1_ , x2_, t2_, n2_ , x3_, t3_, n3_ ,

StandardForm : RowBox SubsuperscriptBox " ",

RowBox SubscriptBox "G", RowBox MakeBoxes t1, StandardForm , ",",

MakeBoxes t2, StandardForm , ",", MakeBoxes t3, StandardForm , " ",

RowBox MakeBoxes x1, StandardForm , ",", MakeBoxes x2, StandardForm ,

",", MakeBoxes x3, StandardForm , " " , RowBox

" ", RowBox MakeBoxes n1, StandardForm , ",", MakeBoxes n2, StandardForm ,

",", MakeBoxes n3, StandardForm , " " , Parenthesize f, StandardForm, D

Notation

Gt_ x1_,x2_,x3_
n1_,n2_,n3_

f_ GaussianD f_, x1_, t_, n1_ , x2_, t_, n2_ , x3_, t_, n3_

MakeExpression RowBox lhs___, SubsuperscriptBox " ",

RowBox SubscriptBox "G", t_ , " ", RowBox x1_, ",", x2_, ",", x3_ , " " ,

RowBox " ", RowBox n1_, ",", n2_, ",", n3_ , " " , f_, rhs___ ,

StandardForm : MakeExpression RowBox lhs, RowBox "GaussianD", " ",

RowBox f, ",", RowBox " ", RowBox x1, ",", t, ",", n1 , " " ,

",", RowBox " ", RowBox x2, ",", t, ",", n2 , " " , ",", RowBox

" ", RowBox x3, ",", t, ",", n3 , " " , " " , rhs , StandardForm

MakeBoxes GaussianD f_, x1_, t_, n1_ , x2_, t_, n2_ , x3_, t_, n3_ ,

StandardForm : RowBox

SubsuperscriptBox " ", RowBox SubscriptBox "G", MakeBoxes t, StandardForm , " ",

RowBox MakeBoxes x1, StandardForm , ",", MakeBoxes x2, StandardForm ,

",", MakeBoxes x3, StandardForm , " " , RowBox

" ", RowBox MakeBoxes n1, StandardForm , ",", MakeBoxes n2, StandardForm ,

",", MakeBoxes n3, StandardForm , " " , Parenthesize f, StandardForm, D

Notation Gt1_,t2_,t3_,t4_ x1_,x2_,x3_,x4_
n1_,n2_,n3_,n4_

f_

GaussianD f_, x1_, t1_, n1_ , x2_, t2_, n2_ , x3_, t3_, n3_ , x4_, t4_, n4_

GaussianDerivative.nb 19

MakeExpression RowBox lhs___, SubsuperscriptBox " ",

RowBox SubscriptBox "G", RowBox t1_, ",", t2_, ",", t3_, ",", t4_ ,

" ", RowBox x1_, ",", x2_, ",", x3_, ",", x4_ , " " ,

RowBox " ", RowBox n1_, ",", n2_, ",", n3_, ",", n4_ , " " , f_, rhs___ ,

StandardForm : MakeExpression RowBox lhs, RowBox "GaussianD", " ",

RowBox f, ",", RowBox " ", RowBox x1, ",", t1, ",", n1 , " " ,

",", RowBox " ", RowBox x2, ",", t2, ",", n2 , " " , ",",

RowBox " ", RowBox x3, ",", t3, ",", n3 , " " , ",", RowBox

" ", RowBox x4, ",", t4, ",", n4 , " " , " " , rhs , StandardForm

MakeBoxes GaussianD f_, x1_, t1_, n1_ ,

x2_, t2_, n2_ , x3_, t3_, n3_ , x4_, t4_, n4_ , StandardForm :

RowBox SubsuperscriptBox " ", RowBox SubscriptBox "G",

RowBox MakeBoxes t1, StandardForm , ",", MakeBoxes t2, StandardForm , ",",

MakeBoxes t3, StandardForm , ",", MakeBoxes t4, StandardForm , " ",

RowBox MakeBoxes x1, StandardForm , ",", MakeBoxes x2, StandardForm ,

",", MakeBoxes x3, StandardForm , ",", MakeBoxes x4, StandardForm , " " ,

RowBox " ", RowBox MakeBoxes n1, StandardForm , ",",

MakeBoxes n2, StandardForm , ",", MakeBoxes n3, StandardForm , ",",

MakeBoxes n4, StandardForm , " " , Parenthesize f, StandardForm, D

Notation Gt_ x1_,x2_,x3_,x4_
n1_,n2_,n3_,n4_

f_

GaussianD f_, x1_, t_, n1_ , x2_, t_, n2_ , x3_, t_, n3_ , x4_, t_, n4_

MakeExpression

RowBox lhs___, SubsuperscriptBox " ", RowBox SubscriptBox "G", t_ , " ",

RowBox x1_, ",", x2_, ",", x3_, ",", x4_ , " " ,

RowBox " ", RowBox n1_, ",", n2_, ",", n3_, ",", n4_ , " " , f_, rhs___ ,

StandardForm : MakeExpression RowBox lhs, RowBox "GaussianD", " ",

RowBox f, ",", RowBox " ", RowBox x1, ",", t, ",", n1 , " " ,

",", RowBox " ", RowBox x2, ",", t, ",", n2 , " " , ",",

RowBox " ", RowBox x3, ",", t, ",", n3 , " " , ",", RowBox

" ", RowBox x4, ",", t, ",", n4 , " " , " " , rhs , StandardForm

MakeBoxes GaussianD f_, x1_, t_, n1_ , x2_, t_, n2_ ,

x3_, t_, n3_ , x4_, t_, n4_ , StandardForm : RowBox

SubsuperscriptBox " ", RowBox SubscriptBox "G", MakeBoxes t, StandardForm , " ",

RowBox MakeBoxes x1, StandardForm , ",", MakeBoxes x2, StandardForm , ",",

MakeBoxes x3, StandardForm , ",", MakeBoxes x4, StandardForm , " " ,

RowBox " ", RowBox MakeBoxes n1, StandardForm , ",",

MakeBoxes n2, StandardForm , ",", MakeBoxes n3, StandardForm , ",",

MakeBoxes n4, StandardForm , " " , Parenthesize f, StandardForm, D

GaussianDerivative

Automatic Kernel Range

To ensure a given precision for Gaussian derivatives, one must provide a Gaussian kernel with a minimum range [-r,r].

If is the admissable error, the constraint for a continuous Gaussian kernel is

r

r

GaussianDKernel t, 0, x x 1

GaussianDerivative.nb 20

For n-th order derivative kernels this generalizes to

r

r x n

n
GaussianDKernel t, n, x x 1

Unfortunately, the above inequality cannot be solved for r symbolically. Hence, we solve the inequality numerically

for

t = 1 and = 2 mwith m = 1,..., 32. Note, that t scales x by t and thus also r.

RangeError n_ : RangeError n
r

r x n

n
GaussianDKernel 1, n, x x

For the Gaussian kernel we obtain the explicit result

r . Solve RangeError 0 1 2 m, r 1

2 InverseErf 0, 2 m 1 2m

A list of results for derivatives up the 16th order is generated by

RangeErrorList m_ :

Rest FoldList r . FindRoot Evaluate RangeError #2 1 2 m , r, #1 &,

2 InverseErf 0, 2 m 1 2m , Range 0, 16

In accordance with Zernickes formula we fit the results.

RangeErrorFunction m_ :

Fit Transpose Range 0, 16 , RangeErrorList m 2 , n 1, n 1
3

, n

Thus, for each m we can generate a Gaussian kernel range function.

GaussianKernelRange m_ Compile t, _Real , n, _Integer ,

#, # & Evaluate Ceiling t 4 RangeErrorFunction m

 We do so explicitly for m = 4, 8, 12,... , 52.

GaussianKernelRange 4

Compile t, _Real , n, _Integer , #, # & Ceiling Sqrt 2.3243180666111423

2.3243180666111423 n 0.9765965923097873 1 n ^ 1 3 t

GaussianKernelRange 8

Compile t, _Real , n, _Integer , #, # & Ceiling Sqrt 2.2224289812448683

2.2224289812448683 n 1.6011247864558187 1 n ^ 1 3 t

GaussianKernelRange 12

Compile t, _Real , n, _Integer , #, # & Ceiling Sqrt 2.114376372864952

2.114376372864952 n 4.0288081480154725 1 n ^ 1 3 t

GaussianKernelRange 16

Compile t, _Real , n, _Integer , #, # & Ceiling Sqrt 1.998216846965191

1.998216846965191 n 6.392974885898669 1 n ^ 1 3 t

GaussianDerivative.nb 21

GaussianKernelRange 20

Compile t, _Real , n, _Integer , #, # & Ceiling Sqrt 1.874991609534614

1.874991609534614 n 8.723038909063387 1 n ^ 1 3 t

GaussianKernelRange 24

Compile t, _Real , n, _Integer , #, # & Ceiling Sqrt 1.7458525263268259

1.7458525263268259 n 11.032362584249514 1 n ^ 1 3 t

GaussianKernelRange 28

Compile t, _Real , n, _Integer , #, # & Ceiling Sqrt 1.6117501067548536

1.6117501067548536 n 13.328052128995822 1 n ^ 1 3 t

GaussianKernelRange 32

Compile t, _Real , n, _Integer , #, # & Ceiling Sqrt 1.473435732709178

1.473435732709178 n 15.61428837974991 1 n ^ 1 3 t

GaussianKernelRange 36

Compile t, _Real , n, _Integer , #, # & Ceiling Sqrt 1.3315035827972916

1.3315035827972916 n 17.893710961739284 1 n ^ 1 3 t

GaussianKernelRange 40

Compile t, _Real , n, _Integer , #, # & Ceiling Sqrt 1.1864219273587364

1.1864219273587364 n 20.168092531572174 1 n ^ 1 3 t

GaussianKernelRange 44

Compile t, _Real , n, _Integer , #, # & Ceiling Sqrt 1.0385758971718777

1.0385758971718777 n 22.438510420428443 1 n ^ 1 3 t

GaussianKernelRange 48

Compile t, _Real , n, _Integer , #, # & Ceiling Sqrt 0.889875356726046

0.889875356726046 n 24.692137806054756 1 n ^ 1 3 t

GaussianKernelRange 52

Compile t, _Real , n, _Integer , #, # & Ceiling Sqrt 0.7367547195975274

0.7367547195975274 n 26.829859007281208 1 n ^ 1 3 t

Earlier versions of this package used the formula of Zernicke for the upper bound of Gaussian width.

GaussianKernelRange Compile t, _Real , n, _Integer ,

Ceiling 4 Sqrt t Sqrt n 2 1.15 n 2
3

;

GaussianDerivative::widthfail

"Insufficient kernel width for `1` order differentiation.";

GaussianDerivative::nowidth "No kernel width specified.";

Automatic Minimal Scale

Scale is needed to regularize a discrete dataset. Here we determine the minimal scale needed to render correct deriva-

tive values for a given precision.

In Fourier space an n-th order Gaussian derivation is performed via multiplication with

n t 2

2

GaussianDerivative.nb 22

This Gaussian derivative kernel in Fourier space extends from - to . However, due to the discreteness of the data

we are bounded by its Nyquist frequency. If we take the lattice constant of the data grid as 1, we cannot sample the data

with frequencies higher than . Hence, we miss the values in Fourier space from to . We calculate this error and

determine the scale, with which this error is kept below a given precision threshold.

error n_ : error n Simplify
0

n t 2

2 0

n t 2

2

Here are the minimal scales t for Gaussian derivatives of order n from 0 through 16 to obtain a precision of 2 b with b

running from 4 to 52 in steps of 4.

results Table MapIndexed First #2 1, t . FindRoot #1 1 2 b, t, 1 &,

Table error n , n, 0, 16 , b, 4, 52, 4 ;

For each precision we fit the terms of Zernicke's formula to these minmal scales.

Map Fit #, 1, n 1, n 1 1 3 , n &, results

MinimalScale 4 Compile n, _Integer , 0.07225602550763996`

0.1934994115318552` 1 n 1 3 0.05458391922630867` 1 n ;

MinimalScale 8 Compile n, _Integer ,

0.04813185222160912` 0.31489231691130615` 1 n 1 3 0.05841271321345174` 1 n ;

MinimalScale 12 Compile n, _Integer ,

0.23138720823850856` 0.3870206014942941` 1 n 1 3 0.06201023916198861` 1 n ;

MinimalScale 16 Compile n, _Integer ,

0.4427462125429202` 0.43729757816428666` 1 n 1 3 0.06533784418156777` 1 n ;

MinimalScale 20 Compile n, _Integer ,

0.6700763376887527` 0.47527046426284586` 1 n 1 3 0.06841700241661773` 1 n ;

MinimalScale 24 Compile n, _Integer ,

0.9076871517131073` 0.5053978829196788` 1 n 1 3 0.07127851131749753` 1 n ;

MinimalScale 28 Compile n, _Integer ,

1.1524506471180527` 0.5301181105158642` 1 n 1 3 0.07395088137222257` 1 n ;

MinimalScale 32 Compile n, _Integer ,

1.4024642991094307` 0.5509059382924002` 1 n 1 3 0.0764583548853869` 1 n ;

MinimalScale 36 Compile n, _Integer ,

1.656487038699375` 0.568717809132497` 1 n 1 3 0.07882117438223667` 1 n ;

MinimalScale 40 Compile n, _Integer ,

1.9136820125603298` 0.5841887192822285` 1 n 1 3 0.08105828273659765` 1 n ;

MinimalScale 44 Compile n, _Integer ,

2.1736973881589376` 0.5976246623874925` 1 n 1 3 0.0831900868437959` 1 n ;

MinimalScale 48 Compile n, _Integer ,

2.442533291990515` 0.6028349507086076` 1 n 1 3 0.08585656496350498` 1 n ;

MinimalScale 52 Compile n, _Integer ,

2.627515797245066` 0.6649239314410514` 1 n 1 3 0.08356758359896967` 1 n ;

GaussianDerivative.nb 23

GaussianDerivative::scalefail "Scale too small for `1` order differentiation.";

The former approach for 12-bit precision to estimate the lower boumd of admissable scale paramterer values was:

MinimalScale Compile n, _Integer , Re Sqrt n 1 1.15 n 1
3

;

Symbolical Implementation

GaussianDerivative t_, 0 UnitStep :
1

2
1 Erf

#

2 t
&

GaussianDerivative tn : 0, 0 .. img_ img;

GaussianDerivative tn : _, _Integer?Positive .. img_Symbol :

0 ; MemberQ Attributes img , Constant

GaussianDerivative tn1 : _, _Integer : 0 .., opts1___Rule

GaussianDerivative tn2 : _, _Integer : 0 .., opts2___Rule img_ :

GaussianDerivative Apply Sequence, tn1 tn2 ,

Apply Sequence, Union opts1 , opts2 img ; Length tn1 Length tn2

GaussianDerivative tn : _, _ .., opts___Rule f_ :

Evaluate preliminary$Result & ;

Not ArrayQ f, _, NumeriQ Not MatchQ Head preliminary$Result

GaussianD f Thread Slot Range Length tn , Sequence

MapThread Prepend, tn , Thread Slot Range Length tn ,

HoldPattern GaussianDerivative tn, opts f

; Not ArrayQ f

Old Code:

GaussianDerivative tn : _, _Integer : 0 .., opts___Rule img_Symbol :

Module

result, ts, ns,

xs Table Unique "x" , Length tn ,

s Table Unique " " , Length tn ,

ys Table Unique "y" , Length tn ,

Evaluate result . Thread ys Table Slot i , i, Length ys & ;

If

FreeQ result FourierTransform Apply img, xs , xs, s , FourierTransform ,

ts, ns Transpose tn ;

FreeQ result InverseFourierTransform Apply Times, I s ^ns

Exp ts. s^2 result, s, ys , InverseFourierTransform ,

False

Numerical Implementation

The GaussianDerivative checks if the image and parameters allow numeric differentiation and calls up the apporpriate

Method.

GaussianDerivative.nb 24

GaussianDerivative::nomethod "Derivation Method `1` not implemented ";

GaussianDerivative tn : _?NumericQ, _Integer : 0 .., opts___Rule img_List :

Switch

Method . opts . Options GaussianDerivative ,

Convolve, ListConvolveGaussianDerivative tn, opts img ,

Fourier, FourierGaussianDerivative Apply Sequence, Reverse tn , opts img ,

_, Message GaussianDerivative::nomethod, Method ; Throw $Failed

; TensorRank img Length tn

ListConvolve Method

GaussianDerivative::noboundopt "Invalid ImageBoundary option.";

GaussianKernelInterval 0, 0 , _, rangeopt_: Automatic 1, 1 ;

GaussianKernelInterval t_, n_ , bits_, rangeopt_: Automatic :

If t 0, Message GaussianDerivative::scalefail, n ; Throw $Failed ;

If t MinimalScale bits n , Message GaussianDerivative::scalefail, n ;

Switch

rangeopt,

Automatic, GaussianKernelRange bits t, n ,

Infinity, 1, 1 Floor Sqrt t Log $MinMachineNumber ,

Infinity, Infinity , 1, 1 Floor Sqrt t Log $MinMachineNumber ,

_Integer, Infinity ,

rangeopt 1 , Floor Sqrt t Log $MinMachineNumber ,

Infinity, _Integer , Floor Sqrt t Log $MinMachineNumber ,

rangeopt 2 ,

_Integer, _Integer , rangeopt,

_, Message GaussianDerivative::nowidth ; Throw $Failed

;

ListConvolveGaussianDerivative1D

0, 0 , kmin_, kmax_ , boundaryopt_ , img_, depth_, opts___ img;

ListConvolveGaussianDerivative1D

t_, n_ , kmin_, kmax_ , boundaryopt_ , img_, depth_, opts___ :

Module

kern Nest List, Table NGaussianDKernel n t, x , x, kmin, kmax , depth 1 ,

Switch

boundaryopt,

Cyclic,

ListConvolve kern, img,

PadLeft kmin 1 , depth, 1 , PadLeft kmax 1 , depth, 1 ,

Truncate,

Map AttachFrame1D #, kmin, kmax &,

ListConvolve kern, img, PadLeft 1 , depth, 1 , PadLeft 1 , depth, 1 ,

depth 1 ,

_?NumericQ,

ListConvolve kern, img,

PadLeft kmin 1 , depth, 1 , PadLeft kmax 1 , depth, 1 , N boundaryopt ,

GaussianDerivative.nb 25

Constant,

ListConvolve kern, ImageFrame1D img, kmin, kmax , depth, Constant ,

Reflective,

ListConvolve kern, ImageFrame1D img, kmin, kmax , depth, Reflective ,

_, Message GaussianDerivative::nobound ; Throw $Failed

ListConvolveGaussianDerivative tn__List, opts___Rule img_List :

Catch Module

dim TensorRank img , nn Length tn , dimrot,

bounds ImageBoundary . opts . Options GaussianDerivative ,

kernrange KernelRange . opts . Options GaussianDerivative ,

kernpbits Min 52, Max 4, 4 Ceiling

Log 2, 10^ WorkingPrecision . opts . Options GaussianDerivative

4

,

If

dim nn,

dimrot RotateLeft Range nn ;

Fold

ListConvolveGaussianDerivative1D #2, Transpose #1, dimrot , dim, opts &,

img,

Map #, GaussianKernelInterval #, kernpbits, kernrange , bounds &,

RotateLeft tn ,

dimrot Join Range 1, dim nn , RotateLeft Range dim nn 1, dim ;

Transpose

Fold

ListConvolveGaussianDerivative1D #2, Transpose #1, dimrot , dim, opts &,

Transpose img, Join Range nn 1, dim , Range nn ,

Map #, GaussianKernelInterval #, kernpbits, kernrange , bounds &,

RotateLeft tn

,

Join Range dim nn 1, dim , Range 1, dim nn

Fourier Method

NFourierGaussianDKernelList[] renders the Fourier transformed kernel scaled by factor n r . This way the kernel

remains real and the multiplication with the Fourier transformed image is performed twice as fast. The complex scaling

is applied separately at a later stage. The Fourier transformed Gaussian derivative kernel is capped by

10.^($MachinePrecision-3) so that numerical instabilities for negative t do not occur.

GaussianDerivative.nb 26

NFourierGaussianDKernelList

Compile

t, _Real , n, _Integer , r, _Integer ,

Join If n 0, 1, 0 , #, 1 ^n Reverse If EvenQ r , Drop #, 1 , # &

With stepsize 2. Pi r ,

Table omega ^n Exp omega^2 t 4 , omega, stepsize, Pi, stepsize

,

omega, _Real , stepsize, _Real

;

FourierGaussianDerivative tn__List, opts___Rule img_List :

Module

dim TensorRank img ,

nn Length tn ,

kern, norm, res ,

kern

Apply

FastOuterTimes,

Apply

NFourierGaussianDKernelList,

Transpose Append Transpose tn , res Take Dimensions img , nn ,

1

;

If Not Apply And, Positive Transpose tn 1 &&

Max kern 10.^ $MachinePrecision 3 ,

kern Map Min #, 10.^ $MachinePrecision 3 &, kern, 1 ;

norm Apply Times, I ^ Transpose tn 2 ;

If

dim nn,

Chop Re InverseFourier norm kern Fourier img ,

Transpose

Map

Chop Re InverseFourier norm kern Fourier # &,

Transpose img, Join Range nn 1, dim , Range nn ,

dim nn

,

Join Range dim nn 1, dim , Range 1, dim nn

GaussianDerivative Input Notation

Notation f_Gt_ GaussianDerivative t_, 0 f_

GaussianDerivative.nb 27

GaussianDerivative Input Notation

MakeExpression SubscriptBox f_, SubscriptBox "G", t_ , StandardForm :

MakeExpression RowBox RowBox "GaussianDerivative", " ",

RowBox " ", RowBox t, ",", "0" , " " , " " , " ", f, " " , StandardForm

MakeBoxes GaussianDerivative t_, 0 f_ , StandardForm : SubscriptBox

MakeBoxes f, StandardForm , SubscriptBox "G", MakeBoxes t, StandardForm

Notation f_Gt_ GaussianDerivative t_, 1 f_

MakeExpression SubsuperscriptBox f_, SubscriptBox "G", t_ , " " , StandardForm :

MakeExpression RowBox RowBox "GaussianDerivative", " ",

RowBox " ", RowBox t, ",", "1" , " " , " " , " ", f, " " , StandardForm

MakeBoxes GaussianDerivative t_, 1 f_ , StandardForm :

SubsuperscriptBox MakeBoxes f, StandardForm ,

SubscriptBox "G", MakeBoxes t, StandardForm , " ", MultilineFunction None

Notation f_Gt_ GaussianDerivative t_, 2 f_

MakeExpression SubsuperscriptBox f_, SubscriptBox "G", t_ , " " , StandardForm :

MakeExpression RowBox RowBox "GaussianDerivative", " ",

RowBox " ", RowBox t, ",", "2" , " " , " " , " ", f, " " , StandardForm

MakeBoxes GaussianDerivative t_, 2 f_ , StandardForm :

SubsuperscriptBox MakeBoxes f, StandardForm ,

SubscriptBox "G", MakeBoxes t, StandardForm , " ", MultilineFunction None

Notation f_Gt_
n_ GaussianDerivative t_, n_ f_

MakeExpression SubsuperscriptBox f_, SubscriptBox "G", t_ , RowBox " ", n_, " " ,

StandardForm : MakeExpression RowBox

RowBox "GaussianDerivative", " ", RowBox " ", RowBox t, ",", n , " " , " " ,

" ", f, " " , StandardForm

MakeBoxes GaussianDerivative t_, n_ f_ , StandardForm :

SubsuperscriptBox MakeBoxes f, StandardForm , SubscriptBox "G",

MakeBoxes t, StandardForm , RowBox " ", MakeBoxes n, StandardForm , " "

Notation f_Gt1_,t2_ GaussianDerivative t1_, 0 , t2_, 0 f_

MakeExpression SubscriptBox f_, SubscriptBox "G", RowBox t1_, ",", t2_ ,

StandardForm : MakeExpression RowBox RowBox "GaussianDerivative",

" ", RowBox RowBox " ", RowBox t1, ",", "0" , " " , ",", RowBox

" ", RowBox t2, ",", "0" , " " , " " , " ", f, " " , StandardForm

MakeBoxes GaussianDerivative t1_, 0 , t2_, 0 f_ , StandardForm :

SubscriptBox MakeBoxes f, StandardForm , SubscriptBox "G",

RowBox MakeBoxes t1, StandardForm , ",", MakeBoxes t2, StandardForm

Notation f_Gt1_,t2_
n1_,n2_ GaussianDerivative t1_, n1_ , t2_, n2_ f_

GaussianDerivative.nb 28

MakeExpression SubsuperscriptBox f_, SubscriptBox "G", RowBox t1_, ",", t2_ ,

RowBox " ", RowBox n1_, ",", n2_ , " " , StandardForm :

MakeExpression RowBox RowBox "GaussianDerivative", " ",

RowBox RowBox " ", RowBox t1, ",", n1 , " " , ",", RowBox

" ", RowBox t2, ",", n2 , " " , " " , " ", f, " " , StandardForm

MakeBoxes GaussianDerivative t1_, n1_ , t2_, n2_ f_ , StandardForm :

SubsuperscriptBox MakeBoxes f, StandardForm , SubscriptBox "G", RowBox

MakeBoxes t1, StandardForm , ",", MakeBoxes t2, StandardForm , RowBox " ",

RowBox MakeBoxes n1, StandardForm , ",", MakeBoxes n2, StandardForm , " "

Notation f_Gt_ GaussianDerivative t_, 0 , t_, 0 f_

MakeExpression SubscriptBox f_, SubscriptBox "G", t_ , StandardForm :

MakeExpression RowBox RowBox "GaussianDerivative", " ",

RowBox RowBox " ", RowBox t, ",", "0" , " " , ",", RowBox

" ", RowBox t, ",", "0" , " " , " " , " ", f, " " , StandardForm

MakeBoxes GaussianDerivative t_, 0 , t_, 0 f_ , StandardForm : SubscriptBox

MakeBoxes f, StandardForm , SubscriptBox "G", MakeBoxes t, StandardForm

Notation f_Gt_
n1_,n2_ GaussianDerivative t_, n1_ , t_, n2_ f_

MakeExpression SubsuperscriptBox f_, SubscriptBox "G", t_ ,

RowBox " ", RowBox n1_, ",", n2_ , " " , StandardForm :

MakeExpression RowBox RowBox "GaussianDerivative", " ",

RowBox RowBox " ", RowBox t, ",", n1 , " " , ",", RowBox

" ", RowBox t, ",", n2 , " " , " " , " ", f, " " , StandardForm

MakeBoxes GaussianDerivative t_, n1_ , t_, n2_ f_ , StandardForm :

SubsuperscriptBox MakeBoxes f, StandardForm ,

SubscriptBox "G", MakeBoxes t, StandardForm , RowBox " ",

RowBox MakeBoxes n1, StandardForm , ",", MakeBoxes n2, StandardForm , " "

Notation f_Gt1_,t2_,t3_ GaussianDerivative t1_, 0 , t2_, 0 , t3_, 0 f_

MakeExpression

SubscriptBox f_, SubscriptBox "G", RowBox t1_, ",", t2_, ",", t3_ ,

StandardForm : MakeExpression RowBox RowBox

"GaussianDerivative", " ", RowBox RowBox " ", RowBox t1, ",", "0" , " " ,

",", RowBox " ", RowBox t2, ",", "0" , " " , ",", RowBox

" ", RowBox t3, ",", "0" , " " , " " , " ", f, " " , StandardForm

MakeBoxes GaussianDerivative t1_, 0 , t2_, 0 , t3_, 0 f_ , StandardForm :

SubscriptBox MakeBoxes f, StandardForm ,

SubscriptBox "G", RowBox MakeBoxes t1, StandardForm , ",",

MakeBoxes t2, StandardForm , ",", MakeBoxes t3, StandardForm

Notation f_Gt1_,t2_,t3_
n1_,n2_,n3_ GaussianDerivative t1_, n1_ , t2_, n2_ , t3_, n3_ f_

GaussianDerivative.nb 29

MakeExpression

SubsuperscriptBox f_, SubscriptBox "G", RowBox t1_, ",", t2_, ",", t3_ ,

RowBox " ", RowBox n1_, ",", n2_, ",", n3_ , " " ,

StandardForm : MakeExpression RowBox RowBox

"GaussianDerivative", " ", RowBox RowBox " ", RowBox t1, ",", n1 , " " ,

",", RowBox " ", RowBox t2, ",", n2 , " " , ",", RowBox

" ", RowBox t3, ",", n3 , " " , " " , " ", f, " " , StandardForm

MakeBoxes GaussianDerivative t1_, n1_ , t2_, n2_ , t3_, n3_ f_ , StandardForm :

SubsuperscriptBox MakeBoxes f, StandardForm ,

SubscriptBox "G", RowBox MakeBoxes t1, StandardForm , ",",

MakeBoxes t2, StandardForm , ",", MakeBoxes t3, StandardForm ,

RowBox " ", RowBox MakeBoxes n1, StandardForm , ",",

MakeBoxes n2, StandardForm , ",", MakeBoxes n3, StandardForm , " "

Notation f_Gt_ GaussianDerivative t_, 0 , t_, 0 , t_, 0 f_

MakeExpression SubscriptBox f_, SubscriptBox "G", t_ , StandardForm :

MakeExpression RowBox RowBox

"GaussianDerivative", " ", RowBox RowBox " ", RowBox t, ",", "0" , " " ,

",", RowBox " ", RowBox t, ",", "0" , " " , ",", RowBox

" ", RowBox t, ",", "0" , " " , " " , " ", f, " " , StandardForm

MakeBoxes GaussianDerivative t_, 0 , t_, 0 , t_, 0 f_ , StandardForm :

SubscriptBox MakeBoxes f, StandardForm ,

SubscriptBox "G", MakeBoxes t, StandardForm

Notation f_Gt_
n1_,n2_,n3_ GaussianDerivative t_, n1_ , t_, n2_ , t_, n3_ f_

MakeExpression SubsuperscriptBox f_, SubscriptBox "G", t_ ,

RowBox " ", RowBox n1_, ",", n2_, ",", n3_ , " " ,

StandardForm : MakeExpression RowBox RowBox

"GaussianDerivative", " ", RowBox RowBox " ", RowBox t, ",", n1 , " " ,

",", RowBox " ", RowBox t, ",", n2 , " " , ",", RowBox

" ", RowBox t, ",", n3 , " " , " " , " ", f, " " , StandardForm

MakeBoxes GaussianDerivative t_, n1_ , t_, n2_ , t_, n3_ f_ , StandardForm :

SubsuperscriptBox MakeBoxes f, StandardForm ,

SubscriptBox "G", MakeBoxes t, StandardForm ,

RowBox " ", RowBox MakeBoxes n1, StandardForm , ",",

MakeBoxes n2, StandardForm , ",", MakeBoxes n3, StandardForm , " "

Notation

f_Gt1_,t2_,t3_,t4_ GaussianDerivative t1_, 0 , t2_, 0 , t3_, 0 , t4_, 0 f_

GaussianDerivative.nb 30

MakeExpression

SubscriptBox f_, SubscriptBox "G", RowBox t1_, ",", t2_, ",", t3_, ",", t4_ ,

StandardForm : MakeExpression RowBox RowBox

"GaussianDerivative", " ", RowBox RowBox " ", RowBox t1, ",", "0" , " " ,

",", RowBox " ", RowBox t2, ",", "0" , " " , ",",

RowBox " ", RowBox t3, ",", "0" , " " , ",", RowBox

" ", RowBox t4, ",", "0" , " " , " " , " ", f, " " , StandardForm

MakeBoxes GaussianDerivative t1_, 0 , t2_, 0 , t3_, 0 , t4_, 0 f_ ,

StandardForm : SubscriptBox MakeBoxes f, StandardForm , SubscriptBox "G",

RowBox MakeBoxes t1, StandardForm , ",", MakeBoxes t2, StandardForm ,

",", MakeBoxes t3, StandardForm , ",", MakeBoxes t4, StandardForm

Notation f_Gt1_,t2_,t3_,t4_
n1_,n2_,n3_,n4_

GaussianDerivative t1_, n1_ , t2_, n2_ , t3_, n3_ , t4_, n4_ f_

MakeExpression SubsuperscriptBox f_,

SubscriptBox "G", RowBox t1_, ",", t2_, ",", t3_, ",", t4_ ,

RowBox " ", RowBox n1_, ",", n2_, ",", n3_, ",", n4_ , " " ,

StandardForm : MakeExpression RowBox RowBox

"GaussianDerivative", " ", RowBox RowBox " ", RowBox t1, ",", n1 , " " ,

",", RowBox " ", RowBox t2, ",", n2 , " " , ",",

RowBox " ", RowBox t3, ",", n3 , " " , ",", RowBox

" ", RowBox t4, ",", n4 , " " , " " , " ", f, " " , StandardForm

MakeBoxes GaussianDerivative t1_, n1_ , t2_, n2_ , t3_, n3_ , t4_, n4_ f_ ,

StandardForm : SubsuperscriptBox MakeBoxes f, StandardForm , SubscriptBox

"G", RowBox MakeBoxes t1, StandardForm , ",", MakeBoxes t2, StandardForm ,

",", MakeBoxes t3, StandardForm , ",", MakeBoxes t4, StandardForm ,

RowBox " ", RowBox MakeBoxes n1, StandardForm , ",", MakeBoxes n2, StandardForm ,

",", MakeBoxes n3, StandardForm , ",", MakeBoxes n4, StandardForm , " "

Notation f_Gt_ GaussianDerivative t_, 0 , t_, 0 , t_, 0 , t_, 0 f_

MakeExpression SubscriptBox f_, SubscriptBox "G", t_ , StandardForm :

MakeExpression RowBox RowBox

"GaussianDerivative", " ", RowBox RowBox " ", RowBox t, ",", "0" , " " ,

",", RowBox " ", RowBox t, ",", "0" , " " , ",",

RowBox " ", RowBox t, ",", "0" , " " , ",", RowBox

" ", RowBox t, ",", "0" , " " , " " , " ", f, " " , StandardForm

MakeBoxes GaussianDerivative t_, 0 , t_, 0 , t_, 0 , t_, 0 f_ , StandardForm :

SubscriptBox MakeBoxes f, StandardForm ,

SubscriptBox "G", MakeBoxes t, StandardForm

Notation

f_Gt_
n1_,n2_,n3_,n4_ GaussianDerivative t_, n1_ , t_, n2_ , t_, n3_ , t_, n4_ f_

GaussianDerivative.nb 31

MakeExpression SubsuperscriptBox f_, SubscriptBox "G", t_ ,

RowBox " ", RowBox n1_, ",", n2_, ",", n3_, ",", n4_ , " " ,

StandardForm : MakeExpression RowBox RowBox

"GaussianDerivative", " ", RowBox RowBox " ", RowBox t, ",", n1 , " " ,

",", RowBox " ", RowBox t, ",", n2 , " " , ",",

RowBox " ", RowBox t, ",", n3 , " " , ",", RowBox

" ", RowBox t, ",", n4 , " " , " " , " ", f, " " , StandardForm

MakeBoxes GaussianDerivative t_, n1_ , t_, n2_ , t_, n3_ , t_, n4_ f_ ,

StandardForm : SubsuperscriptBox MakeBoxes f, StandardForm ,

SubscriptBox "G", MakeBoxes t, StandardForm ,

RowBox " ", RowBox MakeBoxes n1, StandardForm , ",", MakeBoxes n2, StandardForm ,

",", MakeBoxes n3, StandardForm , ",", MakeBoxes n4, StandardForm , " "

GaussianDerivativeAt

Numerical Implementation

The GaussianDerivative checks if the image and parameters allow numeric differentiation at one or several locations in

scale space.

GaussianDerivativeAt

tnp : _?NumericQ, _?NumericQ, _Integer : 0 .., opts___Rule img_List :

Catch Module

bounds ImageBoundary . opts . Options GaussianDerivativeAt ,

kernrange KernelRange . opts . Options GaussianDerivativeAt ,

kernpbits Min 52, Max 4, 4 Ceiling

Log 2, 10^ WorkingPrecision . opts . Options GaussianDerivativeAt

4 ,

tnpList Reverse Map PadRight #, 3 &, tnp ,

positions, intervals, frameWidth, offsets, framedImage, x

,

positions tnpList All, 1 ;

intervals Map

GaussianKernelInterval Rest # , kernpbits, kernrange &,

tnpList, 1

;

frameWidth Transpose Apply

1 Map Min 1, # &, #1 ,

MapThread Max #1, #2 #2 &, #2, Take Dimensions img , Length #2 &,

Transpose Round positions intervals

;

offsets frameWidth All, 1 ;

framedImage ImageFrame img, frameWidth, ImageBoundary bounds ;

Fold

Dot #2, #1 &,

Apply Take framedImage, ## &, Round positions offsets intervals ,

MapThread

Table

NGaussianDKernel Last #1 #1 2 , x ,

Evaluate Join x , Reverse #2 First #1 Round First #1 , 1

GaussianDerivative.nb 32

&,

tnpList, intervals

; TensorRank img Length tnp

GaussianDerivativeAt

tnps : _?NumericQ, _?NumericQ, _Integer : 0, opts___Rule img_List :

Catch Module

bounds ImageBoundary . opts . Options GaussianDerivativeAt ,

kernrange KernelRange . opts . Options GaussianDerivativeAt ,

kernpbits Min 52, Max 4, 4 Ceiling

Log 2, 10^ WorkingPrecision . opts . Options GaussianDerivativeAt

4 ,

tnpList Map Reverse, Map PadRight #, 3 &, tnps , 2 ,

positions, intervals, frameWidth, offsets, framedImage, x

,

positions tnpList All, All, 1 ;

intervals

Map GaussianKernelInterval Rest # , kernpbits, kernrange &, tnpList, 2 ;

frameWidth MapThread

1 Min 1, First #1 , Max Last #1 , #2 #2 &,

#, Take Dimensions img , Length #

& PseudoTranspose Round positions intervals, 3, 1, 2 ;

offsets frameWidth All, 1 ;

framedImage ImageFrame img, frameWidth, ImageBoundary bounds ;

MapThread

Fold Dot #2, #1 &, Apply Take framedImage, ## &, #1 , #2 &,

Map # offsets &, Round positions intervals,

MapThread

Table

NGaussianDKernel Last #1 #1 2 , x ,

Evaluate Join x , Reverse #2 First #1 Round First #1 , 1

&,

tnpList, intervals , 2

; Apply And, Map TensorRank img Length # &, tnps

Utility Functions

A utility function to speed up outer multiplications by a factor 15 compared to Outer[].

FastOuterTimes x_List, y__List :

Fold With v #2 , Map Times #, v &, #1, TensorRank #1 &, x, y ;

FastOuterTimes x_List x;

A transpose function that can handle matrices with varying row length.

GaussianDerivative.nb 33

PseudoTranspose expr : __ .. :

DeleteCases

Transpose PadRight expr, Length expr , Max Map Length, expr , Null , Null, 2

PseudoTranspose expr : __ .. , perm_List :

With

dim Drop NestWhileList

Max Map Length, expr, i &, i 1; Length expr , # 0 & , 1 ,

If Length perm Length dim , Message Transpose::tperm, perm ; Return ;

DeleteCases

Transpose PadRight expr, dim, Null , perm , Null Null .. , Length perm

Attaching a frame of specified value and thickness around an image.

AttachFrame1D data_List, widthleft_Integer, widthright_Integer :

If widthleft widthright,

Join #, data, # &

Table 0, widthleft , ## & Transpose Dimensions First data ,

Join Table 0, widthleft , ## , data, Table 0, widthright , ## &

Transpose Dimensions First data

Closing Package

Closing the package and locking all the symbols.

End

Protect

G,

GaussianKernelRange,

NGaussianKernel,

GaussianKernel,

AngularGaussianKernel,

NGaussianDKernel,

GaussianDKernel,

GaussianD,

GaussianDerivative,

GaussianDerivativeAt,

Method,

KernelRange,

ImageBoundary,

Convolve,

Fourier,

Cyclic,

Truncate,

Reflective

EndPackage

GaussianDerivative.nb 34

MathVisionTools: GaussianDerivative

GaussianDerivative[{ t, n}][f] represents the n-th Gaussian derivative of a one-dimensional function
or data list f at scale t. t is equivalent to 2 2 in a Gaussian distribution. A known function f is processed with
respect to its first slot. A data list f is automatically convolved with the respective Gaussian derivative kernel.

GaussianDerivative[{ tx, nx},{ty, ny}][f] gives the (nx, ny)-th Gaussian derivative of function or
data list f at scale txand ty respectively. A known function f is processed with respect to its first slot as variable
x and with respect to its second slot as variable y. A two-dimensional data list f is automatically convolved
with the respective Gaussian derivative kernel.

GaussianDerivative is also applicable to dimensions larger than 2.

 The following options can be given:

Method Convolve determines the convolutions process. Method

Convolve causes GaussianDerivative to

perform the convolution with the built-in Listvolve

command. With Method

Fourier, the

convolution is done via multiplication in Fourier
space.

KernelRange Automatic specifies the size of the Gaussian convolution kernel if

the derivation is done via ListConvolve. Infin

ity sets the kernel size equal to the data size and any

integer or list of integers specifies the dimensions of

the kernel.

ImageBoundary Cyclic specifies the boundary condition of the convolution.
Convolutions via the Fourier method can only

handle the cyclic boundary condition. However, if

Method is set to Convolve, several boundary

conditions are available: Cyclic (default), Trun

cate, Constant, Reflective, and any numeric

value as background.

Note, that Gaussian derivatives need a minimal scale t to render regularized results. Typical lower bounds are 0.8 for
first-order derivatives and 1.2 for second-order derivatives.

fGt
n is a short notation for GaussianDerivative[{ t, n}][f].

 See also: and GaussianDerivativeAt, GaussianDKernel, and GaussianD.

 New in Version 1.

Further Examples

This loads the MathVisionTools package.

In[1]:= MathVisionTools`

The symbolic second-order Gaussian derivative of Cos(x) with respect to x at scale t.

In[2]:= GaussianDerivative t, 2 Cos x

Out[2]= t Cos x

Printed from the Mathematica Help Browser 1

©1988-2005 Wolfram Research, Inc. All rights reserved.

The numeric Laplace operator applied to an image.

In[3]:= img Import "mr256.jpg" 1, 1 ;

In[4]:= edges GaussianDerivative 1.2, 2 , 1.2, 0 img

GaussianDerivative 1.2, 0 , 1.2, 2 img ;

In[5]:= ListDensityPlot edges, Mesh False, Frame False, PlotRange All ;

In[6]:= Clear img, edges

2 Printed from the Mathematica Help Browser

©1988-2005 Wolfram Research, Inc. All rights reserved.

GeometryDrivenDiffusion Package

Edwin Bennink
Technische Universiteit Eindhoven
©2005

Prefix

TimeStamp "MathVisionTools`GeometryDrivenDiffusion "̀ 2005, 1, 12, 13, 15, 0

The preamble of the package containing all kinds of remarks about authorship, contemns, and copyright.

:Name: MathVisionTools`GeometryDrivenDiffusion`

:Author: Edwin Bennink

:Email address: H.E.Bennink student.tue.nl

:Context: MathVisionTools`GeometryDrivenDiffusion`

:Package Version: 1.0

:Mathematica Version: 5.0

:Copyright: Copyright 2004, Technische Universiteit Eindhoven

:Title: GeometryDrivenDiffusion

:Summary: This package implements Geometry Driven Diffusion

:Keywords: Geometry Driven, Diffusion, Perona, Malik, Euclidean Shortening

:Requirements: None

:Source: None

:History: Version 1.0 by Edwin Bennink, November 2004

:Limitations:

:Discussion:

:To do:

GeometryDrivenDiffusion.nb 1

Begin Package

Declaring the package and unlocking all symbols defined in the code.

BeginPackage "MathVisionTools`GeometryDrivenDiffusion "̀,

"MathVisionTools`GaussianDerivative "̀

Unprotect

GeometryDrivenDiffusion,

EuclideanShorten,

PeronaMalik1,

PeronaMalik2,

ForwardEuler,

RungeKutta,

DiffusionEquation,

Parameters,

Method

Online Help and Options

GeometryDrivenDiffusion::usage

"GeometryDrivenDiffusion data, t, dt simulates the diffusion of luminance

within a 2D or 3D data image using numerical integration and renders

the final image. t is the diffusion time, dt the integration step size.

\nDifferent diffusion equations and integration methods can be chosen

by specifying the Options DiffusionEquation, Parameters and Method.";

DiffusionEquation::usage

"DiffusionEquation is and option to GeometryDrivenDiffusion, which

specifies what diffusion equation to use. Possible options are

EuclideanShorten, PeronaMalik1 and PeronaMalik2. It is also possible

to specify any function of the form
L

t
F L, p1, p2, … , in

which L is the image data and p1, p2, … is a list of parameters.";

Parameters::usage "Parameters is and option to GeometryDrivenDiffusion,

which specifies the parameters of the DiffusionEquation."

If

Not StringMatchQ Method::usage, " GeometryDrivenDiffusion " ,

Method::usage Method::usage

"\nPossible options for GeometryDrivenDiffusion are ForwardEuler

standard Forward Euler and RungeKutta 4th order Runge Kutta ." ;

Options GeometryDrivenDiffusion

DiffusionEquation EuclideanShorten, Parameters 0.8, , Method ForwardEuler ;

GeometryDrivenDiffusion.nb 2

Package Code

Starting the private context of the package.

Begin "`Private`"

Diffusion Equations (DiffusionEquation)

Euclidean shortening (EuclideanShorten)

EuclideanShorten data_, param_ : Module lx, ly, lz, lxx, lxy, lyy, ,

If Length param 1, param 1 ,

Message EuclideanShorten::parameters ; Throw $Failed ;

Switch ArrayDepth data ,

2,

lx, ly, lxx, lxy, lyy GaussianDerivative 0.5 2, # 1 , 0.5 2, # 2 data &

1, 0 , 0, 1 , 2, 0 , 1, 1 , 0, 2 ;

lxx ly2 2 lx lxy ly lyy lx2

lx2 ly2 . 0. 1.
,

3, lx, ly, lz, lxx, lxy, lxz, lyy, lyz, lzz

GaussianDerivative 0.5 2, # 1 , 0.5 2, # 2 , 0.5 2, # 3 data &

1, 0, 0 , 0, 1, 0 , 0, 0, 1 , 2, 0, 0 ,

1, 1, 0 , 0, 1, 1 , 0, 2, 0 , 0, 1, 1 , 0, 0, 2 ;

2 ly lyz lz lyy lz2 2 lx lxy ly lxz lz lxx ly2 lz2 ly2 lzz lx2 lyy lzz

lx2 ly2 lz2 . 0. 1.
,

_, Message EuclideanShorten::depth ; Throw $Failed

EuclideanShorten::depth "This DiffusionEquation accepts 2D or 3D data only.";

EuclideanShorten::parameters

"This DiffusionEquation needs at least 1 parameter, .";

GeometryDrivenDiffusion.nb 3

Perona & Malik with c
L 2

k2 (PeronaMalik1)

PeronaMalik1 data_, param_ : Module lx, ly, lxy, lxx, lyy, , k ,

If Length param 2, param 1 ; k param 2 ,

Message PeronaMalik1::parameters ; Throw $Failed ;

Switch ArrayDepth data ,

2,

lx, ly, lxx, lxy, lyy GaussianDerivative 0.5 2, # 1 , 0.5 2, # 2 data &

1, 0 , 0, 1 , 2, 0 , 1, 1 , 0, 2 ;

If k , lxx lyy,

lx2 ly2

k2 k2 2 lx2 lxx 4 lx lxy ly k2 2 ly lyy

k2
,

3, lx, ly, lz, lxx, lxy, lxz, lyy, lyz, lzz

GaussianDerivative 0.5 2, # 1 , 0.5 2, # 2 , 0.5 2, # 3 data &

1, 0, 0 , 0, 1, 0 , 0, 0, 1 , 2, 0, 0 ,

1, 1, 0 , 0, 1, 1 , 0, 2, 0 , 0, 1, 1 , 0, 0, 2 ;

If k , lxx lyy lzz,
1

k2

lx2 ly2 lz2

k2 k2 2 lx2 lxx k2 lyy

2 ly2 lyy 4 ly lyz lz 4 lx lxy ly lxz lz k2 lzz 2 lz2 lzz ,

_, Message PeronaMalik1::depth ; Throw $Failed

PeronaMalik1::depth "This DiffusionEquation accepts 2D or 3D data only.";

PeronaMalik1::parameters

"This DiffusionEquation needs at least 2 parameters, , k .";

Perona & Malik with c 1

1
L 2

k2

 (PeronaMalik2)

PeronaMalik2 data_, param_ : Module lx, ly, lxy, lxx, lyy, , k ,

If Length param 2, param 1 ; k param 2 ,

Message PeronaMalik2::parameters ; Throw $Failed ;

Switch ArrayDepth data ,

2,

lx, ly, lxx, lxy, lyy GaussianDerivative 0.5 2, # 1 , 0.5 2, # 2 data &

1, 0 , 0, 1 , 2, 0 , 1, 1 , 0, 2 ;

If k , lxx lyy,
k2 4 lx lxy ly lxx k2 lx2 lx2 lx2 lyy k2 ly2 lyy

k2 lx2 ly2
2

,

3, lx, ly, lz, lxx, lxy, lxz, lyy, lyz, lzz

GaussianDerivative 0.5 2, # 1 , 0.5 2, # 2 , 0.5 2, # 3 data &

1, 0, 0 , 0, 1, 0 , 0, 0, 1 , 2, 0, 0 ,

1, 1, 0 , 0, 1, 1 , 0, 2, 0 , 0, 1, 1 , 0, 0, 2 ;

If k , lxx lyy lzz,
1

k2 lx2 ly2 lz2
2

k2 k2 lyy ly2 lyy 4 ly lyz lz lyy lz2 4 lx lxy ly lxz lz

lxx k2 lx2 ly2 lz2 k2 lzz ly2 lzz lz2 lzz lx2 lyy lzz ,

_, Message PeronaMalik2::depth ; Throw $Failed

PeronaMalik2::depth "This DiffusionEquation accepts 2D or 3D data only.";

PeronaMalik2::parameters

"This DiffusionEquation needs at least 2 parameters, , k .";

GeometryDrivenDiffusion.nb 4

Integration Schemes (Method)

Forward Euler (ForwardEuler)

ForwardEuler data_, t_, dt_, f_, param_ :

Module

im data ,

Do im f im, param dt, Ceiling t dt ;

im

4th order Runge-Kutta (RungeKutta)

RungeKutta data_, t_, dt_, f_, param_ :

Module

im data ,

Do im

Plus
1

6
,

2

6
,

2

6
,

1

6
FoldList f im #1 #2, param &, f im, param ,

1

2
,

1

2
, 1

dt, Ceiling
t

dt
;

im

Main Function (GeometryDrivenDiffusion)

GeometryDrivenDiffusion data_, t_, dt_, opts___ ?OptionQ :

Catch

Module

im data, d, m ,

d, param, m DiffusionEquation, Parameters, Method . opts .

Options GeometryDrivenDiffusion ;

Off GaussianDerivative::scalefail ;

im Chop m im, t, dt, d, param ;

On GaussianDerivative::scalefail ;

im

Closing Package

Closing the package and locking all the symbols.

GeometryDrivenDiffusion.nb 5

End

SetAttributes

GeometryDrivenDiffusion,

EuclideanShorten,

PeronaMalik1,

PeronaMalik2,

ForwardEuler,

RungeKutta,

DiffusionEquation,

Parameters,

Method ,

Protected, ReadProtected

;

EndPackage

GeometryDrivenDiffusion.nb 6

MathVisionTools

Mathematical Prototyping in Medical Image Analysis

Markus A. van Almsick, Bart M. ter Haar Romeny, Edwin H. Bennink

Eindhoven University of Technology
Department of Biomedical Engineering
Biomedical Image Analysis Group

Initialization

MathVisionTools`;

Graphics`;

SetOptions ListDensityPlot, Mesh False, Frame False, PlotRange All ;

SetDirectory "C:\\Documents and Settings\\All Users\\Application

Data\\Mathematica\\Applications\\FrontEndVision\\Images" ;

Introduction

Medical image analysis today is based on serious mathematics. More and more methods involve PDE's, linear algebra,

complex transforms, optimization theory etc.. Higher mathematics finds its way into sophisticated and efficient applica-

tions. The flow of development of such algorithms passes typically through three stages:

1. The design stage (also called rapid prototyping): This is the creative stage and needs careful exploration of each

processing steps, analysis ofsensitivity parameters, and thorough understanding of the mathematical, physical, and

statistical concepts involved. In the design stage, algorithms are developed and tested on relatively small, but in some

cases high-dimensional datasets. A high-level programming language can facilitate these tasks.

2. The validation stage: Speed and memory issues for clinical validation come into focus. Here, C++/C or Java routines

are exploited, supported by specialized libraries, such as VTK and OpenGL.

3. The clinical implementation stage: in the final step the approved algorithms are molded into real clinical implementa-

tion where the methods are fixed and highly optimized for speed and memory usage, e.g. by low level implementation

languages and hardware support (graphics cards, DSP boards, parallel processing).

This paper introduces the software environment MathVisionTools that is suited for the design stage, where the empha-

sis lies on mathematical modeling. One finds here a niche in the world of medical image analysis software that has not

yet been claimed.

We are well aware of the long list of computer vision libraries available [1]. Efforts with a too small user base tend to

disappear when the original author(s) discontinue the development. The open source code and data initiative, well

supported by MICCAI [2] and Nature Biology [3], provides a good impetus for lasting developments by giving the

endeavor a critical mass. Next to users contribution, a large supporting body is essential, such as government grants

(NLM/NIH ITK, Kitware VTK), research institute support (MEVIS MevisLab, Mayo Clinic Analyze) and industrial

support (Wolfram's Mathematica, MathWorks Matlab, ITTVIS IDL) to just name a few.

This article is meant to promote the MathVisionTools software and to convince colleges of its advantages thereby

strengthening the vitality of the user base and enlarging the scope of our and hopefully your software tools in the future.

High level algorithm design

Where to start? This question stands at the beginning of every large software development and in many cases the

answer has been "from scratch". This is no longer an acceptable choice as software engineering evolves over time. To

reach the stars, one has to stand on the shoulders of giants. Today's giants are high-level computer languages, libraries,

integrated development environments, applications with plug-in capabilities and so on.

Thus, the question needs to be rephrased. What software platform is a good foundation for rapid prototyping in medical

imaging and what are the criteria? We begin with the latter:

- Full symbolic manipulation capabilities for the mathematical design phase,

- Fast numerical functionality for the validation of algorithms,

- Full, high quality, and interactive graphic rendering,,

- Availability of advanced extensions such as wavelets, neural networks, PDE solvers, optimization etc. [8],

- Easy to learn and to use to keep the training under typically one week,

- Code interpretation instead of compilation for a fast coding - testing - debugging cycle,

- Integration of code and text in a WYSIWYG user-interface for easy code maintenance and proper documentation,

- Free choice of the programming paradigm, such as functional programming and rule-based pattern matching,

- Powerful commands to obtain very short code,

- Platform independence for wide acceptance,

- I/O routines for a wide range of data formats, including all standard image formats, DICOM, STL, VRML etc.,

- Internet support via WebService, MathML, XML and alike,

- Availability of GUI design (e.g. Java) to bridge the transition into the validation phase,

- Easy integration of external routines and libraries written in C, C++, Fortran, Java, etc.,

- Solid and professional industrial support, with good long term perspectives,

- Large user community, with news-groups, discussion forum and dedicated international and technical conferences.

Our answer to the above questions has been and still is the computer algebra software Mathematica, a high level

computer language with a large collection of powerful commands and libraries. Mathematica (Wolfram Inc., Cham-

paign, USA, www.wolfram.com) has developed to a degree that all the above requirements are met. We have imple-

mented Mathematica as our major prototyping software since the start of our group in Sept. 2001, and have gained

great speed in the development of new mathematical algorithms in computer vision. Mathematica has improved at

great speed, notably since version 4 and especially version 5 (the current version is 5.2). For some this fact may have

come unnoticed as they may have abandoned the program in its early years, when it was slow and memory hungry.

Those who look again will find that many routines are now faster than the competition (e.g. the Inverse of a dense

matrix with 1000 x 1000 real numbers takes 1.5 seconds on a 1.5 GHz 1GB labtop) and even rival dedicated graphics

software. For full details of Mathematica see the Wolfram Technology Guide

(http://www.wolfram.com/technology/guide/index.html).

We specifically did not choose Matlab, despite its large user base. We needed a full symbolic engine in combination

with a seamless integrated fast numeric engine. With Mathematica this is the case. Function names are consistent and

not abbreviated expediting the training process. Another important advantage is the professional front-end, enabling us

to write and combine the derivation and implementation of source code very much like a scientific paper. Researcher's

2

and student's documentation naturally accompany the short code, which is an essential element for research groups.

Experience has shown that long and poorly documented code is unreadable for successors and destined to be thrown

away. Naturally, this paper is written as a Mathematica 'notebook' in this front-end.

Level Language Purpose

High Mathematica Design,

Education

Medium C , C, Java

VTK, OpenGL

Evaluation,

Visualization

Low C #, C Graphics cards

There is an active Mathematica user's community [4] (there are 2 million licenses worldwide), with a newsgroup

(comp.soft-sys.math.mathematica), technology conferences and national user meetings (www.wolfram.com/news/),

and an International Mathematica Symposium series [6] (edition 2008 will be organized by us in Maastricht, the

Netherlands). Wolfram hosts the famous MathWorld website [5], a leading mathematics reference on the internet with

templates of advanced Mathematica code fragments for developer's Mathematica notebooks.

This paper presents MathVisionTools, a new Mathematica-library or add-on with advanced tools for mathematical

image analysis and algorithm design. This library is open for international collaboration.

MathVisionTools

MathVisionTools [9, 10] is a Mathematica Add-On for the fast prototyping of biomedical image analysis algorithms.

This growing library of high-level imaging tools has been initiated in 2004 [10] and is managed by the Biomedical

Image Analysis group of the Department of Biomedical Engineering at Eindhoven University of Technology, Eind-

hoven, the Netherlands. The purpose of MathVisionTools is to provide the developer with more and more powerful

commands and to host reusable code fragments and routines that are specifically needed for image analysis and process-

ing.

Starting point has been multi-scale differential calculus of images within the framework of scale space theory [19, 13,

14, 17]. Extensions have been I/O routines for biomedical image formats such as DICOM and Kretz ultrasound.

Fourier transformations in polar coordinates and invertible transformations into orientation bundles (filter responses on

the Euclidean group-manifold) have been the latest addition. Dedicated applications for biomedical imaging such as

multi-modality image registration, multi-scale optic flow detection on 2D-time image sequences, and methods for

computer-aided diagnosis are currently developed in ongoing research projects, based on routines available in MathVi-

sionTools.

Mathematica and MathVisionTools also play a key role in the education of our Biomedical Engineering students [11,

12]. The strategy of 'Here is a classical paper, read it, understand it, and make an implementation in Mathematica in a

few days' works amazingly well, even for 3 months projects. For a range of examples see

http://www.bmi2.bmt.tue.nl/image-analysis/Education/index.html (Master & Internship). See also the student example

exhibited by Wolfram: http://library.wolfram.com/infocenter/Conferences/5756/ . A large subset of routines and

commands in MathVisionTools stems from the many functions released in textbooks on multi-scale image analysis [13,

14]. The course "Front-End Vision and Multi-Scale Image Analysis" (http://www.bmi2.bmt.tue.nl/image-

analysis/education/courses/FEV/course/index.html) is a popular national course in the Netherlands and is completely

given in Mathematica [13].

3

Many Digital Image Processing toolkits are rather basic and contain the elementary operations on images, such as

filters, geometric transformations, histogram operations, mathematical morphology and edge detection. Beyond this,

there is a need for an efficient design toolkit with high-level building blocks for doing advanced mathematics on

images. To emphasize this issue we provide a short list of exemplary needs for mathematical methodologies:

- evolutionary and energy minimizing methods in image enhancement,

- high order robust differential geometry (invariants),

- calculations on matrix valued images (DTI, hessian),

- multi-scale methods (deep structure singularities),

- multi-orientation methods (perceptual grouping, tensor voting, stochastic completion fields),

- texture analysis and statistical pattern recognition tools,

- statistical pattern recognition techniques (!!! not the same as above?),

- dynamic shapes (snakes, balloons),

- active shape and appearance models,

- retrieval methods for similar images in huge databases,

- robust analysis of optic flow dynamics,

- etc.

Mathematica is ideally suited to handle this wide range of mathematics on images. It is intrinsically multi-dimensional.

It embeds any programming style, but is primarily designed for functional programming, where it as an interpreter

language exhibits its greatest speed. A clear advantage of functional programming is also the typically short code, often

resembling closely the verbal English statement of the problem. A full debugger/profiler is now available [7]. It is easy

to install C++ routines into Mathematica code and vice-versa through the MathLink protocol (co-compile C/C++ code

with MathLink.h).

Mathematica reads and writes any type of image, including medical DICOM images. In the package MathVisionTools

we have developed many special I/O routines to convert a variety of vendor-specific data into DICOM format, such as

BioRAD microscope data, high field small-bore small animal MRI data (FDF format), data in ANALYZE format etc.

Mathematica is not freeware. This may hamper its proliferation and the proliferation of MathVisionTools. However, the

commercial embedding ensured ongoing R&D for the sake of Mathematica, its add-ons, and its users. It is a highly

professional software environment, not just for image analysis, which is supported by a well established, mid-size

company. The costs for image analysis researchers can be spread by a full campus or institute license, which is now

available to most large universities worldwide. In Eindhoven a universal license for all departments permits installation

of Mathematica on all computers of the university, including the 9600 laptops supplied with 50% funding to all TU/e

students, including home use. The cost per computer is thus reduced to a few euros. This requires a decision at top

university /institute level. See for the TU/e situation:

http://w3.tue.nl/en/services/dienst_ict/organisatie/groepen/wins/campus_software/.

Example I: Differential Calculus on Images

According to scale-space theory [13, 19, 20] and tempered distribution theory [14] it is well known that a regularized

way to take (high-order) derivatives of discrete data L x, y is by convolution with a Gaussian derivative kernel Gt
nx,ny .

x L x, y Gt x x, y y x L x, y x y Gt
1,0 x x, y y L x, y x y.

The above equation opens an operational way to apply practically all tools of differential calculus to discrete images.

MathVisionTools contains an extensive GaussianDerivative package to calculate partial derivatives to any order,

both symbolically on many function or numerically on any n-dimensional data set, under a variety of boundary condi-

4

tions, in a fast and highly optimized way, either via spatial convolution (ListConvolve) or via multiplication in

Fourier space. Here are three examples that built onto Gaussian derivatives.

Example: Gauge Derivatives

A famous class of differential invariants is the N-jet of intrinsic image derivatives, expressed in the local, first-order,

gradient-defined coordinate system v, w , the so-called gauge derivatives [13]. The following short Mathematica code

renders the gauge derivatives of any order (nv-times with respect to the unit-gradient coordinate v and nw-times with

respect to the orthogonal coordinate w) of a 2D function f x, y in terms of x, y -coordinates.

GaugeDerivative nv_, nw_ f_ :

Module

Lx, Ly, v, w , w
Lx, Ly

Lx2 Ly2
; v

0 1
1 0

.w;

Nest v. x #, y # & , Nest w. x #, y # & , f, nw , nv .

Lx D f, x , Ly D f, y Simplify

GaugeDerivative 0, 1 L x, y

L 0,1 x, y 2 L 1,0 x, y 2

"Ridgeness" is given by Lv v:

GaugeDerivative 2, 0 L x, y

L 0,2 x, y L 1,0 x, y
2

2 L 0,1 x, y L 1,0 x, y L 1,1 x, y L 0,1 x, y
2
L 2,0 x, y

L 0,1 x, y
2

L 1,0 x, y
2

For easier reading, one can convert the above expression into subscript notation via pattern matching in a single

statement:

% . f_ nx_,ny_ x_, y_ fStringJoin Table "x", nx ,Table "y", ny

2 Lx Lxy Ly Lxx Ly
2 Lx

2 Lyy
Lx2 Ly2

The next statement exploits Mathematica's powerful pattern matching to replace (with the operator /.) any occurrence

of an analytical derivative into a discrete convolution operator. Thus, in one line we write the complete discrete

implementation for any order:

ListGaugeDerivative t_, nv_, nw_ img_ :

GaugeDerivative nv, nw L x, y .

L nx_,ny_ x, y GaussianDerivative t, nx , t, ny img

The gradient Lw of an X-ray image at scale t=2:

im Import "hands.gif" 1, 1 ;

5

ListDensityPlot ListGaugeDerivative 2, 0, 1 im ;

Ridges Lv v at scale t 2 and t 8:

DisplayTogetherArray ListDensityPlot

ListGaugeDerivative 2, 2, 0 im , ListGaugeDerivative 8, 2, 0 im ;

Example: Gaussian Deblurring

To deblur Gaussian blur [18], one can extrapolate an image L[x,y,t0] at scale t0 towards smaller t via a Taylor expan-

sion [2][3]. First, we import an MRI image of a head from the first frame of a DICOM dataset. (!!! its a GIF file here,

not DICOM .. do you have a DICOM version)

img Import "mr128.gif" 1, 1 ;

We then perform a Taylor expansion of L x, y, t with respect to scale t0 around t0 and substitute the derivatives

t by the Laplacian operator
2

x2

2

y2 , which is equal to t according to the diffusion equation L
t

2L
x2

2L
y2 that

governs linear scale space. Thus, we obtain a differential deblurring operator.

BlurExpansion order_ : Series L x, y, t , t, t0, order .

L 0,0,n_ x, y, t0 Nest x,x # y,y # &, L x, y, t0 , n ; BlurExpansion 4

L x, y, t0 L 0,2,0 x, y, t0 L 2,0,0 x, y, t0 t t0
1
2

L 0,4,0 x, y, t0 2 L 2,2,0 x, y, t0 L 4,0,0 x, y, t0 t t0 2

1
6

L 0,6,0 x, y, t0 3 L 2,4,0 x, y, t0 3 L 4,2,0 x, y, t0 L 6,0,0 x, y, t0

t t0 3 1
24

L 0,8,0 x, y, t0 4 L 2,6,0 x, y, t0 6 L 4,4,0 x, y, t0

4 L 6,2,0 x, y, t0 L 8,0,0 x, y, t0 t t0 4 O t t0 5

We substitute the GaussianDerivative command for the symbolic derivatives of L x, y, t to obtain an

instantly working deblurring command.

6

Deblur img_, order_, gt_, t_ : Normal BlurExpansion order .

L x, y, t0 img,

L nx_,ny_,0 x, y, t0 GaussianDerivative gt, nx , gt, ny img ,

t t0 t gt

gt denotes the scale, that is inflicted by the Gaussian derivatives. t stands for the scale interval, by which to deblur.

First, we generate a blurred image at scale t = 2 .

blur GaussianDerivative 2, 0 , 2, 0 img ;

Then, we deblur it by t 2.

deblur4 Deblur blur, 4, 2.0, 2 ;

deblur8 Deblur blur, 8, 2.7, 2 ;

The result speaks for itself. Note, that we can rerun this example for any order of Taylor expansion generating the

Mathematica code on the fly.

DisplayTogetherArray ListDensityPlot blur, deblur4, deblur8 ;

Example II: Geometry-driven diffusion

The Perona & Malik equation (edge preserving smoothing evolution PDE [16, 15]) for 3D is given by

L

s
. e

L 2

k2 L .

The exponential term is the conductivity and is a decreasing function of the gradient magnitude. After loading a

standard Mathematica package to obtain the commands Grad for the gradient and Div for the divergence, this formula

for 3 dimensions is easily expanded and implemented for discrete images.

Calculus`VectorAnalysis ;̀

SetCoordinates Cartesian x, y, z ;

Div E
Grad L x,y,z 2

k2 Grad L x, y, z ExpToTrig FullSimplify

1
k2

L 0,0,1 x,y,z
2

k2 k2 2 L 0,0,1 x, y, z
2

L 0,0,2 x, y, z

L 0,1,0 x,y,z
2

k2 k2 2 L 0,1,0 x, y, z
2

L 0,2,0 x, y, z

L 1,0,0 x,y,z
2

k2 k2 2 L 1,0,0 x, y, z
2

L 2,0,0 x, y, z

7

As we have seen before, the derivatives are conveniently converted into subscript notation via pattern matching in a

single statement.

% . L nx_,ny_,nz_ x, y, z LStringJoin Table "x", nx , Table "y", ny , Table "z", nz

Lx
2

k2 k2 2 Lx
2 Lxx

Ly
2

k2 k2 2 Ly
2 Lyy

Lz
2

k2 k2 2 Lz
2 Lzz

k2

Via pattern matching we can convert these derivatives to discrete Gaussian derivative operators as explained in the

previous section, and we can applied them in e.g. a forward Euler, Runge-Kutta or AOS [22] iteration scheme.

Advanced mathematics

MathVisionTools is not a package that implements the basic image processing routines, as are available in many other

packages. It is dedicated to be a design tool for advanced mathematical reasoning and experimentation, and it is

destined to fill that niche. Current directions of research and development in MathVisionTools are invariant stochastic

processes of medical image data in scale space and on the Euclidean manifold to obtain perceptual grouping measures.

The appendices list examples of code in MathVisionTools and some pages from the Help Browser in Mathematica for

MathVisionTools routines. We just scratched the surface of the vast possibilities in image calculus that is now accessi-

ble through MathVisionTools and Mathematica. Applications currently being built in MathVisionTools are:

- multi-scale optic flow detection on 2D-time cardiac image sequences [29];

- multi-scale singularity techniques for robust scene retrieval in CAD [25];

- active shape and active appearance algorithms for cardiac shape variability analysis [26];

- detection of stellate tumors in mammography (based on [30]);

- geometry-driven diffusion techniques for enhancement (edge-preserving smoothing) [13, 15];

- invertible orientation-spaces for dim contour enhancement (orientation scores [27]);

- perceptual grouping of elongated structures through stochastic completion fields [21];

- 2D tensor voting with steerable filters for catheter detection in low-dose fluoroscopy[23];

- 3D radial basis functions interpolation for neuronavigation atlas matching [24];

- and many more in development.

Conclusion and call

Mathematica has proven to be an ideal prototyping tool in advanced image analysis. The routines and commands

collected in MathVisionTools accelerate the process of developing new algorithms. We call for participation by inter-

ested institutes and companies.

Participation will be on an exchange basis. The code will be made available to partners that contribute code to the

project.

Please contact:

Prof. Bart M. ter Haar Romeny, Dipl. Ing. Markus van Almsick, H.E. Bennink

Eindhoven University of Technology

Department of Biomedical Engineering

Den Dolech 2, WH2.106

5600 MB Eindhoven, the Netherlands

Tel. +31-40-2475537

8

Fax +31-40-2472740

Email: B.M.terHaarRomeny@tue.nl, M.v.Almsick@tue.nl, H.E.Bennink@student.tue.nl

URL BMIA: http://www.bmi2.bmt.tue.nl/image-analysis/

URL MathVisionTools: www.mathvisiontools.net

References

[1] Computer Vision Homepage - Software: http://www.cs.cmu.edu/afs/cs/project/cil/www/v-source.html.

[2] MICCAI conferences: http://www.miccai.org.

[3] Nature Biology: Need for open source and data: http://www.nature.com/nbt/journal/v22/n8/full/nbt0804-1037.html;jsessionid=7D3D4BCDAFD331B20-

E0226093857ABAA

[4] Mathematica users: http://www.mathematica-users.org/webMathematica/wiki/wiki.jsp.

See also: http://forums.wolfram.com/.

[5] MathWorld: http://mathworld.wolfram.com/

[6] International Mathematica Symposium: http://internationalmathematicasymposium.org/IMS2006/

[7] Mathematica WorkBench (debugger/profiler): http://www.wolfram.com/news/workbenchprerelease.html

[8] Mathematica packages: http://www.wolfram.com/products/field_specific.html

[9] MathVisionTools website: http://www.bmi2.bmt.tue.nl/image-analysis/Research/Software/Mathematica/AddOns/MathVisionTools/index.html

[10] M. A. van Almsick, B. M. ter Haar Romeny, "MathVisionTools, the design of a new framework for biomedical image analysis", Wolfram Developers

Conference 2004, Urbana-Champaign.

[11] B. M. ter Haar Romeny, "Computer Vision and Mathematica 4", Computing and Visualization in Science, vol. 5, no. 1, pp. 53-65, Springer, 2002.

PDF (1.7MB), Mathematica 4 Notebook (3.1MB).

[12] B.M. ter Haar Romeny, M.A. van Almsick, "Rapid prototyping of biomedical image analysis applications with Mathematica". Proc. Medicon 2004,

Ischia, Italy. MS-Word, PDF.

[13] B.M.ter Haar Romeny,"Front-End Vision and Multi-Scale Image Analysis. Multi-Scale Computer Vision Theory and Applications, written in Mathemat-

ica". Springer, 2003.

[14] L. M. J. Florack, "Image Structure", Dordrecht: Kluwer Academic Publishers, 2001.

[15] B. M. ter Haar Romeny (ed.), "Geometry-driven diffusion in computer vision". Dordrecht: Kluwer Academic Publishers, 1994.

[16] P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion", IEEE Tr. on Pattern Analysis and Machine Intelligence, vol. 12,

pp. 629-639, July 1990.

[17] B. M. ter Haar Romeny, L. M. J. Florack, "Front-End Vision, a Multiscale Geometry Engine". Proc. First IEEE International Workshop on Biologically

Motivated Computer Vision (BMCV2000), May 15-17, 2000, Seoul, Korea. Lecture Notes in Computer Science vol. 1811, pp. 297-307, Springer-Verlag,

Heidelberg, Germany, 2000. PDF (1.7MB)

[18] B. M. ter Haar Romeny, L. M. J. Florack, M. de Swart, J. Wilting, and M. A. Viergever, "Deblurring Gaussian blur," in Proceedings Mathematical

Methods in Medical Imaging II, vol. 2299, (San Diego, CA), pp. 139-148, SPIE, July, 25-26 1994.

[19] J.J.Koenderink,"The structure of images",Biological Cybernetics,vol.50,pp.363-370,1984.

[20] L.M.J.Florack, B.M.ter Haar Romeny, J.J.Koenderink and M.A.Viergever, "Linear scale-space", Journal of Mathematical Imaging and

Vision,vol.4,no.4,pp.325-351,1994.

[21] M.A. van Almsick, R. Duits, E.M. Franken, B.M. ter Haar Romeny, From Stochastic Completion Fields to Tensor Voting , Lecture Notes in Computer

Science, 3753, 124-134, 2005.

9

[22] J. Weickert, B. M. ter Haar Romeny, and M. A. Viergever, "Efficient and reliable schemes for nonlinear diffusion filtering," IEEE Transactions on Image

Processing, vol. 7, no.3, pp. 390-410, 1998.

[23] E.M. Franken, M.A. van Almsick, P.M.J. Rongen, L.M.J. Florack, B.M. ter Haar Romeny, Steerable Tensor Voting, in ASCI Conference 2005; Heijen,

the Netherlands, 65-72, (2005)

[24] J. Korbeeck, B. Janssen, E. H. Bennink, A. Jansen, M. Koppert, R. Lahaije, T. Plantenga, B. M. ter Haar Romeny, Warping a neuro-anatomy atlas on

3D MRI data with Radial Basis Functions. Proc. 8th Intern. Mathematica Symposium, Avignon, France, 2006.

[25] B. Platel, E. Balmachnova, L.M.J. Florack, F.M.W. Kanters, B.M. ter Haar Romeny, Using Top-Points as Interest Points For Image Matching,

in Deep Structure, Singularities, and Computer Vision; Editors: O. Fogh Olsen, L. M. J. Florack and A. Kuijper, Maastricht, Netherlands, 211 - 222, 2005.

[26] H.C. van Assen, M.G. Danilouchkine, A.F. Frangi, S. Ordás, J.J.M. Westenberg, J.H.C. Reiber, B.P.F. Lelieveldt, “SPASM: a 3D-ASM for Segmenta-

tion of Sparse and Arbitrarily Oriented Cardiac MRI Data, Med. Image Analysis, 10(2), 286-303, 2006.

[27] R. Duits, M. Duits, M.A. van Almsick, L.M.J. Florack, A new reconstruction from orientation bundle functions as an application of generalized wavelet

theory, in Proc. Early Cognitive Vision Workshop 2004, Isle of Skye, 2004.

[28] B. M. ter Haar Romeny, B. Titulaer, S. Kalitzin, G. Scheffer, F. Broekmans and E. te Velde, "Computer assisted human follicle analysis for fertility

prospects with 3D ultrasound", Proceedings Intern. Conf. on Information processing in Medical Imaging (IPMI '99), vol. 1613, Lecture Notes in Computer

Science, Springer-Verlag, Heidelberg, 1999. PDF.

[29] A. Suinesiaputra, L. M. J. Florack, J. J. M. Westenberg, B. M. ter Haar Romeny, J. H. C. Reiber, and B. P. F. Lelieveldt. "Optic flow computation from

cardiac MR tagging using a multiscale differential method-a comparative study with velocity-encoded MRI". In Proc. MICCAI 2003, Montréal, Canada,

Lecture notes in computer science, 2878, 483-490, 2003.

[30] N. Karssemeijer, G. M. te Brake, "Detection of Stellate Distortions in Mammograms", IEEE Tr. on Medical Imaging, vol. 15, no. 5, 611-619, Oct. 1996.

PDF

10

MathVisionTools: OrientationBundleTransform

OrientationBundleTransform[img,t, ,n] generates an orientation bundle of image img with a
Kalitzin kernel of scale t with n orientations. is the ratio between angular and radial units.

OrientationBundleTransform is the convolution of an image with the orientation kernel, which is done via multipli-

cation in Fourier space: r, image
m 0

tm

m
ei m

r
m e t r

2

2 image .

 The following options can be given:

DirectionalFourierFilter {1,1,1,…} assigns a List of weighting coefficients w0, w1, w2 .

 See also: InverseOrientationBundleTransform, and DirectionalFourierFilter.

 New in Version 2.

Further Examples

This loads the MathVisionTools and the Graphics`Graphics` packages.

In[1]:= Graphics`Graphics`

MathVisionTools`

Loading a 2D-image.

In[3]:= img Import "mr256.jpg" 1, 1 ;

Generating an orientation bundle.

In[4]:= bndl OrientationBundleTransform img, 16, 1.2, 32 ;

Displaying the orientation bundle.

In[5]:= DisplayTogetherArray

Partition Map ListDensityPlot #, Mesh False, Frame False &, Re bndl , 4 ,

ImageSize 400 ;

Printed from the Mathematica Help Browser 1

©1988-2005 Wolfram Research, Inc. All rights reserved.

Reconstructing the original image from the orientation bundle.

In[6]:= newimg InverseOrientationBundleTransform bndl, 16, 1.2 ;

2 Printed from the Mathematica Help Browser

©1988-2005 Wolfram Research, Inc. All rights reserved.

In[7]:= ListDensityPlot newimg, Mesh False, Frame False, PlotRange 0, 255 ;

Reconstructing a modified orientation bundle.

In[8]:= newimg InverseOrientationBundleTransform Im bndl 4, 16, 1.2 ;

In[9]:= ListDensityPlot Re newimg , Mesh False, Frame False, PlotRange All ;

In[10]:= Clear img, bndl, newimg

Printed from the Mathematica Help Browser 3

©1988-2005 Wolfram Research, Inc. All rights reserved.

