GaussianDerivative.nb

Gaussian Derivative Package

Markus van Almsick
Technische Universiteit Eindhoven
©2006

Version 2.5.7

m Prefix

Ti meSt anp [" Mat hVi si onTool s™ Gaussi anDeri vative "] = {2006, 6, 1, 17, 11, 0}

The preambl e of the package containing al kinds of remarks about authorship, contence, and copyright.



GaussianDerivative.nb

(*: Nane: Mat hVi si onTool s” Gaussi anDerivative =)

(*: Aut hor :

(»: Emai | address:

(*: Cont ext :

(»: Package

Bart Mter Haar Ronmeny Ph.D.and Markus van Al nsi ckx)

B. t er Haar Ronenyet ue. nl ,

Mat hVi si onTool s” Gaussi anDeri vati ve %)

Ver si on:

2.5.7 %)

(»: Mat hemati ca Versi on:

(*: Copyri ght:

5.0 *)

(»: Title: Gaussian Kernel,

M v. Al nsi cket ue. nl )

Copyright 2001-2006, Techni sche Universiteit Ei ndhovenx)

Gaussi an Derivative, and Gaussian Filter =)

(»: Summary: This package inplenments the Gaussian derivative for Scale
heory. "Front -End Vision and Miultiscal e I rage Anal ysis"
Springer, 2003. %)

Space t
by Bart

(*: Keywor ds:
scal e-space,

(*: Requi renent s:

(*: Sour ce:
by Bart M

(*: Hi story:

M ter Haar

Gaussi an,
conput er vision,

Roneny,

None =)

Gaussi an derivatives,
differential

mul ti scal e,
operator )

"Front -End Vision and Miultiscal e | nage Anal ysis",
Spri nger, 2003 *)

ter Haar

Ver si on

Cct ober 2001

Ver si on
Ver si on

M ter Haar Roneny

Ver si on
Ver si on
Ver si on
Ver si on
Ver si on

Roneny,

1.0

1.1
1.2
and
2.0
2.1
2.2
2.4
2.5

by Bart Mter Haar Romeny and

by Bart Mter Haar Roneny and

by

Bar t

Mar kus van Al nsick, Sept 2002
and Markus
and Mar kus
and Markus
and Markus

by
by
by
by
by

Bart
Bart
Bar t
Bar t
Bart

Mter
Mter
Mter
Mter
Mter

Haar Romeny and Markus van Al nsi ck,

(»:Limtati
(%: Di scussi

(%: To do:

ons: )

on: «)

Recursive | npl enent ati on,

m Begin Package

Haar Ronmeny
Haar Ronmeny
Haar Roneny
Haar Romeny

April 2006 *)

Di recti onal,

Declaring the package and unlocking all symbols defined in the code.

Par al | el

Mar kus

Mar kus

*)

van

van

van
van
van
van

Al nsi ck,
Al si ck,
Al nsi ck,
Al nsi ck,

May

2002

2002
2003
2003
2004



GaussianDerivative.nb

Uilities Notation AutoLoadNotationPal ette = Fal se;

Begi nPackage[
"Mat hVi si onTool s™ Gaussi anDeri vative™,
" Mat hVi si onTool s® Cormpn” Mat hVi si onTool sConmon™,
"Mat hVi si onTool s* Convol ve™",
"Mat hVi si onTool s” | rageFrane™™,
"Utilities Notation™"

Unpr ot ect [
G
NGaussi anKer nel ,
Gaussi anKer nel
Angul ar Gaussi anKer nel,
Gaussi anKer nel Range,
NGaussi anDKer nel ,
Gaussi anDKer nel ,
Gaussi anD,
Gaussi anDeri vati ve,
Gaussi anDeri vati veAt,
Met hod,
Ker nel Range,
| mgeBoundary,
Convol ve,
Fouri er,
Cyclic,
Truncat e,
Ref |l ecti ve,
Const ant



GaussianDerivative.nb

m Online Help and Options

Def aul t Scal ePar anet er: : usage =
2
o
"The default linear scale paraneter t = - Thus the

wi dth or standard deviation of the Gaussian kernel is 1."

G :usage ="G [x] is a short input notation for Gaussi anKernel [t,
x]. G [x] is a short input notation for GaussianDKernel [t,n,x]."

Gaussi anKer nel : : usage =

"Gaussi anKer nel [t, x] renders the gaussi an kernel nunerically
and synmbolically. Note that t is half the variance, which
is the square of the Gaussian kernel width o."

Angul ar Gaussi anKer nel : : usage =
"Angul ar Gaussi anKer nel [t, a] renders the angul ar gaussi an kernel nunerically and
synbolically. The angul ar kernel is the Geens function of the diffusion
equation on the interval [-sw 7] Wth periodic boundary conditions. Note, that
t is half the variance, which is the square of the Gaussian kernel width o."

NGaussi anKer nel : : usage =

"NGaussi anKer nel [t, x] renders the gaussi an kernel nunerically
for Real t and x with conpiled code. Note that t is half the
vari ance, which is the square of the Gaussian kernel width o."

Gaussi anDKer nel : : usage =
"Gaussi anDKernel [t,n,x]. Note that t is half the variance, which is the
square of the Gaussian kernel width o. nis the derivative order."

NGaussi anDKer nel : : usage =

"NGaussi anDKer nel [n][t, x] renders the n'" derivative of the
gaussi an kernel nunerically for non-negative |Integer n and
Real t and x with conpiled code. Note that t is half the
vari ance, which is the square of the Gaussian kernel width o."

Gaussi anD: : usage =
"Gaussi anD[i ng, {x,t,n}] perforns the n'" Gaussian partial derivation on image inyg
with respect to x. The Gaussi an kernel variance is 2t. GaussianD[i ng, {X,
ty, Nk}, {y,ty,ny},...1 is the n " Gaussi an partial derivation with respect
to x, the nyth Gaussi an partial derivation with respect toy, and so on."

Gaussi anDeri vative: : usage =
"Gaussi anDerivative[{ty, ny}, {ty,ny},...1[imy] repesents the (
Ny, ny)th Gaussi an derivative of inage ing. The Gaussi an
kernel variance is 2ty in x- and 2ty in y-direction.”

Gaussi anDeri vativeAt: : usage =

"CGaussi anDerivati veAt [{X, ty, Nk}, {y,ty,ny},...1[i my] repesents
the (ny, ny)th Gaussi an derivative of inage ing at the specified
I ocation (x,y) in scale space. The Gaussi an kernel variance is 2ty
inx- and 2ty in y-direction. To deternine Gaussian derivatives at



GaussianDerivative.nb

nmore than one | ocation enter Gaussi anDerivativeAt [{{x1, tx1, Nx1},
{yl, tylx nyl}1 S {{XZytx21 Nx2}, {y21 ty2; nyZ}: NS P | [I ITg] !

Ker nel Range: : usage =
"Kernel Range is an option of Gaussi anD and Gaussi anDerivative. |t
determ nes the default range of the kernel used in the convolution."”

(» | mageBoundary-QOption x)
1f[
Head [| mageBoundary: : usage] === MessageNane,
| mgeBoundary: : usage =
"l mageBoundary is an option of GaussianD and Gaussi anDerivative
wor ki ng with the Convol ve net hod. | nmageBoundary determ nes the
handl ing of an inmage frane in a convolution.",
If[
Not [St ri ngMat chQ[lI mageBoundary: : usage, " xGaussi anDeri vativex"1],
| mgeBoundary: : usage =
I mageBoundary: : usage <> "\ nl mageBoundary i s al so an opti on of Gaussi anD and
Gaussi anDeri vative working with the Convol ve nethod. | nmageBoundary
determ nes the handling of an inmage frame in a convol ution."

(» Convol ve-Option =x)
1f[
Head [Convol ve: : usage] === MessageNane,
Convol ve: : usage =
"I's a value for the GaussianDerivative option Method. It calls upon the
Li st Convol ve command to performthe convol ution of the Gaussian derivation. ",
If[
Not [St ri ngivat chQ[Convol ve: : usage, " *CGaussi anDerivative*"11,
Convol ve: : usage =
Convol ve: :usage<>"\nlt is also a value for the Gaussi anDerivative
option Method. It calls upon the ListConvolve conmand to
performthe convolution of the Gaussian derivation."

(» Fourier-Option x)
1fr
Not [StringMat chQ[Fouri er::usage, "*Gaussi anDerivativex"]],
Fouri er::usage = Fourier::usage<>"\nFourier is also an option val ue
for the Gaussi anDerivative Method. The convol uti on of the Gaussian
derivative is perforned via nultiplication in the Fourier domain."

(» Cyclic-Option =)

If[
Head [Cycl i c: :usage] === MessageNane,
Cyclic::usage="1s a value for the Gaussi anDerivative

opti on I mageBoundary. It calls upon the ListConvolve comrand
to performa cyclic convolution to maintain the image size.",
If
Not [Stri ngvat chQ[Cycl i c::usage, " *Gaussi anDerivativex"]],
Cyclic::usage =



GaussianDerivative.nb

Cyclic::usage<>"\nlt is also a value for the GaussianDerivative option
| mgeBoundary. It calls upon the ListConvolve comrmand to performa cyclic
convolution to maintain the imge size."

(» Truncate-Option x)

If[
Head [Truncat e: : usage] === MessageNaneg,
Truncate::usage ="ls a value for the Gaussi anDerivative option
| mgeBoundary. It calls upon the ListConvolve command to truncate the
i nconpl ete convol ution of the Gaussi an kernel at the inage boundary.",
If

Not [St ri ngMat chQ[Tr uncat e: : usage, " xGaussi anDerivativex"1],
Truncate: : usage =
Truncate::usage<>"\nlt is also a value for the Gaussi anDerivative option
I mgeBoundary. It calls upon the ListConvolve command to truncate the
i ncompl ete convol ution of the Gaussi an kernel at the inage boundary."”

(» Reflective-Option x)
1f[
Head [Refl ecti ve: : usage] === MessageNane,
Ref | ecti ve: : usage =
"I's a value for the Gaussi anDerivative option |InmageBoundary. It calls upon
t he Li st Convol ve comrand to ap-/prepend the refl ected i mage on each i mage
boundary before performing the convol ution of the Gaussian kernel.",
If[
Not [St ri ngMat chQ[Ref | ecti ve: : usage, " xGaussi anDerivatives"]],
Ref | ecti ve: : usage =
Refl ective::usage<>"\nlt is also a value for the Gaussi anDerivative
option I mageBoundary. It calls upon the ListConvol ve comand
to ap-/prepend the reflected i nage on each i mage boundary
bef ore performing the convol uti on of the Gaussian kernel."

(» Constant -Option =x)
If[
Not [Stri ngMat chQ[Const ant : : usage, " *Gaussi anDerivatives"]1],
Const ant: : usage =
Constant::usage<>"\nlt is also a value for the CGaussi anDerivative
option I mageBoundary. It calls upon the ListConvolve to
extend the val ue of each boundary pixel to infinity."

Opti ons[Gaussi anDeri vati ve] = {Ker nel Range » Aut omati c, Met hod -» Convol ve,
| mgeBoundary - Cyclic, WbrkingPrecision- Log[10, 2716. ]};

Opti ons[Gaussi anDeri vati veAt] = {Ker nel Range -» Aut onati c,
| mgeBoundary - Cyclic, WbrkingPrecision- Log[10, 2716. ]};



GaussianDerivative.nb

m Package Code

Starting the private context of the package.
Begin[" Private "]
Open the palette for Gaussian Derivatives if started from alocal kernel.

I f [Not [$Renpt €], Not ebookOpen[First [Fil eNames[" Gaussi anDeri vati vePal ette. nb",
{ToFi | eNanme[ {$User AddOnsDi rectory, "Applications", "MathVi si onTool s",
"Front End", "Pal ettes"}], ToFil eNane[{$AddOnsDirectory,
"Applications", "MathVisionTool s", "FrontEnd", "Palettes"}1}1111;

m Gaussian Kernel

NOTE: we use the linear scale parameter t = % o2 to denote the width of the Gaussian bell shape kernel. o isthe
standard deviation and o the variance of the kernel.

(» Gaussi an Kernel =)

t = 4; (x global factor for the scaling paraneter t, default is 4 (or 1) =)

Def aul t Scal ePar aneter =2/ z;

= Numeric Implementation
Implementing a compiled version of the Gaussian kernel to speed up evaluation by afactor 3.
(* Nunmeric Inplenmentation x)
NGaussi anKernel = Compi l e[{{t, _Real }, {X, _Real }}, EXp[-x"2/ (zct)]/Sqrt [Pi (tt)]];
Gaussi anKernel [0] =1/Sgrt [Pi (tt)];
Gaussi anKer nel [x_?Nunber Q] : = NGaussi anKer nel [Def aul t Scal ePar anmet er, x]
Gaussi anKernel [0 | 0., x_?NunberQ] =DiracDelta[x];

Gaussi anKer nel [t _?NunberQ x_?Nunber Q] : = NGaussi anKer nel [t, X]

= Symbolic Implementation
(» Synmbolic |nplenmentation x)

CGaussi anKernel [0, {x__}] =D racDelta[x];
Gaussi anKernel [0, x_] =DiracDel ta[x];

Gaussi anKer nel [t _: Defaul t Scal eParameter, x_] = Exp[-x"2/ (zct)]/Sqrt [Pi (ct)];

Gaussi anKernel /: Derivative[0, n_][Gaussi anKernel ] : = Gaussi anDKer nel [n, #1, #2] &



GaussianDerivative.nb

= Multidimensional Implementation
(* Mul tidinmensional |nplenentation )
Gaussi anKer nel [x_List]:=Apply[Ti nes, Map[Gaussi anKernel, x]]

Gaussi anKernel [t _List, x_List]:=
I nner [Gaussi anKernel, t, x, Times] /; D mensions[t] == Di nensi ons[x]

Gaussi anKernel [t _, x_List]:=Apply[Ti nes, Map[Gaussi anKernel [t, #] & X]]

m GaussianKernel Input Notation

Not ati on[G[x__] < Gaussi anKernel [{X__}1]

(» Gaussi anKernel |nput Notation =)

MakeExpressi on[RowBox[{l hs___, "G', "[", x__, "1", rhs___}], StandardForm] : =
MakeExpressi on[RowBox [ {l hs, RowBox [{" Gaussi anKernel", " [",
RowBox [{" {", Utilities Notation Private stripSpuriousRowBox[x], "}"}1,
"1"}1, rhs}1, StandardForni

MakeBoxes [Gaussi anKer nel [{x__}], StandardForn : = RowBox[{"G', " [",
Uilities Notation Private makeHel dRowBoxCf Boxes[{x}, StandardForm None], "]1"}]

Not ati on[G[x_] < Gaussi anKer nel [x_]]

(* Gaussi anKernel Input Notation =)

MakeExpressi on[RowBox[{l hs___, "G', "[", x_, "1", rhs___}1, StandardForni : =
MakeExpr essi on[
RowBox [ {| hs, RowBox[{" Gaussi anKernel", "[", x, "]1"}1, rhs}], StandardFor n

MakeBoxes [Gaussi anKer nel [x_], StandardForn : =
RowBox [{"G', " [", MakeBoxes[x, StandardForny, "1"}]

Notation[G [x__] < GaussianKernel [t_, {x__}11]

MakeExpr essi on[RowBox [{l hs___, SubscriptBox["G', t_1, "[", x_RowBox, "1", rhs___}1,
St andar dForn : =
MakeExpr essi on[RowBox [ {l hs, RowBox [{" Gaussi anKernel", " [", RowBox[{t, ","

RowBox [{" {", Utilities Notation Private stripSpuriousRowBox[x], "3}"}1}1,
"1"}1, rhs}1, StandardForni

MakeBoxes [Gaussi anKernel [t _, {x__}], StandardForni : =
RowBox [ {Subscri pt Box["G', MakeBoxes[t, StandardForm], " [",
Utilities Notation Private nmakeHel dRowBoxXf Boxes[{x}, StandardForm None], "]1"}1]

Notati on[G [x_] < Gaussi anKernel [t_, x_]1



GaussianDerivative.nb 9

MakeExpr essi on[RowBox [{l hs___, SubscriptBox["G', t_1, "[", x_, "1", rhs___}1,
St andar dFor m] : = MakeExpr essi on[
RowBox [ {| hs, RowBox [{" Gaussi anKernel", " [", RowBox[{t, ",", Xx}1, "1"}1, rhs}],
St andar dFor m

MakeBoxes [Gaussi anKernel [t _, X ], StandardForm : =
RowBox [ {Subscri pt Box["G', MakeBoxes[t, StandardForm],
"[", MakeBoxes[x, StandardForm], "1"}]

Notation[G [Xx__] < GaussianKernel [{t__3}, {x__}1]

, SubscriptBox["G', t_ 1, "[", x__, "1", rhs__ }1,

MakeExpressi on[RowBox [{l hs__
St andar dFor m] : = MakeExpr essi on[RowBox [ {| hs, RowBox[{" Gaussi anKernel ", " [",
RowBox [ {RowBox [ {" {", Wilities Notation Private stripSpuri ousRowBox[t], "}"}1,
", RowBox[{"{", Utilities Notation Private stripSpuri ousRowBox[x],
"3"31}1, "1"3}1, rhs}], StandardForni

MakeBoxes [Gaussi anKernel [{t__3}, {Xx__}], StandardForn : = RowBox [ {Subscri pt Box["G',
Uilities Notation Private makeHel dRowBoxCf Boxes[{t }, StandardForm Nonel], "[",
Utilities Notation Private nmakeHel dRowBoxOf Boxes[{x}, StandardForm None], "]1"}1]

m Angular Gaussian Kernel

= Symbolic Implementation
(» Synbolic Inplenentation =)

Angul ar Gaussi anKernel [0, ¢_] =DiracDel ta[e];

1
Angul ar Gaussi anKer nel [t _: Def aul t Scal eParaneter, ¢_] = > EllipticTheta[3, ¢/2, e'];
JT

m Gaussian Derivative Kernel

(» Gaussi an Derivative Kernel =)

= Numeric Implementation

To obtain efficient formulas for the n-th derivative of the Gaussian kernel we apply the Horner scheme to the hermite
2

polynomials that occur when differentiating # e

<< Al gebra’ Hor ner”

We also apply the substitution XTZ - y2for evenn, and % — yfor odd n.

Ef fi ci ent Gaussi anKernel [n_?EvenQ] : =

“/;t (n+1) /2
Hor ner [Si npl i fy [D[Gaussi anKer nel [t, x], {x, n}] /. x - Vy2t ]*T] *
P

ey?

Vo xt (n+1)

/.t - (Ttt)



GaussianDerivative.nb

10

Ef fi ci ent Gaussi anKer nel [n_?QddQ] : =

Hor ner [Si npl i fy[D[Gaussi anKer nel [t, x], {x, n}] /. x = y«/t_] *
ey’
. — 1)
Afr t (ne1)/2

Ef fi ci ent Gaussi anKernel [3] // | nput Form

(y*(12 - 8*y"2))/(Eryr2*Sqrt[Pi]*t"2)

The resulting formulas are placed into the body of a compiled function for thefirst 12 n.

AT t (n+1)/2

ey?

*



GaussianDerivative.nb 11

(» Nureric I nplenmentation )

NGaussi anDKer nel [0] =
Conpile[{{t, _Real}, {x, _Real }}, Exp[-x"2/ (zt)]/Sqrt [Pi (zt)]];

NGaussi anDKer nel [1] = Conpi |l e[{{t, _Real }, {x, _Real }},
Wthi{y =x/Sqrt[tt]}, (-2=*y)/(E"y"2+Sqrt[Pi]=(zt))], {{y, _Real }}1;

NGaussi anDKer nel [2] = Conpi |l e[{{t, _Real }, {x, _Real }},
Wthi{y =x"2/(tt)}, (-2+4xy)/ (Ery*Sqrt[Pi (ct)”3])], {{y, _Real }}1;

NGaussi anDKer nel [3] = Conpi l e[{{t, _Real }, {Xx, _Real }}, Wth[{y=x/Sqrt [tt]},
(Y* (12-8xy"2))/ (Ery"2xSqrt [Pi]* (ztt)™2)], {{y, _Real }}1;

NGaussi anDKer nel [4] = Conpi l e[{{t, _Real }, {x, _Real }},
Wthi{y=x"2/(tt)}, (12+y=*(-48+16=xy))/ (Ery=*Sart[Pi = (ztt)”5]1)]1, {{y, _Real }}]

NGaussi anDKer nel [5] = Conpi l e[{{t, _Real }, {x, _Real }}, Wth[{y=x/Sqrt [tt]},
(Y* (-120 + Y2 % (160 -32xy~2))) / (EAy~2+Sqrt [Pi ]+ (ztt)”3)], {{y, _Real }}];

NGaussi anDKer nel [6] = Conpi l e[{{t, _Real }, {x, _Real }}, Wth[{y =x"2/ (tt)},
(120 +y % (720 +y » (-480 +64 xy))) / (Ery *Sqrt [Pi = (zt)~71)1, {{y, _Real }}1;

NGaussi anDKer nel [7] = Conpi |l e[{{t, _Real }, {x, _Real }},
Wthi{y=x/Sqrt[tt]}, (y* (1680 +y” 2% (-3360+y"2x (1344 -128xy"2)))) /
(E"Yy"2%Sqrt [Pi]+ (zt)”4)], {{y, _Real }}];

NGaussi anDKer nel [8] = Conpi |l e[{{t, _Real }, {x, _Real }},
Wthi{y =x"2/(tt)}, (1680+y % (-13440+y % (13440 +y » (-3584 +256=xy)))) /
(Ery «Sqart [Pi o+ (zt)"91)1, {{y, _Real }}1I;

NGaussi anDKer nel [9] = Conpi l e[{{t, _Real }, {x, _Real }}, Wth[{y=x/Sqrt [tt]},
(Y * (-30240 + Yy~ 2 % (80640 +y 2 % (48384 +y 2% (9216 -512xy~2))))) /
(Eryr2xSqrt [Pi]* (ztt)”~5)]1, {{y, _Real }}1;

NGaussi anDKer nel [10] = Conpi l e[{{t, _Real}, {x, _Real }}, Wth[{y =x"2/ (tt)},
(-30240 +y * (302400 +y * (-403200 +y % (161280 +y % (-23040 + 1024 %xy))))) /
(E"y xSqrt [Pi = (zt)”~111)1, {{y, _Real }}1;

NGaussi anDKer nel [11] =
Conpile[{{t, _Real}, {x, _Real }}, Wth[{y=x/Sqgrt[ct]}, (Yy=* (665280 +
YA2 % (-2217600 +y A2 % (1774080 + Yy~ 2 % (-506880 +y "2 % (56320 - 2048 xy~2)))))) /
(E"y"2+Sqrt [Pi ]« (ct)"6)]1, {{y, _Real }}I;

NGaussi anDKer nel [12] =
Conpi le[{{t, _Real}, {x, _Real }}, Wth[{y=x"2/(ct)}, (665280 +y *
(-7983360 +y » (13305600 +y * (-7096320 +y * (1520640 +y » (-135168 + 4096 *xYy))))))
(Ery*=Sart [Pi]+Sart [(zt)~131)]1, {{y, _Real }}1;

NGaussi anDKer nel [n_I nt eger ?Positive] =Conpile[{{t, _Real}, {X, _Real }},
Wth[{y=x/Sqrt[zt]},
-HermiteH[n, y]/(Sart [Pi] (-Sgrt[ct])® (n+1)) *Exp[-y"2]
I, {{y, _Real }}I;



GaussianDerivative.nb 12

Refer to the numeric implementation whenever the Gaussian kernel is called with numerical arguments.

Gaussi anDKer nel [0, x_?Nunber Q] : = NGaussi anKer nel [Def aul t Scal ePar anet er, x]

Gaussi anDKer nel [n_I nt eger, x_?NunberQ] : =
NGaussi anDKer nel [n] [Def aul t Scal eParaneter, x] /; 1sn<12

Gaussi anDKernel [0 ] 0., n_Integer, x_]:=Derivative[n][Di racDelta][x]
Gaussi anDKer nel [t _?Nunber Q 0, x_?Nunber Q] : = NGaussi anKer nel [t, X]

Gaussi anDKer nel [t _?NunberQ n_Integer, x_?NunberQ] : =
NGaussi anDKer nel [n][t, x] /; 1sn<12

= Symbolic Implementation

For non-numeric arguments one has to render symbolic formulas. We consider 3 different cases:
numeric order of differentiation, symbolic order of differentiation, and kernel of zero width resulting in a Dirac delta

distribution.
(» Synmbolic |nplenmentation x)
Gaussi anDKer nel [t _: Defaul t Scal eParaneter, 0, x_]: = Gaussi anKernel [t, X]

Gaussi anDKer nel [t _: Def aul t Scal ePar anet er, n_I nt eger ?NonNegative, x_] : =
Simplify[-HermteH[n, x/Sqrt[ct]]/ (Sqrt[Pi] (-Sqrt[ztt])*(n+1))] *Exp[-x"2/ (zt)]

Gaussi anDKer nel [t _: Def aul t Scal eParaneter, n_Synbol, x_]: =

If[

N[t] === 0.,

Derivative[n][DracDelta][x],

-HermiteH[n, x/Sqrt[ct]1]1/(Sqrt[Pi] (-Sqrtct])*(n+1)) *Exp[-x"2/ (tt)]
1

Gaussi anDKernel /: Derivative[0, 0, n_][Gaussi anDKernel ] : =
Gaussi anDKer nel [#1 +n, #2, #3] &



GaussianDerivative.nb

13

= Multidimensional Implementation
(* Mul tidinmensional |nplenentation )

Gaussi anDKernel ::dinfaill =
"The nunber of variables and the nunber of derivative indices do not match.";

Gaussi anDKernel : :dinfail 2 ="The nunber of variables, the nunber of
derivative indices, and the nunber of scale paraneters do not match.";

Gaussi anDKernel [{0 ..}, x_List]:=GaussianKernel [x];

Gaussi anDKer nel [n_List, x_List]:=
I nner [Gaussi anDKer nel, n, x, Times] /; Di mensions[n] == Di mensi ons[x];

Gaussi anDKernel [n_List, x_List]:=
(Message [Gaussi anDKernel : : dinfail 11; Throw[$Fai |l ed]) /;
Di nensi ons[n] # D nmensi ons[x];

Gaussi anDKernel [t _List, {0 ..}, x_List]:=GussianKernel [t, X];
Gaussi anDKernel [t _List, n_List, x_List]:=
Appl y [Ti mes, Appl y[Gaussi anDKernel, Transpose[{t, n, x}1, {1}11 /;
Di mensi ons[n] == Di mensi ons[t ] = Di nensi ons [X];
Gaussi anDKernel [t _List, n_List, x_List]:=
(Message [Gaussi anDKer nel : dinfail 2]; Throw[$Fail ed]) /;
Not [Di mensi ons[n] == Di nensi ons[t ] == Di nensi ons[x]];
Gaussi anDKernel [t _, {0 ..}, x_List]:=CGaussianKernel [t, x];
Gaussi anDKernel [t _, n_List, x_List]:=
Appl y [Ti mes, Appl y[Gaussi anDKer nel [t, ##] & Transpose[{n, x}], {1}11 /;
Di mensi ons[n] == Di mensi ons[x];
Gaussi anDKernel [t _, n_List, x_List]:=

(Message [Gaussi anDKer nel : dinfail 2]; Throw[$Fail ed]) /;
Di mensi ons [n] # Di nensi ons[x];

m GaussianDKernel Input Notation

Not ati on[G [Xx_] < Gaussi anDKer nel [1, x_1]

(» Gaussi anDKernel Input Notation =)

MakeExpr essi on[RowBox [{l hs___, SuperscriptBox["G", "/"1, "[", x_, "1", rhs___}1,
St andar dFor m] : = MakeExpr essi on|
RowBox [ {I hs, RowBox[{" Gaussi anDKernel", " [", RowBox[{"1", ",", Xx}], "1"}1, rhs}],

St andar dFor m

MakeBoxes [Gaussi anDKer nel [1, x_], StandardForni : =
RowBox [ {Super scri pt Box["G', "/", MultilineFunction- None],
"', MakeBoxes[x, StandardForm], "1"}]



GaussianDerivative.nb

14

Notation[G [x_] < GaussianDKernel [t_, 1, x_]]

MakeExpr essi on[

RowBox [{l hs___, SubsuperscriptBox["G', t_, "1, "[", x_, "1", rhs___}1,
St andar dFor m] : = MakeExpr essi on[
RowBox [ {| hs, RowBox[{" Gaussi anDKernel", " [", RowBox[{t, ",", "1", ",", x}1, "1"}1,

rhs}], StandardFormj

MakeBoxes [Gaussi anDKernel [t _, 1, x_], StandardForm : =
RowBox [ {Subsuper scri pt Box["G', MakeBoxes[t, StandardForm, " ",
Mul tilineFunction- None], "[", MakeBoxes[x, StandardForm], "]1"}]

Not ati on[G’ [X_] < Gaussi anDKer nel [2, x_1]

MakeExpr essi on[RowBox [{l hs___, SuperscriptBox["G', ","1, "[", x_, "1", rhs___}1,
St andar dFor m] : = MakeExpr essi on|
RowBox [ {I hs, RowBox[{" Gaussi anDKernel", " [", RowBox[{"2", ",", X}], "1"}1, rhs}],

St andar dFor ni

MakeBoxes [Gaussi anDKer nel [2, x_], StandardForm : =
RowBox [ {Super scri pt Box["G', "/, MultilineFunction- None],
"[", MakeBoxes[x, StandardForm], "1"}]

Notation[G’ [X_] < Gaussi anDKernel [t _, 2, x_]]

MakeExpr essi on[
RowBox [{l hs___, SubsuperscriptBox["G"', t_, "-"1, "[", x_, "1", rhs___}1,
St andar dFor m] : = MakeExpr essi on[
RowBox [ {| hs, RowBox[{" Gaussi anDKernel", " [", RowBox[{t, ",", "2", ",", x}1, "1"}1,
rhs}], StandardForni

MakeBoxes [Gaussi anDKernel [t _, 2, x_], StandardForni : =
RowBox [ {Subsuper scri pt Box["G', MakeBoxes[t, StandardForm), ",/",
Mul tilineFunction- None], " [", MakeBoxes[x, StandardFormi, "1"}]

Not ati on[G("-) [x_] < Gaussi anDKernel [n_, x_11

MakeExpr essi on[
RowBox [{l hs___, SuperscriptBox["G', TagBox[RowBox[{" (", n_, ")"}], Derivative]l,
"I", x_, "1", rhs___}1, StandardForm : = MakeExpressi on[
RowBox [ {| hs, RowBox[{" Gaussi anDKernel", " [", RowBox[{n, ",", X}], "1"}]1, rhs}1,
St andar dFor m

MakeBoxes [Gaussi anDKer nel [n_, x_], StandardForni : =
RowBox [ {Super scri pt Box["G', TagBox [RowBox[{" (", MakeBoxes[n, StandardForni, ")"}1,
Derivative], MultilineFunction- None], "[", MakeBoxes[x, StandardForni, "1"}]

Not at i on[Gt(i—) [X_] < Gaussi anDKernel [t _, n_, x_]]



GaussianDerivative.nb 15

MakeExpr essi on[RowBox [

{I hs___, SubsuperscriptBox["G', t_, TagBox[RowBox[{" (", n_, ")"}1, Derivative]],
"', x_, "1", rhs___3}], StandardForm : = MakeExpr essi on|
RowBox [ {I hs, RowBox[{" Gaussi anDKernel", " [", RowBox[{t, ",", n, ",", X}, "1"}1,

rhs}], StandardForni

MakeBoxes [Gaussi anDKernel [t _, n_, x_], StandardForm : =
RowBox [ {Subsuper scri pt Box["G', MakeBoxes[t, Standar dForn,
TagBox [RowBox [{" (", MakeBoxes[n, StandardForm, ")"}], Derivativel],
Mul tilineFunction- None], "[", MakeBoxes[x, StandardForm], "]1"}]

Not ati on[G("—) [x__ ] < Gaussi anDKernel [{n__}, {X__ 311

MakeExpr essi on[

RowBox [{l hs___, SuperscriptBox["G', TagBox[RowBox[{" (", n__, ")"}], Derivative]l,
"I", x__, "1", rhs___}1, StandardForm] : =
MakeExpr essi on[RowBox [ {l hs, RowBox [{" Gaussi anDKer nel ", " [",

RowBox [ {RowBox [{" {", Uilities Notation Private stripSpuriousRowBox[n], "}"}1,
", RowBox[{"{", Utilities Notation Private stripSpuri ousRowBox[x],
"3"3}13}1, "1"}1, rhs}], StandardForn

MakeBoxes [Gaussi anDKernel [{n__}, {x__}]1, StandardForm : =

RowBox [ {Super scri pt Box[" G',
TagBox [RowBox [{" (", Utilities Notation Private makeHel dRowBoxCOf Boxes[{n},

St andar dForm None], ")"}], Derivative], MultilineFunction- Nonel, "[",
Uilities Notation Private nakeHel dRowBoxXf Boxes[{x}, StandardForm None], "]1"}1]
Not ati on[G"— [x__] e GaussianDKernel [t _, {n__}, {x__}1]

MakeExpr essi on [RowBox [

{I hs___, SubsuperscriptBox["G', t_, TagBox [RowBox[{" (", n__, ")"}], Derivativell,
", x__, "1", rhs___3}1, StandardForni : =
MakeExpr essi on[RowBox [ {| hs, RowBox [{" Gaussi anDKernel", " [", RowBox[{t, ",",

RowBox [{" {", Utilities Notation Private stripSpuriousRowBox[n], "}"}1, ",",
RowBox [{" {", Utilities Notation Private stripSpuriousRowBox[x], "}"3}1}],
"1"}1, rhs}], StandardForm

MakeBoxes [Gaussi anDKernel [t _, {n__}, {x__}1, StandardForni : =
RowBox [ {Subsuper scri pt Box["G', MakeBoxes[t, Standar dForn,
TagBox [RowBox [{" (", Utilities Notation Private makeHel dRowBoxCf Boxes[{n},
St andar dForm None], ")"3}], Derivative], MultilineFunction- Nonej, "[",
Utilities Notation Private nmakeHel dRowBoxOf Boxes[{x}, StandardForm None], "]1"}1]

Not ati on[G"— [x__] & Gaussi anDKernel [{t__}, {n__}, {x__}1]



GaussianDerivative.nb 16

MakeExpr essi on[RowBox [

{I hs___, SubsuperscriptBox["G', t__, TagBox[RowBox[{" (", n__, ")"}], Derivativell],
"I, x__, "1", rhs___3}1, StandardForni : =
MakeExpr essi on[RowBox [ {| hs, RowBox [{" Gaussi anDKer nel ", " [",

RowBox [ {RowBox [{" {", Uilities Notation Private stripSpuriousRowBox[t], "}"}1,
", ", RowBox[{"{", Utilities Notation Private stripSpuriousRowBox[n], "}"}1,
", RowBox[{"{", Utilities Notation Private stri pSpuriousRowBox[x],
“3"3}13¥1, "1"3}1, rhs}], StandardForni

MakeBoxes [Gaussi anDKernel [{t__}, {n__}, {x__}], StandardForm : =
RowBox [ {Subsuper scri pt Box[" G',
Uilities Notation Private makeHel dRowBoxOf Boxes[{t }, StandardForm None],
TagBox [RowBox [{" (", Utilities Notation Private makeHel dRowBoxCf Boxes[{n},

St andar dForm None], ")"3}], Derivative], MultilineFunction- None], "[",
Utilities Notation Private nakeHel dRowBoxOf Boxes[{x}, StandardForm None], "]1"}1]

m GaussianD

m N-dimensional Gaussian derivative
(» N-di nensi onal Gaussi an derivative x)
Summation rule:

Gaussi anD[i mgl_ +ing2_, stn: {_Synbol | _Slot, _, _:0}.., opts___Rule]:=
Gaussi anD[i ngl, stn, opts] + Gaussi anD[i ng2, stn, opts]

Constant factor:

Gaussi anD[c_inmg_, stn: {_Synbol | _Slot, _, _:0}.., opts___Rule]:=
c Gaussi anD[i ng, stn, opts] /; Apply[And, Map[FreeQ[c, First [#]] & {stn}]]

Concatenation of Gaussian derivations:

Gaussi anD[
Gaussi anD[ing_, stnl: {_Synbol | _Slot, , :0}.., optsl__Rule],
stn2: {_Synbol | _Slot, _, _:0}.., opts2__ _Rule
1:=
Gaussi anD[
i ng,

Sequence @ee Map [
(Cases[{stnl}, {#, _ }1/. {}>0+Cases[{stn2}, {#, __3}1/. {}»0) &
Uni on[Map[First, {stnl}], Map[First, {stn2}]]
1,
Sequence @@ Uni on[ {opt s1}, {opts2}]
1 /; Length[{stnl}] ===Length[{stn2}] A Map[First, {stnl}] === Map[First, {stn2}]

Processing aList of functions:

Gaussi anD[i ng_List, stn: {_Synbol | _Slot, _, _:0}.., opts__Rule]:=
Map [Gaussi anD[#, stn, opts] & ing]

Gaussian derivation via Fourier transformation:



GaussianDerivative.nb 17

Gaussi anD[ing_, stn: {_, _, _Integer: 0}.., opts__ Rule]:=
Modul e [
{result, xs, ts, ns,
ys = Tabl e[Uni que["y" 1, {Length[{stn}]}],
wS = Tabl e[Uni que["w" ], {Length[{stn}]1}1},
{xs, ts, ns} = Transpose[{stn}];
result /;
1fr
FreeQ[
result = FourierTransformfinmg /. Thread[xs »Yys], yS, ws], FourierTransform
1,
{ts, ns} =Transpose[Map[Rest, {stn}]];
FreeQ[
result =1 nverseFourier Transf orn{
Full Simplify[
Appl y [Ti mes, (-1 ws)"™] Exp[-ts. (ws?)] result,
Prepend[Thread[ts > 0], El enent [ws, Real s]]
1,
wS, YS
1 /. Thread[ys - xs],
I nver seFouri er Transform
1,
Fal se
1
1

Gaussi anD[Gaussi anDeri vative[tn__][img_][s__Synbol ], stn: {_Synbol, _, _:0}..,
opts___ Rule]:=CGaussianDerivative[Appl y[Sequence, {tn} +Replace[{s},
Append [Map[ (Fi rst [#] - Rest [#]) & {stn}], _ - {0, 0}], {1}11, opts][ing]I[s]

Gaussi anDI[i ng_Synbol [s: (__Synbol | _ Slot)], stn: {_Synbol | _Slot, _, _:0}..,
opts___ Rule]:=GaussianDerivative[Appl y[Sequence, Repl ace[{s},
Append [Map [ (Fi rst [#] » Rest [#]) & {stn}], _ - {0, 0}1, {1311, opts][ing][s]

Gaussi anD[i mg_?NumericQ stn: {_Synbol, _, _:0}.., opts___Rule] =0;

m GaussianD Input Notation
Notation[dg x_;f_ < GaussianD[f_, {x_, t_, 1}1]
(* Gaussi anD I nput Notation =)

MakeExpr essi on[

RowBox [{l hs___, Subscri pt Box["8", RowBox[{SubscriptBox["G', t_1, "[", x_, "1"3}11,
f_, rhs___3}1, StandardForni : =
MakeExpr essi on[RowBox [ {|l hs, RowBox [{" Gaussi anD', " [", RowBox[{f, ",", RowBox[
" {", RowBox[{x, ",", t, ",", "1"3}1, "3"}13}1, "1"3}1, rhs}], StandardForm]

MakeBoxes [Gaussi anD[f _, {x_, t_, 1}], StandardForni : =
RowBox [ {Subscri pt Box[" 8", RowBox[{Subscri ptBox["G', MakeBoxes[t, StandardForni],
"[", MakeBoxes[x, StandardForm], "]1"}]11, Parenthesize[f, StandardForm D]}]

Not ation[8¢-x ;f_ < GaussianD[f_, {x_, t_, n_}1]



GaussianDerivative.nb 18

MakeExpr essi on[RowBox [

{l hs___, Subsuperscri ptBox["&", RowBox[{SubscriptBox["G', t_1, "[", x_, "1"}1,
RowBox [{" (", n_, ")"}11, f_, rhs___}1, StandardForm : =
MakeExpr essi on[RowBox [ {l hs, RowBox[{" Gaussi anD', " [", RowBox[{f, ",",
RowBox [ {" {", RowBox[{x, ",", t, ",", n}1, "3}"3}1}1, "1"}1, rhs}], StandardForm]

MakeBoxes [Gaussi anD[f _, {x_, t_, n_}], StandardForm : = RowBox [
{Subsuperscri pt Box[" 8", RowBox[{Subscri ptBox["G', MakeBoxes[t, StandardForm],
"[", MakeBoxes[x, StandardForm], "]1"}], RowBox [
{" (", MakeBoxes[n, StandardForn, ")"}]]1, Parenthesize[f, StandardForm D]}]

Not at i on[8dy =)k 2 i f_ < GaussianD[f _, {x1_, t1_, nl_}, {x2_, t2_, n2_}1]

MakeExpr essi on[
RowBox [{l hs___, Subsuperscri ptBox["8", RowBox[{Subscri ptBox["G', RowBox [
{1, ",", t2_311, "[", RowBox[{x1_, ",", x2_}1, "1"}1,
RowBox [{" (", RowBox[{nl , ",", n2_3}1, ")"}11, f_, rhs__ }], StandardForm] : =
MakeExpr essi on[RowBox [ {l hs, RowBox [{" Gaussi anD', " [", RowBox [
,",", RowBox[{" {", RowBox[{x1, ",", t1, ",", n1}1, "}"}1, ",", RowBox[
{"{", RowBox[{x2, ",", t2, ",", n2}1, "}"}1}1, "1"3}1, rhs}], StandardForni

MakeBoxes [Gaussi anD[f _, {x1_, t1 , nl_ 3}, {x2_, t2_, n2_}], StandardForni : =
RowBox [ {Subsuper scri pt Box[" 8", RowBox[{Subscri pt Box["G",
RowBox [ {MakeBoxes [t 1, StandardForni, ",", MakeBoxes[t2, StandardForm}]1, " [",
RowBox [ {MakeBoxes [x1, StandardForni, ",", MakeBoxes[x2, StandardForm}], "1"}1,
RowBox [ {" (", RowBox[{MakeBoxes[nl, StandardForm, ",",
MakeBoxes[n2, StandardForm }], ")"}11, Parenthesize[f, StandardForm D]}]

Not ation[aén_l[—x’f_z,‘x)z_]f_=Gaussi anD[f _, {x1_, t_, nl_}, {x2_, t_, n2_}]]

MakeExpr essi on[RowBox [{l hs___, Subsuperscri pt Box[" 8",
RowBox [ {Subscri pt Box["G', t ], "[", RowBox[{x1_, ",", x2_3}1, "1"}1,
RowBox [{" (", RowBox[{nl1_, ",", n2_}1, ")"}11, f_, rhs }1, StandardForn] : =
MakeExpr essi on[RowBox [ {| hs, RowBox [{" Gaussi anD", " [",
RowBox[{f, ",", RowBox[{" {", RowBox [{x1, ",", t, ",", n1}1, "}"3}1, ",", RowBox[
{"{", RowBox[{x2, ",", t, ",", n2}1, "3"}1}1, "1"3}1, rhs}], StandardForm]

MakeBoxes [Gaussi anD[f _, {x1_, t_, nl_}, {x2_, t_, n2_}], StandardForm : = RowBox [
{Subsuperscri pt Box[" 8", RowBox[{Subscri ptBox["G', MakeBoxes[t, StandardForm], " [",
RowBox [ {MakeBoxes [x1, StandardForm], ",", MakeBoxes[x2, StandardForm}], "1"}1,
RowBox [{" (", RowBox[{MakeBoxes[nl, StandardForm], ", "

’ 1

MakeBoxes[n2, StandardForm }], ")"}11, Parenthesize[f, StandardForm D]}]

. (n1_,n2_,n3_)
Not ation[8g, ~, s i xz_,x31f_

GaussianD[f _, {x1_, t1_, nl_}, {x2_, t2_, n2_}, {x3_, t3_, n3_}]]



19

GaussianDerivative.nb

MakeExpr essi on[
RowBox [{l hs___, Subsuperscri ptBox["8", RowBox[{Subscri ptBox["G', RowBox [
{1, ", t2., ", t3.311, "I", RowBox[{x1_, ",", x2_, ",", x3_3}1, "1"}1,
RowBox [ {" (", RowBox[{nl_, ", n2_, ",", n3_3}1, ")"}11, f_, rhs__ 131,
St andar dFor m] : = MakeExpr essi on[RowBox [ {| hs, RowBox [ {" Gaussi anD', " [",
RowBox [{f, ",", RowBox [{" {", RowBox[{x1, ",", t1, ",", n1}], "}"}1,
RowBox [{" {", RowBox[{x2, ",", t2, ",", n2}1, "}"}], ",", RowBox|
, Nn3}1, "}"3}131, "1"3}1, rhs}], StandardForm

{"{", RowBox[{x3, ",", t3, ","

{x2_, t2_, n2_}, {x3_, t3_, n3_}1,

MakeBoxes [Gaussi anD[f , {x1 , t1 , nl },
St andar dFor m] : = RowBox [ {Subsuper scri pt Box[" 8",
RowBox [ {Subscri pt Box["G', RowBox[{MakeBoxes[t1l, StandardForm,
MakeBoxes [t 2, StandardForm), ",", MakeBoxes[t3, StandardForm}11, "[",

", MakeBoxes[x2, StandardForm,

RowBox [ {MakeBoxes [x1, StandardFornm], ",
, MakeBoxes[x3, StandardFornmi}], "1"}], RowBox[
, MakeBoxes[n2, StandardForni,

{" (", RowBox[{MakeBoxes[nl, StandardFormy,
, ", MakeBoxes[n3, StandardForm}], ")"}]11, Parenthesize[f, StandardForm D]}]

Not at i on|[
aén_lfxvfi_xvznj—xg_]f_«:Gaussi anD[f _, {x1_, t_, n1_}, {x2_, t_, n2_}, {x3_, t_, n3_}1]

, Subsuperscri pt Box[" 8",
RowBox [ {Subscri pt Box["G', t _], "[", RowBox[{x1_, ",", x2_, ",", Xx3_3}1, "1"}1,
RowBox [ {" (", RowBox[{nl1_, ",", n2_, ",", n3_3}1, ")"3¥11, f_, rhs___}1,

St andar dFor m] : = MakeExpr essi on[RowBox [ {| hs, RowBox [{" Gaussi anD', " [",

RowBox [{f, ",", RowBox[{" {", RowBox[{x1, ",", t, ",", nl}], "}"}1,

""", RowBox[{" {", RowBox[{x2, ",", t, ",", n2}1, "}"}1, ",", RowBox|

{"{", RowBox[{x3, ",", t, ",", n3}1, "3"}1}1, "1"3}1, rhs}], StandardForm

MakeExpressi on[RowBox [{l hs__

MakeBoxes [Gaussi anD[f _, {x1_, t_, nl 3}, {x2_,t_, n2_}, {x3_, t_, n3_}1,
St andar dFor m] : = RowBox [
{Subsuperscri pt Box[" 8", RowBox[{Subscri ptBox["G', MakeBoxes[t, StandardForm], " [",
RowBox [ {MakeBoxes [x1, StandardForni, ",", MakeBoxes[x2, StandardForm,
, MakeBoxes[x3, StandardForm}], "1"}], RowBox[

, MakeBoxes[n2, StandardForni,

RowBox [ {MakeBoxes [nl1, StandardForni, ","
, MakeBoxes[n3, StandardForni}], ")"}1], Parenthesize[f, StandardForm D]}]

¢,

. 1.,n2_,n3_,n4
Not at i on[ag’ "0 "y il xe xa_xay =
GaussianD[f _, {x1_, t1_, nl_}, {x2_, t2_, n2_}, {x3_, t3_, n3_}, {x4_, t4_, n4_}]]



GaussianDerivative.nb

MakeExpr essi on[RowBox [{l hs___, Subsuperscri pt Box[" 8",

RowBox [ {Subscri pt Box["G', RowBox[{t1_, ",", t2_, ",", t3_, ",", t4_3}11,
"', RowBox [{x1_, ",", x2_, ",", Xx3_, ",", x4_}1, "1"}1.
RowBox [{" (", RowBox[{nd1_, ",", n2_, ",", n3_, ",", nd_3}1, ")"}11, f_, rhs___ 31,
St andar dFor m] : = MakeExpr essi on[RowBox [ {| hs, RowBox [ {" Gaussi anD', " [",
RowBox [{f, ",", RowBox[{" {", RowBox [{x1, ",", t1, ",", nl}], "}"}1,
", RowBox[{"{", RowBox[{x2, ",", t2, ",", n2}1, "}"}1, ",",
RowBox [{" {", RowBox[{x3, ",", t3, ",", n3}1, "}"}1, ",", RowBox[
{"{", RowBox[{x4, ",", t4, ",", nd4}¥], "}"}1}1, "1"3}1, rhs}], StandardForni

MakeBoxes [Gaussi anD[f _, {x1_, t1 , nl_},
{x2_, t2_, n2_}, {x3_, t3_, n3_}, {x4_, t4_, n4_}], StandardForm : =
RowBox [ {Subsuper scri pt Box[" 8", RowBox[{Subscri pt Box["G',
RowBox [ {MakeBoxes [t 1, StandardForni, ",", MakeBoxes[t2, StandardForm], ",",
MakeBoxes [t 3, StandardForm], ",", MakeBoxes[t4, StandardForm]}11, "[",
RowBox [ {MakeBoxes [x1, StandardForm], ",", MakeBoxes[x2, Standar dForm],
", ", MakeBoxes[x3, StandardForm], ",", MakeBoxes[x4, StandardForni}], "1"}1,
RowBox [{" (", RowBox[{MakeBoxes[nl, StandardForm, ",",
MakeBoxes[n2, StandardForm), ",", MakeBoxes[n3, StandardForni, ","

MakeBoxes [n4, StandardForm)}], ")"}11, Parenthesize[f, StandardForm D]}]

. (n1_,n2_,n3_,n4_)
Not ation[dg 1 x2 xa xa_1f_ <

GaussianD[f _, {x1_, t_, n1_}, {x2_, t_, n2_}, {x3_, t_, n3_}, {x4_, t_, n4_}]]

MakeExpr essi on[

RowBox [{l hs___, Subsuperscri pt Box["3d", RowBox[{SubscriptBox["G', t_], "[",
RowBox [{x1_, ",", x2_, ",", x3_, ",", x4_3}1, "1"}1,
RowBox [ {" (", RowBox[{nd1_, ",", n2_, ",", n3_, ",", nd_3}1, ")"}11, f_, rhs___ 31,
St andar dFor m] : = MakeExpr essi on[RowBox [ {| hs, RowBox [ {" Gaussi anD', " [",
RowBox [{f, ",", RowBox [{" {", RowBox[{x1, ",", t, ",", nl}1, "}"}1,
"', RowBox [{" {", RowBox[{x2, ",", t, ",", n2}1, "3}"3}1, ",",
RowBox [{" {", RowBox[{x3, ",", t, ",", n3}], "}"}1, ",", RowBox|
{"{", RowBox[{x4, ",", t, ",", nd4}1, "3"3}1}1, "1"3}1, rhs}], StandardForm

MakeBoxes [Gaussi anD[f _, {x1_, t_, nl_}, {x2_, t_, n2_},
{x3_,t _, n3_} {x4_,t _, nd4_3}], StandardForm : = RowBox [
{Subsuper scri pt Box[" 8", RowBox[{Subscri ptBox["G', MakeBoxes[t, StandardForm], " [",

RowBox [ {MakeBoxes [x1, StandardForm], ",", MakeBoxes[x2, StandardForm, ",",
MakeBoxes [x3, StandardForm), ",", MakeBoxes[x4, StandardForm]}], "1"}1,
RowBox [{" (", RowBox[{MakeBoxes[nl, StandardForm], ",",
MakeBoxes [n2, StandardForny, ",", MakeBoxes[n3, StandardForm], ",",

MakeBoxes[n4, StandardFornm}], ")"}11, Parenthesize[f, StandardForm D]}]

m GaussianDerivative

= Automatic Kernel Range

To ensure agiven precision for Gaussian derivatives, one must provide a Gaussian kernel with aminimum range [-r,r].
If € isthe admissable error, the constraint for a continuous Gaussian kernel is

r
J Gaussi anDKernel [t, 0, x]dx 2 1-¢€
-r



GaussianDerivative.nb 21

For n-th order derivative kernels this generalizesto

To(=x)" .
J — Gaussi anDKernel [t, n, x]dx 2 1-¢
or !

Unfortunately, the above inequality cannot be solved for r symbolically. Hence, we solve the inequality numerically
for
t =lande =2""withm=1,..., 32. Note, that t scalesx by vtand thusalsor .

Gaussi anDKer nel [1, n, x] dx

r (_X)n
RangeError [n_] : =RangeError [n] = j —

-r
For the Gaussian kernel we obtain the explicit result

r /. Sol ve[RangeError [0] ==1-2"" r][1]

21 nversekrf [0, 27M(-1+2M]
A list of results for derivatives up the 16" order is generated by

RangeErrorList[m] : =

Rest [Fol dLi st [ (r /. Fi ndRoot [Eval uat e[RangeError [#2] = 1 - 2°™], {r, #1}1) &
2 lnverseErf [0, 2-M (-1+2M ], Range[0, 16]1]]

In accordance with Zernickes formula we fit the results.

RangeError Function[m ] : =

\/Fit [Transpose[{Range[0, 16], RangeErrorLi st [m?}1, {n+1, V3n+1}, n]

Thus, for each mwe can generate a Gaussian kernel range function.

Gaussi anKer nel Range[m_] = Conpi | e[{{t, _Real }, {n, _Integer}},
{-#, #)} &[Eval uate[Ceiling[Vt t/4 RangeErrorFunction[m]]]]

We do so explicitly for m=4, 8, 12,... , 52.

Gaussi anKer nel Range[4] =
Conpile[{{t, _Real}, {n, _Integer}}, {-#, #} &[Ceiling[Sqrt [(2.3243180666111423 +
2.3243180666111423 xn - 0. 9765965923097873 % (L +n)" (1 /3)) *t *t]11]]

Gaussi anKer nel Range[8] =
Conpile[{{t, _Real}, {n, _Integer}}, {-#, #} &[Ceiling[Sqrt [(2.2224289812448683 +
2.2224289812448683xn + 1. 6011247864558187 % (1 +n)" (1/3)) *t *t]]1]]

Gaussi anKer nel Range[12] =
Conpile[{{t, _Real}, {n, _Integer}}, {-#, #} &[Ceiling[Sqrt[(2.114376372864952 +
2.114376372864952 xn + 4. 0288081480154725% (1 +n)™ (1 /3)) »t *t]1]1]

Gaussi anKer nel Range[16] =
Conpile[{{t, _Real}, {n, _Integer}}, {-#, #} &[Ceiling[Sqrt [(1l.998216846965191 +
1.998216846965191 % n + 6. 392974885898669 % (L +n) " (1/3)) *t *xz]1]11]



GaussianDerivative.nb 22

Gaussi anKer nel Range[20] =
Conpile[{{t, _Real}, {n, _Integer}}, {-#, #} &[Ceiling[Sqrt [(1l.874991609534614 +
1.874991609534614 x n + 8. 723038909063387 % (L +n)" (1 /3)) »t »xt]1]1]]

Gaussi anKer nel Range[24] =
Conpile[{{t, _Real}, {n, _Integer}}, {-#, #} &[Ceiling[Sqrt[(1.7458525263268259 +
1. 7458525263268259 % n + 11. 032362584249514 % (L +n)" (1/3)) *t »xt]]]]

Gaussi anKer nel Range[28] =
Conpile[{{t, _Real}, {n, _Integer}}, {-#, #} &[Ceiling[Sqrt[(1.6117501067548536 +
1.6117501067548536 x n + 13. 328052128995822 % (1L +n)" (1/3)) *t *T]1]1]

Gaussi anKer nel Range[32] =
Conpile[{{t, _Real}, {n, _Integer}}, {-#, #} &[Ceiling[Sqrt [(1l.473435732709178 +
1.473435732709178 x n + 15. 61428837974991 % (L +n)" (1 /3)) »t xz]11]1]

Gaussi anKer nel Range[36] =
Conpile[{{t, _Real}, {n, _Integer}}, {-#, #} &[Ceiling[Sqrt [(1.3315035827972916 +
1. 3315035827972916 % n + 17. 893710961739284 % (L +n)" (1/3)) *t »T]]1]1]

Gaussi anKer nel Range[40] =
Conpile[{{t, _Real}, {n, _Integer}}, {-#, #} &[Ceiling[Sqrt [(1.1864219273587364 +
1.1864219273587364 xn + 20. 168092531572174% (L +n)~ (1 /3)) xt xT]111]

Gaussi anKer nel Range[44] =
Conpile[{{t, _Real}, {n, _Integer}}, {-#, #} &[Ceiling[Sqrt [(1.0385758971718777 +
1. 0385758971718777 xn + 22. 438510420428443 % (L +n)" (1 /3)) xt xT]1]1]

Gaussi anKer nel Range[48] =
Conpile[{{t, _Real}, {n, _Integer}}, {-#, #} &[Ceiling[Sqrt [(0.889875356726046 +
0. 889875356726046 * n + 24. 692137806054756* (L +n)"~ (1/3)) *t *t]]]]

Gaussi anKer nel Range[52] =
Conpile[{{t, _Real}, {n, _Integer}}, {-#, #} &[Ceiling[Sqrt [(0.7367547195975274 +
0. 7367547195975274 % n + 26. 829859007281208 % (1 +n) " (1 /3)) »t xt]]1]
Earlier versions of this package used the formula of Zernicke for the upper bound of Gaussian width.

Gaussi anKer nel Range = Conpi | e[{{t, _Real }, {n, _Integer}},
Ceiling[4 = Sqrt[ct] # Sqrt [n+2-1. 15~/ n+2]]];

Gaussi anDerivative::widthfail =
"I nsufficient kernel width for "1 -order differentiation.";
Gaussi anDeri vative: :nowi dth ="No kernel width specified.";

= Automatic Minimal Scale

Scale is needed to regularize a discrete dataset. Here we determine the minimal scale needed to render correct deriva-
tive values for a given precision.

In Fourier space an n-th order Gaussian derivation is performed via multiplication with

. 2
(-iw)" etV

Va2 r



GaussianDerivative.nb 23

This Gaussian derivative kernel in Fourier space extends from -co to co. However, due to the discreteness of the data
we are bounded by its Nyquist frequency. If we take the lattice constant of the data grid as 1, we cannot sample the data
with frequencies higher than 7. Hence, we miss the values in Fourier space from 7 to co. We calculate this error and
determine the scale, with which this error is kept below a given precision threshold.

) . T (-iw)" et W © (i w)" et ¥
error[n_] := error[n] =S|mllfy[j—dw / j—dw]
0 V2 0 V2r

Here are the minimal scalest for Gaussian derivatives of order n from 0 through 16 to obtain a precision of 2-° with b
running from 4 to 52 in steps of 4.

results = Tabl e[Mapl ndexed[{First [#2] -1, t /. FindRoot [#1 =1-2"" {t, 1}1} &
Tabl e[error [n], {n, 0, 16}]1]1, {b, 4, 52, 4}7;

For each precision we fit the terms of Zernicke's formulato these minmal scales.
Map[Fit [#, {1, n+1, (n+1)'%}, n] & results]

M ni mal Scal e[4] = Conpi l e[{{n, _Integer}}, -0.07225602550763996" +
0.1934994115318552" « (1 +n)2/3 + 0. 05458391922630867" (1 +n)1;

M ni mal Scal e[8] = Conpi |l e[{{n, _Integer}},
0.04813185222160912" +0.31489231691130615" (1 + n)l/3 +0.05841271321345174° (1 +n)];

M ni mal Scal e[12] = Conpi | e[ {{n, _l nteger}},
0.23138720823850856" + 0. 3870206014942941" (1 +n)'/3 +0. 06201023916198861" (1+n)];

M ni mal Scal e[16] = Conpi |l e[ {{n, _Integer}},
0.4427462125429202" +0. 43729757816428666" (1 +n)/3 + 0. 06533784418156777" (1+n)1;

M ni nal Scal e[20] = Conpi | e[{{n, _l nteger}},
0.6700763376887527" + 0. 47527046426284586" (1 + n)l/3 +0.06841700241661773° (1 +n)7J;

M ni mal Scal e[24] = Conpi | e[ {{n, _l nteger}},
0.9076871517131073" + 0. 5053978829196788" (1 +n)%/® +0.07127851131749753 (1 +n)1;

M ni mal Scal e[28] = Conpi | e[ {{n, _l nteger}},
1.1524506471180527" +0.5301181105158642" (1 +n)/3 + 0. 07395088137222257" (1 +n)];

M ni mal Scal e[32] = Conpi | e[{{n, _lnteger}},
1. 4024642991094307" + 0. 5509059382924002" (1 +n)/® +0.0764583548853869" (1 +n)1;

M ni nal Scal e[36] = Conpi | e[{{n, _l nteger}},
1. 656487038699375" +0.568717809132497" (1 + n)l/3 +0.07882117438223667 (1 +n)]J;

M ni mal Scal e[40] = Conpi | e[ {{n, _l nteger}},
1. 9136820125603298" + 0. 5841887192822285" (1 +n)'/3 + 0. 08105828273659765" (1+n)1;

M ni nmal Scal e[44] = Conpi | e[{{n, _lnteger}},
2.1736973881589376° + 0. 5976246623874925" (1 +n)%/3 + 0. 0831900868437959" (1 +n)];

M ni mal Scal e[48] = Conpi | e[ {{n, _l nteger}},
2.442533291990515" + 0. 6028349507086076" (1 +n)'/3 + 0. 08585656496350498" (1 +n)1;

M ni mal Scal e[52] = Conpi | e[ {{n, _l nteger}},
2.627515797245066" + 0. 6649239314410514° (1 +n)*/3 + 0. 08356758359896967" (1+n)];



GaussianDerivative.nb 24

Gaussi anDerivative::scalefail ="Scale too small for "1 -order differentiation. ";

The former approach for 12-hit precision to estimate the lower boumd of admissable scale paramterer values was:

M ni mal Scal e = Conpi | e[{{n, _Integer}}, Re[Sqrt[n+1-1. 15/ n+1]]];

= Symbolical Implementation

1 #

Gaussi anDerivative[{t_, 0}][UnitStep]:= — (1 +Erf[ ]] &
2 24/t

Gaussi anDerivative[tn: {0, 0}..][ing_] =i nu;

Gaussi anDerivative[tn: {_, _Integer?Positive}..][ing_Synbol]:=

0 /; Menber Q[Attributes[ing], Constant]
Gaussi anDerivative[tnl: {_, _Integer: 0}.., optsl__ Rule][
Gaussi anDerivative[tn2: {_, _Integer: 0}.., opts2__ Rule][ing_]]:=

Gaussi anDeri vati ve[Appl y[Sequence, {tnl} + {tn2}],
Appl y [Sequence, Union[{optsl}, {opts2}]]1]1[ing] /; Length[{tnl}] ===Length[{tn2}]

Gaussi anDerivative[tn: {_, _}.., opts__ Rule][f_]1:=
(Eval uat e[prel i mi nary$Result] &) /;

Not [ArrayQ[f, _, Nurmeri Q1] A Not [Mat chQ[Head[prelim nary$Result =

CGaussi anD[f ee Thread [Sl| ot [Range[Length[{tn}]]1]1], Sequence ee
MapThr ead [Prepend, {{tn}, Thread[Sl ot [Range[Length[{tn}]1]111}111,

Hol dPat t er n[Gaussi anDeri vative[tn, opts][f]]
1
1/; Not [ArrayQ[f]]

Old Code:

Gaussi anDerivative[tn: {_, _Integer: 0}.., opts___ Rule][imy_Synbol]:=
Modul e[

{result, ts, ns,

xs = Tabl e[Uni que["x"], {Length[{tn}]}],

wS = Tabl e[Uni que["w" ], {Length[{tn}]}],

ys = Tabl e[Uni que["y"], {Length[{tn}]}]},

(Eval uatefresult /. Thread[ys - Table[Slot[i], {i, Length[ys]}]11]1 &) /;

1f[
FreeQ[result = FourierTransformAppl y[i ng, xs], xs, ws], FourierTransforn,
{ts, ns} = Transpose[{tn}];

FreeQ[result = InverseFourierTransformAppl y[Ti mes, (-1 ws)”"ns]
Exp[-ts. (ws”™2)] result, ws, ys], I nverseFourierTransforni,
Fal se

= Numerical Implementation

The GaussianDerivative checks if the image and parameters allow numeric differentiation and calls up the apporpriate
Method.



GaussianDerivative.nb 25

Gaussi anDeri vative: :nonethod = "Derivation Method “1° not inplenented!";
Gaussi anDerivative[tn: {_?NunericQ _Integer: 0}.., opts__ Rule][ing_List]:=
Switch[

Met hod /. {opts} /. Options[Gaussi anDerivativel,
Convol ve, ListConvol veGaussi anDerivative[tn, opts][ing],
Fouri er, Fourier Gaussi anDerivati ve[Appl y[Sequence, Reverse[{tn}]], opts][ing],
_, Message[Gaussi anDeri vati ve: : nonet hod, Met hod]; Throw[$Fai | ed]
1 /; TensorRank[ing] = Length[{tn}]

ListConvolve Method
Gaussi anDeri vati ve: : noboundopt ="l nvalid | mageBoundary option.";
Gaussi anKer nel I nterval [{0, 0}, _, rangeopt_: Automatic] = {-1, 1};

Gaussi anKernel Interval [{t_, n_}, bits_, rangeopt_: Autonmatic] : =

(I1f [t <0, Message[Gaussi anDerivative::scalefail, n]; Throw[$Fail ed]];

If [t <Mninmal Scal e[bits][n], Message[Gaussi anDerivative::scalefail, n]];
Switchl

rangeopt,
Aut omat i ¢, Gaussi anKer nel Range[bits][t, n],
Infinity, {-1, 1} «Floor [Sgrt [-zt *Log[$M nMachi neNunber]]],

{-Infinity, Infinity}, {-1, 1}yxFloor [Sqrt [-tt *Log[$M nMachi neNunmber]]1,
{_Integer, Infinity},

{rangeopt [[1]], Floor [Sgrt [-tt *Log[$M nMachi neNunber]11},

{-Infinity, _Integer}, {-Floor[Sqgrt[-tt *Log[$M nMachi neNunber]]],
rangeopt [[2]1]},

{_I nteger, _Integer}, rangeopt,
_, Message[Gaussi anDerivative::now dth]; Throw[$Fail ed]
1)

Li st Convol veGaussi anDeri vati velD[
{{0, 0}, {kmin_, kmax_}, boundaryopt _}, ing_, depth_, opts__ ] =iny;

Li st Convol veGaussi anDeri vativelD[

{{t_, n_3}, {kmin_, kmax_}, boundaryopt_}, img_, depth_, opts___]:=
Modul e[

{kern = Nest [Li st, Tabl e[NGaussi anDKer nel [n][t, x], {X, kmin, knax}], depth-11},
Switch[
boundar yopt,

Cyclic,
Li st Convol ve[kern, i ng,

{PadLeft [{-kmin+1}, depth, 1], PadLeft [{-kmax -1}, depth, 1]1}1,

Truncat e,
Map [At t achFramelD[#, {-km n, knmax}] &,

Li st Convol ve[kern, ing, {PadLeft [{-1}, depth, 1], PadLeft [{1}, depth, 11}],
{depth -1} 1,

_?NurnericQ
Li st Convol ve[kern, i ng,
{PadLeft [{-kmin+1}, depth, 1], PadLeft [{-kmax -1}, depth, 11}, N[boundaryopt]],



GaussianDerivative.nb 26

Const ant,
Li st Convol ve[kern, | mageFramelD[i mg, {{-km n, kmax}, depth, Constant}]],

Ref |l ecti ve,
Li st Convol ve[kern, | mageFranmelD[i my, {{-kmi n, knmax}, depth, Reflective}]],

_, Message[Gaussi anDeri vati ve: : nobound]; Throw[$Fail ed]

Li st Convol veGaussi anDerivative[tn__List, opts__ Rule][ing_List]:=
Cat ch[Modul e[
{
di m= Tensor Rank[i ng], nn =Length[{tn}], dinTot,
bounds = (I nageBoundary /. {opts} /. Options[Gaussi anDerivative]),
kernrange = (Kernel Range /. {opts} /. Options[GaussianDerivative]),
kernpbits = M n[52, Max[4, 4xCeiling[
Log[2, 10" (WorkingPrecision /. {opts} /. Options[Gaussi anDerivative])
174111
I8
| f
dim=== nn,
di ntot = Rot at eLeft [Range[nn]];
Fol d[
Li st Convol veGaussi anDeri vati velD[#2, Transpose[#1, dinrot], dim opts] &,
i ng,
Map [ {#, Gaussi anKernel I nterval [#, kernpbits, kernrange], bounds} &,
RotatelLeft [{tn}]]],
di ntot =Joi n[Range[l, di m-nn], RotatelLeft [Range[dim-nn+1, dim]];
Transpose[
Fol d[
Li st Convol veGaussi anDeri vati velD[#2, Transpose[#1, dinrot], dim opts] &,
Transpose[i ng, Joi n[Range[nn +1, di m, Range[nn]]],
Map [ {#, Gaussi anKernel | nterval [#, kernpbits, kernrange], bounds} &,
Rot ateLeft [{tn}]]
1,
Joi n[Range[di m-nn + 1, di m, Range[1, di m-nn]]
1
1
11

Fourier Method

NFourierGaussianDK ernel List[] renders the Fourier transformed kernel scaled by factor (—i)" vr. Thisway the kernel
remains real and the multiplication with the Fourier transformed image is performed twice as fast. The complex scaling
is applied separately at a later stage. The Fourier transformed Gaussian derivative kernel is capped by

10. ~( $Machi nePr eci si on- 3) sothat numerical instabilities for negativet do not occur.



GaussianDerivative.nb

NFouri er Gaussi anDKer nel Li st =
Conpi l e[
{{t, _Real}, {n, _Integer}, {r, _Integer}},
Join[{If[n===0, 1, 01}, # (-1)"n Reverse[lf [EvenQ[r], Drop[#, -11, #1111 &[
Wth[{stepsize =2. Pi /r},
Tabl e[ (omega) *n » Exp[-omega™2 tt /4], {onega, stepsize, Pi, stepsize}]
1
1,
{{onega, _Real }, {stepsize, _Real }}
1

Fouri er Gaussi anDeri vative[tn__List, opts__ Rule][ing_List]:=
Modul e [
{di m= Tensor Rank[i ng],
nn =Length[{tn}],
kern, norm res},
kern =
Apply [
Fast Qut er Ti nes,
Apply [
NFour i er Gaussi anDKer nel Li st,
Transpose[Append[Transpose[{tn}], res = Take[Di nensi ons[i ng], nn]1]1],
{1
1
1
| f [Not [Appl y[And, Positive[Transpose[{tn}]1[[1]1]1]1]] &&
(Max [kern] > 10. ~ ($Machi nePr eci si on - 3)),
kern = Map[M n[#, 10. » ($Machi nePreci sion-3)] & kern, {-1}11;
norm = Appl y[Tines, (-1)” (Transpose[{tn}]1[[2]1]1)];
If[
dim=== nn,
Chop[Re[l nver seFourier [norms+ kern = Fourier [ing]]]],
Transpose][
Map [
Chop[Re[l nver seFouri er [norms kern % Fourier [#]]]1] &
Transpose[i ng, Joi n[Range[nn + 1, di m], Range[nn]]],
{di m-nn}
1,
Joi n[Range[di m-nn +1, di m, Range[l, di m-nn]]
1
1
]

m GaussianDerivative Input Notation

Not at i on[f_G = Gaussi anDerivative[{t_, 0}]1[f_]]



GaussianDerivative.nb 28

(» Gaussi anDerivative | nput Notation x)

MakeExpr essi on[Subscri pt Box [f _, SubscriptBox["G', t_1], StandardForm : =
MakeExpr essi on[RowBox [ {RowBox [ {" Gaussi anDeri vative", " [",
RowBox [{" {", RowBox [{t, ",", "0"}1, "}"}1, "1"}1, "[", f, "1"}1, StandardForni

MakeBoxes [Gaussi anDerivative[{t_, 0}][f_], StandardForni : = Subscri pt Box[
MakeBoxes [f, StandardForm), SubscriptBox["G', MakeBoxes[t, StandardForni]]

Notation[f_; « GaussianDerivative[{t_, 1}1[f_1]

MakeExpr essi on[Subsuper scri pt Box[f _, SubscriptBox["G', t_], "/"], StandardForm : =
MakeExpr essi on[RowBox [ {RowBox [ {" Gaussi anDeri vative", " [",
ROV\BOX[{" {II' ROV\BOX[{t , II’ II' n 1" }]’ " }II }]' ll]ll }]' n [ll’ f , " ]II }]’ St andardFOr m]

MakeBoxes [Gaussi anDerivative[{t_, 1}]1[f_]1, StandardForni : =
Subsuper scri pt Box [MakeBoxes [f, Standar dFor n,
Subscri pt Box["G', MakeBoxes[t, StandardForni], ",", MiultilineFunction- None]

Notation[f_¢ « GaussianDerivative[{t_, 2}1[f_1]

MakeExpr essi on[Subsuper scri pt Box [f _, SubscriptBox["G', t_], ",/"], StandardForm] : =
MakeExpr essi on[RowBox [ {RowBox [ {" Gaussi anDeri vative", " [",
RowBox [{" {", RowBox[{t, ",", "2"}1, "}"}1, "I1"}1, "[", f, "1"}]1, StandardFornj

MakeBoxes [Gaussi anDerivative[{t_, 2}]1[f_1, StandardForm : =
Subsuper scri pt Box [MakeBoxes [f, St andar dFor n,
Subscri pt Box["G', MakeBoxes[t, StandardForni], "-*, MultilineFunction- None]

Notation[f _{"-) < GaussianDerivative[{t_, n_}1[f_1]

MakeExpr essi on[Subsuper scri pt Box[f _, SubscriptBox["G', t_], RowBox[{" (", n_, ")"}11,
St andar dFor m] : = MakeExpr essi on[RowBox [
{RowBox [ {" Gaussi anDeri vative", "[", RowBox[{" {", RowBox[{t, ",", n}1, "}"}1, "1"}1,
", f, "1"3}1, StandardFor m]

MakeBoxes [Gaussi anDerivative[{t_, n_}][f_], StandardForm : =
Subsuper scri pt Box [MakeBoxes [f, StandardForm, Subscri pt Box["G',
MakeBoxes [t, StandardForni], RowBox[{" (", MakeBoxes[n, StandardForm, ")"}1]

Not at i on[f_(il < GaussianDerivative[{t1_, 0}, {t2_, 0}][f_1]

t2_

MakeExpr essi on[Subscri pt Box [f_, SubscriptBox["G', RowBox[{t1_, ",", t2_3}111,
St andar dFor m] : = MakeExpr essi on[RowBox [ {RowBox [ {" Gaussi anDeri vati ve",
"I", RowBox[{RowBox[{"{", RowBox[{t1, ",", "0"3}1, "}"}1, ",", RowBox]|
{"{", RowBox[{t2, ",", "0"3}¥1, "3}"3¥13}1, "1"3}1, "[", f, "1"}]1, StandardForni

MakeBoxes [Gaussi anDerivative[{t1l_, 0}, {t2_, 0}]1[f_1, StandardForm : =
Subscri pt Box [MakeBoxes [f, StandardForni, Subscri ptBox["G',
RowBox [ {MakeBoxes [t 1, StandardForni, ",", MakeBoxes[t2, StandardForm}]1]

Not ation[f _{"'-"?-) < GaussianDerivative[{t1l_, nl_}, {t2_, n2_}1[f_1]



GaussianDerivative.nb 29
MakeExpr essi on[Subsuper scri pt Box[f _, Subscri ptBox["G', RowBox[{t1_, ",", t2_3}11,
RowBox [{" (", RowBox[{nl , ",", n2_3}1, ")"}1], StandardForm : =
MakeExpr essi on[RowBox [ {RowBox [ {" Gaussi anDeri vative", " [",
RowBox [ {RowBox [ {" {", RowBox[{t1, ",", n1}], "}"3}1, ",", RowBox|[
{"{", RowBox[{t2, ",", n2}1, "3}" 3131, "1"31, "I", f, "1"}1, StandardForm
MakeBoxes [Gaussi anDerivative[{t1l , nl_}, {t2_, n2_3}][f_], StandardForm : =
Subsuper scri pt Box [MakeBoxes [f, StandardForm, Subscri pt Box["G', RowBox [
{MakeBoxes[t1l, StandardForni, ",", MakeBoxes[t2, StandardForm}]], RowBox [{" (",
RowBox [ {MakeBoxes [nl, StandardForni, ",", MakeBoxes[n2, StandardForm}], ")"}11]

Notation[f_Gl = Gaussi anDerivative[{t_, 0}, {t_, 0}1[f_1]

MakeExpr essi on[Subscri pt Box[f _, SubscriptBox["G', t _]], StandardForm] : =
MakeExpr essi on[RowBox [ {RowBox [ {" Gaussi anDeri vative", " [",
RowBox [ {RowBox [ {" {", RowBox[{t, ",", "0"3}1, "}"}1, ",", RowBox][
" {", RowBox[{t, ",", "0"3¥1, "3}"3¥131, "1"3}1, "[", f, "1"}]1, StandardForm]

MakeBoxes [Gaussi anDerivative[{t_, 0}, {t_, 0}1([f_1]1, StandardForm : = Subscri pt Box[
MakeBoxes [f, StandardForm, SubscriptBox["G', MakeBoxes[t, StandardForni]]

Not ation[f _{"~"2-) < GaussianDerivative[{t_, nl1_}, {t_, n2_}1[f_]]

MakeExpr essi on[Subsuper scri pt Box[f _, SubscriptBox["G', t_],
RowBox [{" (", RowBox[{nl_, ",", n2_}1, ")"3}11, StandardForni : =
MakeExpr essi on[RowBox [ {RowBox [ {" Gaussi anDeri vative", " [",
RowBox [ {RowBox [ {" {", RowBox [{t, ",", n1}], "}"}1, ",", RowBox|
{"{", RowBox[{t, ",", n2}1, "3" 3131, "1"31, "[", f, "1"}]1, StandardFor m]

MakeBoxes [Gaussi anDerivative[{t , nl1_}, {t_, n2 }][f_1]1, StandardForni : =
Subsuper scri pt Box [MakeBoxes [f, Standar dFor n,
Subscri pt Box["G', MakeBoxes[t, StandardForn]], RowBox[{" (",
RowBox [ {MakeBoxes [nl, StandardForm], ",", MakeBoxes[n2, StandardForm}], ")"3}11]

Not at i on [f < Gaussi anDerivative[{tl_, 0}, {t2_, 0}, {t3_, 0}1[f_1]

—G1_,t2_,t3_

MakeExpr essi on[
Subscri pt Box [f _, Subscri pt Box["G', RowBox[{t1_,
St andar dFor m] : = MakeExpr essi on[RowBox [ {RowBox [

tLUot2.,", ", 13311

{" Gaussi anDerivative", "[", RowBox[{RowBox[{" {", RowBox[{t1, ",", "0"}1, "}"}1,
", RowBox[{" {", RowBox[{t2, ",", "0"3}1, "}"}1, ",", RowBox[
"{", RowBox[{t3, ",", "0"3}1, "}"3¥13}1, "1"%¥1, "[", f, "1"}1, StandardForm]

MakeBoxes [Gaussi anDerivative[{tl , 0}, {t2 , 0}, {t3_, O0}][f_], StandardForm] : =
Subscri pt Box [MakeBoxes [f, StandardForni,
Subscri pt Box["G', RowBox[{MakeBoxes[t1, StandardForni, ",",
MakeBoxes [t 2, StandardForm), ",", MakeBoxes[t3, StandardForni}]]]
Not ati on[f _{"- "%~ ") « GaussianDerivative[{t1_, nl1_}, {t2_, n2_}, {t3_, n3_}][f_1]

—G1_,t2_,t3_



GaussianDerivative.nb 30

MakeExpr essi on[

Subsuper scri pt Box[f _, SubscriptBox["G', RowBox[{t1_, ",", t2_, ",", t3_}11,
RowBox [{" (", RowBox[{nl , ",", n2_, ",", n3_}1, ")"}11,
St andar dFor m] : = MakeExpr essi on[RowBox [ { RowBox [
{" Gaussi anDerivative", " [", RowBox[{RowBox[{" {", RowBox[{t1, ",", n1}], "}"}1,
", RowBox[{" {", RowBox[{t2, ",", n2}], "}"}], ",", RowBox[
" {", RowBox[{t3, ",", n3}], "3}"3}1}¥1, "1"3}1, "[*, f, "1"}1, StandardForm

MakeBoxes [Gaussi anDerivative[{t1l_, n1_}, {t2_, n2_}, {t3_, n3_3}1([f_1, StandardForm :
Subsuper scri pt Box [MakeBoxes [f, Standar dFor ],
Subscri pt Box["G', RowBox[{MakeBoxes[t1, StandardForm, ",",

MakeBoxes [t 2, StandardFornm], ",", MakeBoxes[t3, StandardForml}]],
RowBox [ {" (", RowBox[{MakeBoxes[nl, StandardForm, ",",
MakeBoxes [n2, StandardForm], ",", MakeBoxes[n3, StandardForni}], ")"}1]

Notation[f_G e Gaussi anDerivative[{t_, 0}, {t_, 0}, {t_, 0}1[f_1]

MakeExpr essi on[Subscri pt Box[f _, SubscriptBox["G', t _]1], StandardForm] : =
MakeExpr essi on[RowBox [ {RowBox [

{" Gaussi anDerivative", "[", RowBox[{RowBox[{" {", RowBox[{t, ",", "0"}1, "}"}1,
, ", RowBox[{"{", RowBox[{t, ",", "0"}1, "}"3}1, ",", RowBox[
"{", RowBox[{t, ",", "0"3}¥1, "}"3¥13}1, "1"31, "[", f, "1"}1, StandardForm]

MakeBoxes [Gaussi anDerivative[{t_, 0}, {t_, 0}, {t_, O0}1[f_], StandardForm : =
Subscri pt Box [MakeBoxes [f, StandardForni,
Subscri pt Box["G', MakeBoxes[t, StandardFornmi]]

Not ation[f _{"—">~"3) < GaussianDerivative[{t_, nl_}, {t_, n2_}, {t_, n3_}1[f_1]

MakeExpr essi on[Subsuper scri pt Box[f _, SubscriptBox["G', t_],

RowBox [{" (", RowBox[{nl1_, ",", n2_, ",", n3_3}1, ")"}11,
St andar dFor m] : = MakeExpr essi on[RowBox [ {RowBox [
{" Gaussi anDerivative", "[", RowBox[{RowBox[{" {", RowBox[{t, ",", n1}], "}"}1,
", RowBox[{"{", RowBox[{t, ",", n2}1, "}"}1, ",", RowBox|
{"{", RowBox[{t, ",", n3}1, "3}"}1}1, "1"}1, "I, f, "1"}1, StandardForm

MakeBoxes [Gaussi anDerivative[{t _, nl1 }, {t_, n2_}, {t_, n3_3}1[f_1, StandardForni : =

Subsuper scri pt Box [MakeBoxes [f, Standar dFor n],
Subscri pt Box["G', MakeBoxes[t, StandardForni],
RowBox [ {" (", RowBox[{MakeBoxes[nl, StandardForni, ",",
MakeBoxes [n2, StandardForm), ",", MakeBoxes[n3, StandardForm]}], ")"}11]

Notation[
f < Gaussi anDerivative[{tl , 0}, {t2_, 0}, {t3_, 0}, {t4_, O}][f_]]

—G1_,t2_,t3_ t4_



GaussianDerivative.nb 31

MakeExpr essi on[

Subscri pt Box [f _, Subscri ptBox["G', RowBox[{t1_, ",", t2_, ",", t3_, ",", t4_}111,
St andar dFor m] : = MakeExpr essi on[RowBox [ { RowBox [
{"Gaussi anDeri vative", "[", RowBox[{RowBox[{" {", RowBox[{t1, ",", "0"}], "}"}1,
", ", RowBox[{"{", RowBox[{t2, ",", "0"3}1, "3"}1, ",",
RowBox [{" {", RowBox[{t3, ",", "0"3}1, "}"}1, ",", RowBox[
{"{", RowBox[{t4, ",", "0"3}1, "}"3¥1}1, "1"3}1, "[", f, "1"}]1, StandardForm]

MakeBoxes [Gaussi anDerivative[{t1l_, 0}, {t2_, 0}, {t3_, 0}, {t4_, O0}1[f_1,
St andar dFor ] : = Subscri pt Box [MakeBoxes [f, St andardForm), Subscri pt Box["G',
RowBox [ {MakeBoxes [t 1, StandardForni, ",", MakeBoxes[t2, StandardForm,

,", MakeBoxes[t3, StandardForm], ",", MakeBoxes[t4, StandardForm}]]]

Not ati on[f _{"— 2= M3
—G1_,t2_,t3_t4_

Gaussi anDerivative[{t1_, nl_}, {t2_, n2_}, {t3_, n3_}, {t4_, n4_}1[f_]]

MakeExpr essi on[Subsuper scri pt Box [f _,

Subscri pt Box["G', RowBox[{t1_, ",", t2_, ",", t3_, ",", t4_3}11,
RowBox [{" (", RowBox[{nl_, ",", n2_, ",", n3_, ",", nd_3}1, ")"}11,
St andar dFor m] : = MakeExpr essi on[RowBox [ {RowBox [
{" Gaussi anDerivative", "[", RowBox[{RowBox[{"{", RowBox[{t1, ",", nl}], "}"}1,
"', RowBox[{" {", RowBox[{t2, ",", n2}1, "}"3}1, ",",
RowBox [{" {", RowBox[{t3, ",", n3}1, "}"}1, ",", RowBox[

{"{", RowBox[{t4, ",", n4}1, "}"}1}1. "1"}1, "[". f, "1"}1, StandardForn

MakeBoxes [Gaussi anDerivative[{t1l_, nl_}, {t2_, n2_}, {t3_, n3_}, {t4_, nd_31I[f_1,
St andar dForm] : = Subsuper scri pt Box[MakeBoxes [f, StandardForm, Subscri pt Box[

"G', RowBox[{MakeBoxes[t1l, StandardForm], ",", MakeBoxes[t2, StandardForni,
",", MakeBoxes[t3, StandardForni, ",", MakeBoxes[t4, StandardForm}]],
RowBox [ {" (", RowBox[{MakeBoxes[nl, StandardForn], ",", MakeBoxes[n2, StandardForm,

,", MakeBoxes[n3, StandardForm), ",", MakeBoxes[n4, StandardForni}], ")"}1]

Notation[f_G < Gaussi anDerivative[{t_, 0}, {t_, 0}, {t_, 0}, {t_, 0}][f_]]

MakeExpr essi on[Subscri pt Box[f _, SubscriptBox["G', t_]], StandardForm : =
MakeExpr essi on[RowBox [ {RowBox [

{" Gaussi anDeri vative", "[", RowBox[{RowBox[{" {", RowBox[{t, ",", "0"}1, "}"}1.
".", RowBox[{"{", RowBox[{t, ",", "0"}1, "}"}1. ".",
RowBox [{" {", RowBox[{t, ",", "0"}1, "}"}1, ",", RowBox[
{7, RowBox[{t, ",", "0"3}1, "3}"}13}1, "1"31, "[", f, "1"}1, Standar dFor n

MakeBoxes [Gaussi anDerivative[{t_, 0}, {t_, 0}, {t_, 0}, {t_, O0}1[f_1, StandardForni : =
Subscri pt Box [MakeBoxes [f, StandardForni,
Subscri pt Box["G', MakeBoxes[t, StandardForni]]

l\btation[

f_(g[”1~”2~“3~"47> e GaussianDerivative[{t_, n1_}, {t_, n2_}, {t_, n3_}, {t_, n4_}1[f_1]



GaussianDerivative.nb 32

MakeExpr essi on[Subsuper scri pt Box[f _, SubscriptBox["G', t_],

RowBox [{" (", RowBox[{n1_, ",", n2_, ",", n3_, ",", nd4_}1, ")"}11,
St andar dFor m] : = MakeExpr essi on[RowBox [ { RowBox [
{" Gaussi anDerivative", "[", RowBox[{RowBox[{" {", RowBox [{t, ",", n1}], "}"}1,
", ", RowBox[{"{", RowBox[{t, ",", n2}1, "}"3¥1, ",",
RowBox [{" {", RowBox[{t, ",", n3}1, "}"}1, ",", RowBox[
" {", RowBox[{t, ",", n4}1, "3}"}1}1, "1"}1, "[", f, "1"}1, StandardForm

MakeBoxes [Gaussi anDerivative[{t_, nl_}, {t_, n2_}, {t_, n3_}, {t_, nd_}1[f_1,
St andar dFor ] : = Subsuper scri pt Box [MakeBoxes [f, StandardForni,
Subscri pt Box["G', MakeBoxes[t, StandardForm],
RowBox [ {" (", RowBox[{MakeBoxes[nl, StandardForm], ",", MakeBoxes[n2, StandardForni,
",", MakeBoxes[n3, StandardForm], ",", MakeBoxes[n4, StandardForni}], ")"}11

m GaussianDerivativeAt

= Numerical | mplementation

The GaussianDerivative checks if the image and parameters allow numeric differentiation at one or several locationsin
scale space.

Gaussi anDeri vati veAt [
tnp: {_?NunmericQ _?NunericQ _Integer: 0}.., opts__ Rule][ing_List]:=
Cat ch[Modul e[
{
bounds = (I nageBoundary /. {opts} /. Options[Gaussi anDerivativeAt]),
kernrange = (Kernel Range /. {opts} /. Options[Gaussi anDerivativeAt]),
kernpbits M n[52, Max[4, 4xCeiling[
Log[2, 10" (WorkingPrecision /. {opts} /. Options[Gaussi anDerivativeAt])
174111,
tnpLi st = Reverse[Map[PadRi ght [#, 3] & {tnp}]],
positions, intervals, frameWdth, of fsets, franedl nage, x
b
positions = tnpList[A I, 17;
intervals =Mp]
Gaussi anKer nel I nt erval [Rest [#], kernpbits, kernrange] &,
tnpList, {1}
1
frameW dt h = Transpose[Appl y [
{1-Map[Mn[l, #] & #1],
MapThread [ (Max [#1, #2] - #2) & {#2, Take[Di nensi ons[i ng], Length[#2]1}]1} &,
Transpose[Round[posi tions] +interval s]
15
of fsets = frameWdt hfAl |, 1T;
framedl mage = | mageFranel[i ng, frameWdth, | mageBoundary -» bounds];
Fol d[
Dot [#2, #1] &,
Appl y [Take [f ranedl mage, ##] & Round[positions] + offsets +interval s],
MapThr ead [
Tabl e[
NGaussi anDKer nel [Last [#1]1] [#1[-2], X1,
Eval uate[Joi n[{x}, Reverse[#2] + First [#1] - Round[First [#1]1], {-1}1]



GaussianDerivative.nb 33

1&
{tnpList, interval s}
1

1
11 /; Tensor Rank[ing] 2 Length[{tnp}]

Gaussi anDeri vati veAt [

tnps: {{_?NunericQ _?NunericQ _Integer:0}..}.., opts__ Rule][imy_List]:=
Cat ch[Modul e[
{

bounds = (I nageBoundary /. {opts} /. Options[CGaussianDerivativeAt]),
kernrange = (Kernel Range /. {opts} /. Options[Gaussi anDerivativeAt]),
kernpbits = M n[52, Max[4, 4xCeiling[
Log[2, 10" (WorkingPrecision /. {opts} /. Options[Gaussi anDerivativeAt])
174111,
tnpLi st = Map[Reverse, Map[PadRi ght [#, 3] & {tnps}, {2}11,
positions, intervals, frameWdth, of fsets, franedl mage, x
}
positions = tnpList[A |, All, 1T;
interval s =
Map [Gaussi anKer nel | nt erval [Rest [#], kernpbits, kernrange] & tnpList, {2}];
frameW dt h = MapThread[
{1-MnJ[l, First [#1]], Max[Last [#1], #2] - #2} &,
{#, Take[Di nmensi ons[i ng], Length[#]]}
] &[PseudoTranspose[Round[positions] +intervals, {3, 1, 2}]1;
of fsets = frameWdt h[Al |, 17;
framedl mage = | mageFranel[i ng, frameWdth, | mageBoundary -» bounds];
MapThr ead [
Fol d [Dot [#2, #1] & Apply[Take[franmedl nage, ##] & #1], #2] &,
{Map[ (# + of fsets) & Round[positions]] +intervals,
MapThr ead [
Tabl e[
NGaussi anDKer nel [Last [#1]1]1[#1[[-2]]1, X1,
Eval uat e[Joi n[{x}, Reverse[#2] +First [#1] - Round[Fi rst [#1]], {-1}]]
1&
{tnpList, interval s}, 2
1}

1
11 /; Appl y[And, Map[ (Tensor Rank[ing] = Lengt h[#]) & {tnps}]]

m Utility Functions
A utility function to speed up outer multiplications by afactor 15 compared to Outer[].
FastQuterTimes[x_List, y_ List] :=
Fold[Wth[{v =#2}, Map[Ti nes[#, v] & #1, {TensorRank[#1]1}]1] & X, {y}1;

FastQuterTines[x_List] = x;

A transpose function that can handle matrices with varying row length.



GaussianDerivative.nb 34

PseudoTransposef[expr : {{__}..}] :=
Del et eCases [
Transpose[PadRi ght [expr, {Length[expr], Max[Map[Length, expr]1}, Null 1], Null, {2}]

PseudoTr anspose[expr : {{__}..}, permlList] :=
Wthi
{di m=Drop[Nest Wi | eLi st [
Max [Map[Lengt h, expr, {i ++}11 & i =1; Length[expr], (#>0) &, -11},
I f [Lengt h[perm] > Lengt h[di m], Message[Transpose::tperm perm]; Return[]];
Del et eCases |
Tr anspose[PadRi ght [expr, dim Null ], perm], Null | {Null ..}, Length[perm]
1

Attaching aframe of specified value and thickness around an image.

AttachFramelD[data_List, {widthleft_Integer, widthright_Integer}] : =
I f [widthleft ==wi dthright,
Joi n[#, data, #] &[
Tabl e[0, {widthleft}, ##] &ee Transpose[{Di mensi ons[First [data]]}]],
Join[Tabl e[0, {widthleft}, ##], data, Tabl e[0, {widthright}, ##]] &ee
Transpose[{Di nmensi ons[First [data]]}]

m Closing Package

Closing the package and locking all the symbols.
End[]

Protect [

G

Gaussi anKer nel Range,
NGaussi anKer nel ,
Gaussi anKer nel ,

Angul ar Gaussi anKer nel ,
NGaussi anDKer nel ,
Gaussi anDKer nel ,
Gaussi anD,

Gaussi anDeri vati ve,
Gaussi anDeri vati veAt,
Met hod,

Ker nel Range,

| mgeBoundary,

Convol ve,

Fouri er,

Cyclic,

Truncat e,

Refl ective

EndPackage[]



Printed from the Mathematica Help Browser

Mat hVi si onTool s: Gaussi anDeri vati ve

m Gaussi anDeri vative[{ t,n}][f] representsthe n-th Gaussian derivative of aone-dimensional function
or datalist f at scalet. tis equivalent to 02 /2 in a Gaussian distribution. A known function f is processed with
respect toitsfirst slot. A datalist f is automatically convolved with the respective Gaussian derivative kernel.

m Gaussi anDerivative[ { t, ng, {ty, ny}] [ f] givesthe (ny, ny)-th Gaussian derivative of function or
datalist f at scale tyand ty respectively. A known function f is processed with respect to itsfirst slot as variable
x and with respect to its second slot as variabley. A two-dimensional datalist f is automatically convolved
with the respective Gaussian derivative kernel.

m Gaussi anDeri vati ve isaso applicable to dimensions larger than 2.
» The following options can be given:

Met hod Convol ve determines the convolutions process. Met hod —»
Convol ve causes Gaussi anDeri vati ve to
perform the convolution with the built-in Li st vol ve
command. With Met hod — Fouri er, the
convolution is done viamultiplication in Fourier
space.

Ker nel Range Aut ormati ¢ specifies the size of the Gaussian convolution kernel if
the derivation isdonevialLi st Convol ve.l nfin-
i ty setsthekernel size equal to the data size and any
integer or list of integers specifies the dimensions of
the kernel.

| mageBoundary Cyclic specifies the boundary condition of the convolution.
Convolutionsviathe Four i er method can only
handle the cyclic boundary condition. However, if
Met hod isset to Convol ve, severa boundary
conditions are available: Cycl i ¢ (default), Tr un-.
cat e, Const ant, Ref | ecti ve, and any numeric
value as background.

= Note, that Gaussian derivatives need aminimal scalet to render regularized results. Typical lower bounds are 0.8 for
first-order derivatives and 1.2 for second-order derivatives.

n f § isashort notation for Gaussi anDer i vative[{ t,n}][f].
m Seealso: and Gaussi anDeri vat i veAt , Gaussi anDKer nel , and Gaussi anD.

= New inVersion 1.

Further Examples
This loads the MathVisionTools package.

In[1]:= << MathVi si onTool s°

The symbolic second-order Gaussian derivative of Cos(x) with respect to x at scalet.
In[2]:= CGaussianDerivative[{t, 2}][Cos][X]

Qit[2]= -et! Cos[x]

©1988-2005 Wolfram Research, Inc. All rights reserved.



Printed from the Mathematica Help Browser

The numeric Laplace operator applied to an image.
In[3]:= inmg = Inport ["nr256. ) pg" 101, 11;

In[4]:= edges = CGaussianDerivative[{l.2, 2}, {1.2, 0}][ingy] +
Gaussi anDerivative[{1l.2, 0}, {1.2, 2}]1[ing];

In[5]:= ListDensityPl ot [edges, Mesh - Fal se, Franme - Fal se, Pl ot Range -» Al | ];

In[6]:= Cear[iny, edges]

©1988-2005 Wolfram Research, Inc. All rights reserved.



GeometryDrivenDiffusion.nb

GeometryDrivenDiffusion Package

Edwin Bennink
Technische Universiteit Eindhoven

©2005

m Prefix

Ti

meSt anp [" Mat hVi si onTool s” GeonetryDri venDi ffusion™] = {2005, 1, 12, 13, 15, 0}

The preambl e of the package containing al kinds of remarks about authorship, contemns, and copyright.

(*

(*

(*:

(*:

(*:

(*:

(*:

(*:

(*:

(*:

(*:

(*:

(*:

(*:

(*:

(*:

:Name: Mat hVi si onTool s” GeonetryDri venDi ffusion™ =)

: Aut hor: Edwi n Benni nkx)

Emai | address: H. E. Benni nkest udent.tue.nl x)

Context: MathVisionTool s” GeonetryDri venDi f fusion )

Package Version: 1.0 =)

Mat hemati ca Version: 5.0 x)

Copyright: Copyright 2004, Techni sche Universiteit Ei ndhovenx)
Title: GeonetryDrivenDiffusion )

Sunmary: This package inplenents Geonetry Driven Diffusion x)
Keywor ds: Geonmetry Driven, Diffusion, Perona, Milik, Euclidean Shortening )
Requi renents: None =)

Source: None =*)

Hi story: Version 1.0 by Edwi n Benni nk, Novenber 2004 =x)
Limtations: x)

Di scussion: =x)

To do: =)



GeometryDrivenDiffusion.nb 2

m Begin Package

Declaring the package and unlocking all symbols defined in the code.

Begi nPackage[" Mat hVi si onTool s” GeonetryDri venDi ffusion™,
{" Mat hVi si onTool s Gaussi anDeri vative "}]

Unpr ot ect [
GeonetryDri venDi f f usi on,
Eucl i deanShort en,
Per onaMal i k1,
Per onaMal i k2,
For war dEul er,
RungeKut t a,
Di f f usi onEquat i on,
Par anet er s,
Met hod

m Online Help and Options

GeonetryDri venDi f fusi on: : usage =
"GeonetryDrivenDi ffusion[data, t, dt] sinmulates the diffusion of |umi nance
within a 2D or 3D data-i mage usi ng nunerical integration and renders
the final image. t is the diffusiontime, dt the integration step size.
\nDi fferent diffusion equations and integration methods can be chosen
by specifying the Options DiffusionEquation, Paraneters and Method.";

Di f f usi onEquati on: : usage =
"Di ffusi onEquation is and option to GeonetryDrivenDiffusion, which
speci fies what diffusion equation to use. Possible options are
Eucl i deanShorten, PeronaMali kl and PeronaMali k2. It is also possible

oL
to specify any function of the form Fral FLL, {pl, p2, ..}1, in

which L is the image data and {pl, p2, ..} is a list of paraneters."”;

Paranmet ers: : usage = "Paraneters is and option to GeometryDrivenDi ffusion,
whi ch specifies the paraneters of the Diffusi onEquation."

Ifr
Not [St ri ngMat chQ[Met hod: : usage, " xCGeonet ryDri venDi ffusions"1]11],
Met hod: : usage = Met hod: : usage <>
"\ nPossi bl e options for GeonetryDrivenDiffusion are ForwardEul er (
standard Forward Eul er) and RungeKutta (4th order Runge-Kutta)."];

Opti ons[GeonetryDrivenDi ffusion] =
{Di f f usi onEquati on - Eucl i deanShorten, Paraneters -» {0.8, »}, Met hod - Forwar dEul er };



GeometryDrivenDiffusion.nb

m Package Code

Starting the private context of the package.

Begin[" Private "]

m Diffusion Equations (DiffusionEquation)

m Euclidean shortening (EuclideanShorten)

Eucl i deanShorten[data_, param_] : = Mdul e[{l x, ly, Iz, I'xx, I xy, lyy, o},
I f [Length[param] > 1, o = param[l],

Message[Eucl i deanShorten: : paraneters]; Throw[$Fail ed]];
Swi t ch[ArrayDept h[data],

2,

{Ix, ly, I'xx, Ixy, |yy} = Gaussi anDerivative[{0.5 o?, #[1]},

{{1, 0}, {0, 1}, {2, 0}, {1, 1}, {0, 2}};
Ixxly?-2IxIxyly+lyylx?
Ix2+1y2 /. {0. »1.}
3, {Ix, ly, Iz, I'xx, Ixy, Ixz, lyy, lyz, 1zz} =

Gaussi anDerivative[{0.5 0%, #[11}, {0.50% #[2]}, {0.5 0% #[3]}][data] &/e
{{1, 0, 03, (O, 1, 03, {O, O, 13, {2, 0, 03,

{1, 1, 03, {0, 1, 13, {O, 2, O}, {O, 1, 13}, (O, O, 23};
“21lylyzlz+lyylzZ-21x (Ixyly+Ixzlz) +Ixx (1y2+122) +1y?1zz+1x? (lyy +122)
Ix2+1y%2+122/. {0. >1.} ’

_, Message[Eucl i deanShorten: : dept h]; Throw[$Fai | ed]]]

{0.5 0%, #[2]}][data] & /e

Eucl i deanShorten: : depth ="Thi s Di ffusi onEquati on accepts 2D or 3D data only.";
Eucl i deanShorten: : paraneters =
"This Diffusi onEquati on needs at |east 1 paraneter, {o}."

)



GeometryDrivenDiffusion.nb 4

L |2

. . I .
m Perona & Malik withc = e "~ (PeronaMalikl)

PeronaMal i k1[data_, param ] :=|\/bdu|e[{|x, ly, Ixy, Ixx, lyy, o, k},
I f [Lengt h[param] 2 2, o = param[1]; k = param[2],
Message [Per onaMal i k1: : parameters]; Throw[$Fail ed]];
Swi t ch[ArrayDept h[data],
2,
{Ix, ly, I'xx, I'xy, |yy} = Gaussi anDerivative[{0.5¢?, #[1]}, {0.5¢?, #[2]}][data] & /e
{{1, 0}, {0, 1}, {2, 0}, {1, 1}, {0, 2}};
e'lx_zfg ((k2=21x%) Ixx=4lxIxyly+ (k2-21y)lyy)
@ J
3, {Ix, ly, Iz, I'xx, Ixy, Ixz, lyy, lyz, |zz} =
Gaussi anDerivative[{0.50¢?, #[11}, {0.5 0%, #[2]}, {0.5 0% #[3]}][data] &/e
{{1, 0, 0}, {0, 1, 03}, {0, O, 1}, {2, O, 0},
{1, 1, 03, {0, 1, 13}, {0, 2, 03}, {O, 1, 13, {0, O, 2}};

If[k::oo, I xx +1yy,

_1 x2+ly2+l 22

1
If[k::oo,lxx+lyy+lzz,k—2(e W2 (k2 -21x%) I xx +k?1yy -

21y?lyy-4lylyzlz-4lx (Ixyly+Ixzlz) +k2Izz—2I22Izz))],
_, Message[PeronaMal i k1::depth]; Throw[$Failed]]]

PeronaMal i k1: : depth ="Thi s D ffusi onEquati on accepts 2D or 3D data only.";
PeronaMal i k1: : paraneters =

"This Diffusi onEquati on needs at |east 2 parameters, {o, k}.";

= Perona& Malik with ¢ = |1ﬂ|2 (PeronaMalik?2)
1+ 2

PeronaMal i k2[data_, param ] : = Modul e[{lx, ly, I'xy, I'xx, lyy, o, k},
I f [Lengt h[param] > 2, o = param[l]; k = param[2],
Message [Per onaMal i k2: : paranet ers]; Throw[$Fail ed]];
Swi t ch[ArrayDept h[data],
2,
{Ix, ly, I'xx, I xy, |yy} = Gaussi anDeri vative[{0.5 0%, #[1]}, {0.50¢% #[2]}][data] &/e
{{1, 0}, {0, 1}, {2, 0}, {1, 1}, {0, 2}};

k2 (=41 xIxyly+Ixx (k2 -1x2+1x2%) +1x21lyy+ (kZ-1y?) lyy)
If[k::oo, I xx +1vyy,

1

(K2 +1x2 +1y2)?
3, {Ix, ly, Iz, I'xx, I'xy, Ixz, lyy, lyz, 1zz} =
Gaussi anDerivative[{0.5 0%, #[11}, {0.50° #[2]}, {0.50c?, #[3]}][data] &/e
{{1, 0, 03}, {0, 1, 03}, {0, O, 1}, {2, 0, 03},
{1, 1, 03}, {0, 1, 13}, {0, 2, 03}, {0, 1, 13}, {0, O, 23}};

1
If[k::oo, Ixx +lyy +12zz,

(k2 +1x2 +1y2 +122)°
(k2 (k2 lyy -ly?lyy -4lylyzlz+lyylz?2-4lx (Ixyly+Ixzlz)+
Ixx (k2 -1x2+1y2+12%) +k?1zz+1y?1zz-12%12z +1x* (lyy +122)))],
_, Message[PeronaMal i k2:: depth]; Throw[$Failed]]]

PeronaMal i k2: : depth ="Thi s Diffusi onEquation accepts 2D or 3D data only.";
Per onaMal i k2: : paraneters =

"This Diffusi onEquati on needs at |east 2 parameters, {o, k}.";



GeometryDrivenDiffusion.nb

m |ntegration Schemes (M ethod)

m Forward Euler (ForwardEuler)

Forwar dEul er [data_, t_, dt_, f_, param ] : =
Modul e[
{i m=dat a},
Do[i m+=f [im param]dt, {Ceiling[t /dt]}];
im

1

» 4™ order Runge-K utta (RungeK utta)

RungeKuttaf[data_, t_, dt_, f_, param]: =

Modul e
{i m=dat a},
Do[im+=

Pl us ee ({i E 3 i}Fol dLi st [f [i m+#1#2, param] & f[im param, {i i 1}])

6 6 6 6 2 2
t

dt, {Celllng[ﬁ]}],

im

]

= Main Function (GeometryDrivenDiffusion)

GeonetryDrivenDi ffusion[data_, t_, dt_, (opts___ )?OptionQ] : =
Catch]

Modul e[

{im=data, d, m},

{d, param m} = {Di ffusi onEquati on, Paraneters, Method} /. {opts} /.

Opti ons[GeonetryDrivenDi f f usi on];

O f [Gaussi anDeri vative: :scal efail ];

im=Chop[m[im t, dt, d, param]];

On[Gaussi anDerivative::scal efail ];

im

m Closing Package

Closing the package and locking all the symbols.



GeometryDrivenDiffusion.nb

End[]

Set Attributes]
{GeonetryDrivenDi f f usi on,
Eucl i deanShort en,
Per onaMal i k1,
Per onaMal i k2,
For war dEul er,
RungeKut t a,
Di f f usi onEquati on,
Par anet er s,
Met hod},
{Prot ected, ReadProtected}

1

EndPackage[]



MathVisionTools

Mathematical Prototyping in Medical Image Analysis

Markus A. van Almsick, Bart M. ter Haar Romeny, Edwin H. Bennink

Eindhoven University of Technology
Department of Biomedical Engineering
Biomedical Image Analysis Group

Initialization

<< Mat hVi si onTool s°;
<< Graphics’;

Set Options[Li stDensityPl ot, Mesh - Fal se, Frane - Fal se, PlotRange- Al J;

SetDirectory["C \\Docunents and Settings\\Al|l Users\\Application
Dat a\\ Mat hemat i ca\\ Appl i cati ons\\ Front EndVi si on\\ | mages" 1;

Introduction

Medical image analysis today is based on serious mathematics. More and more methods involve PDE's, linear algebra,
complex transforms, optimization theory etc.. Higher mathematics finds its way into sophisticated and efficient applica-
tions. The flow of development of such algorithms passes typically through three stages:

1. The design stage (also called rapid prototyping): This is the creative stage and needs careful exploration of each
processing steps, analysis ofsensitivity parameters, and thorough understanding of the mathematical, physical, and
statistical concepts involved. In the design stage, algorithms are developed and tested on relatively small, but in some
cases high-dimensional datasets. A high-level programming language can facilitate these tasks.

2. The validation stage: Speed and memory issues for clinical validation come into focus. Here, C++/C or Java routines
are exploited, supported by specialized libraries, such as VTK and OpenGL.

3. Theclinical implementation stage: in the final step the approved algorithms are molded into real clinical implementa-
tion where the methods are fixed and highly optimized for speed and memory usage, e.g. by low level implementation
languages and hardware support (graphics cards, DSP boards, parallel processing).

This paper introduces the software environment MathVisionTools that is suited for the design stage, where the empha-
sis lies on mathematical modeling. One finds here a niche in the world of medical image analysis software that has not
yet been claimed.

We are well aware of the long list of computer vision libraries available [1]. Efforts with atoo small user base tend to
disappear when the origina author(s) discontinue the development. The open source code and data initiative, well



supported by MICCAI [2] and Nature Biology [3], provides a good impetus for lasting developments by giving the
endeavor a critical mass. Next to users contribution, a large supporting body is essential, such as government grants
(NLM/NIH ITK, Kitware VTK), research institute support (MEVIS MevisLab, Mayo Clinic Analyze) and industrial
support (Wolfram's Mathematica, MathWorks Matlab, ITTVISIDL) to just name afew.

This article is meant to promote the MathVisionTools software and to convince colleges of its advantages thereby
strengthening the vitality of the user base and enlarging the scope of our and hopefully your software tools in the future.

High level algorithm design

Where to start? This question stands at the beginning of every large software development and in many cases the
answer has been "from scratch”. Thisis no longer an acceptable choice as software engineering evolves over time. To
reach the stars, one has to stand on the shoulders of giants. Today's giants are high-level computer languages, libraries,
integrated development environments, applications with plug-in capabilities and so on.

Thus, the question needs to be rephrased. What software platform is a good foundation for rapid prototyping in medica
imaging and what are the criteria? We begin with the latter:

- Full symbolic manipulation capabilities for the mathematical design phase,

- Fast numerical functionality for the validation of algorithms,

- Full, high quality, and interactive graphic rendering,,

- Availability of advanced extensions such as wavelets, neural networks, PDE solvers, optimization etc. [8],

- Easy to learn and to use to keep the training under typically one week,

- Code interpretation instead of compilation for afast coding - testing - debugging cycle,

- Integration of code and text in aWY SIWY G user-interface for easy code maintenance and proper documentation,
- Free choice of the programming paradigm, such as functional programming and rule-based pattern matching,

- Powerful commands to obtain very short code,

- Platform independence for wide acceptance,

- 1/O routines for awide range of data formats, including al standard image formats, DICOM, STL, VRML etc.,

- Internet support via WebService, MathML, XML and dlike,

- Availability of GUI design (e.g. Java) to bridge the transition into the validation phase,

- Easy integration of external routines and libraries written in C, C++, Fortran, Java, etc.,

- Solid and professional industrial support, with good long term perspectives,

- Large user community, with news-groups, discussion forum and dedicated international and technical conferences.

Our answer to the above questions has been and till is the computer algebra software Mathematica, a high level
computer language with a large collection of powerful commands and libraries. Mathematica (Wolfram Inc., Cham-
paign, USA, www.wolfram.com) has developed to a degree that all the above requirements are met. We have imple-
mented Mathematica as our major prototyping software since the start of our group in Sept. 2001, and have gained
great speed in the development of new mathematical algorithms in computer vision. Mathematica has improved at
great speed, notably since version 4 and especialy version 5 (the current version is 5.2). For some this fact may have
come unnoticed as they may have abandoned the program in its early years, when it was slow and memory hungry.
Those who look again will find that many routines are now faster than the competition (e.g. the Inverse of a dense
matrix with 1000 x 1000 real numbers takes 1.5 seconds on a 1.5 GHz 1GB labtop) and even rival dedicated graphics
software. For full details of Mathematica see the Wolfram Technology Guide
(http://www.wolfram.com/technol ogy/guide/index.html).

We specifically did not choose Matlab, despite its large user base. We needed a full symbolic engine in combination
with a seamless integrated fast numeric engine. With Mathematica this is the case. Function names are consistent and
not abbreviated expediting the training process. Another important advantage is the professional front-end, enabling us
to write and combine the derivation and implementation of source code very much like a scientific paper. Researcher's



and student's documentation naturally accompany the short code, which is an essential element for research groups.
Experience has shown that long and poorly documented code is unreadable for successors and destined to be thrown
away. Naturally, this paper iswritten as a Mathematica 'notebook’ in this front-end.

Level Language Pur pose
Hi gh Mathematica Desi gn,
Educati on

Medi um C++, C, Java Eval uation,
VTK, OpenG. Visualization
Low C#, C++ Graphi cs cards

There is an active Mathematica user's community [4] (there are 2 million licenses worldwide), with a newsgroup
(comp.soft-sys.math.mathematica), technology conferences and national user meetings (www.wolfram.com/news/),
and an International Mathematica Symposium series [6] (edition 2008 will be organized by us in Maastricht, the
Netherlands). Wolfram hosts the famous MathWorld website [5], a leading mathematics reference on the internet with
templates of advanced Mathematica code fragments for devel oper's Mathematica notebooks.

This paper presents MathVisionTools, a new Mathematica-library or add-on with advanced tools for mathematical
image analysis and algorithm design. Thislibrary is open for international collaboration.

MathVisionTools

MathVisionTools [9, 10] is a Mathematica Add-On for the fast prototyping of biomedical image analysis algorithms.
This growing library of high-level imaging tools has been initiated in 2004 [10] and is managed by the Biomedical
Image Analysis group of the Department of Biomedical Engineering at Eindhoven University of Technology, Eind-
hoven, the Netherlands. The purpose of MathVisionTools is to provide the developer with more and more powerful
commands and to host reusable code fragments and routines that are specifically needed for image analysis and process-

ing.

Starting point has been multi-scale differential calculus of images within the framework of scale space theory [19, 13,
14, 17]. Extensions have been 1/0 routines for biomedical image formats such as DICOM and Kretz ultrasound.
Fourier transformations in polar coordinates and invertible transformations into orientation bundles (filter responses on
the Euclidean group-manifold) have been the latest addition. Dedicated applications for biomedical imaging such as
multi-modality image registration, multi-scale optic flow detection on 2D-time image sequences, and methods for
computer-aided diagnosis are currently developed in ongoing research projects, based on routines available in MathVi-
sionTools.

Mathematica and MathVisionTools also play a key role in the education of our Biomedical Engineering students [11,
12]. The strategy of 'Hereisaclassical paper, read it, understand it, and make an implementation in Mathematica in a
few days works amazingly well, even for 3 months projects. For a range of examples see
http://www.bmi2.bmt.tue.nl/image-analysis/Education/index.html (Master & Internship). See aso the student example
exhibited by Wolfram: http://library.wolfram.com/infocenter/Conferences/5756/. A large subset of routines and
commands in MathVisionTools stems from the many functions released in textbooks on multi-scale image analysis [ 13,
14]. The course "Front-End Vision and Multi-Scale Image Analysis' (http://www.bmi2.bmt.tue.nl/image-
analysi s/education/courses/FEV/course/index.html ) is a popular national course in the Netherlands and is completely
given in Mathematica [13].



Many Digital Image Processing toolkits are rather basic and contain the elementary operations on images, such as
filters, geometric transformations, histogram operations, mathematical morphology and edge detection. Beyond this,
there is a need for an efficient design toolkit with high-level building blocks for doing advanced mathematics on
images. To emphasize thisissue we provide a short list of exemplary needs for mathematical methodologies:

- evolutionary and energy minimizing methods in image enhancement,
- high order robust differential geometry (invariants),

- calculations on matrix valued images (DTI, hessian),

- multi-scale methods (deep structure singularities),

- multi-orientation methods (perceptual grouping, tensor voting, stochastic completion fields),
- texture analysis and statistical pattern recognition tools,

- statistical pattern recognition techniques (!!! not the same as above?),
- dynamic shapes (snakes, balloons),

- active shape and appearance models,

- retrieval methods for similar images in huge databases,

- robust analysis of optic flow dynamics,

- etc.

Mathematica is ideally suited to handle this wide range of mathematics on images. It isintrinsically multi-dimensional.
It embeds any programming style, but is primarily designed for functional programming, where it as an interpreter
language exhibits its greatest speed. A clear advantage of functional programming is also the typically short code, often
resembling closely the verbal English statement of the problem. A full debugger/profiler is now available [7]. It is easy
to install C++ routines into Mathematica code and vice-versa through the MathLink protocol (co-compile C/C++ code
with MathLink.h).

Mathematica reads and writes any type of image, including medical DICOM images. In the package MathVisionTools
we have developed many special 1/0 routines to convert avariety of vendor-specific datainto DICOM format, such as
BioRAD microscope data, high field small-bore small animal MRI data (FDF format), datain ANALY ZE format etc.

Mathematica is not freeware. This may hamper its proliferation and the proliferation of MathVisionTools. However, the
commercial embedding ensured ongoing R&D for the sake of Mathematica, its add-ons, and its users. It is a highly
professiona software environment, not just for image analysis, which is supported by a well established, mid-size
company. The costs for image analysis researchers can be spread by a full campus or institute license, which is now
available to most large universities worldwide. In Eindhoven a universal license for al departments permits installation
of Mathematica on all computers of the university, including the 9600 laptops supplied with 50% funding to all TU/e
students, including home use. The cost per computer is thus reduced to a few euros. This requires a decision at top
university finstitute level. See for the TU/e situation:
http://w3.tue.nl/en/services/dienst_ict/organi satie/groepen/wins/campus_software/.

Example I. Differential Calculus on Images

According to scale-space theory [13, 19, 20] and tempered distribution theory [14] it is well known that a regularized
way to take (high-order) derivatives of discrete data L[x, y] is by convolution with a Gaussian derivative kernel ngx,ny)_

3 LX, V] =ffet[x—x,y—y] O LI%, ) dxdy = ffezl"’)[x—x,y—y] L%, §] d%d.

The above equation opens an operational way to apply practicaly all tools of differential calculus to discrete images.
MathVisionTools contains an extensive Gaussi anDer i vat i ve package to calculate partial derivativesto any order,
both symbolically on many function or numerically on any n-dimensional data set, under a variety of boundary condi-



tions, in a fast and highly optimized way, either via spatial convolution ( Li st Convol ve) or via multiplication in
Fourier space. Here are three examples that built onto Gaussian derivatives.

m Example: Gauge Derivatives

A famous class of differential invariants is the N-jet of intrinsic image derivatives, expressed in the local, first-order,
gradient-defined coordinate system {v, w}, the so-called gauge derivatives [13]. The following short Mathematica code
renders the gauge derivatives of any order (nv-times with respect to the unit-gradient coordinate v and nw-times with
respect to the orthogonal coordinate w) of a 2D function f[X, y] intermsof {X, y}-coordinates.

GaugeDerivative[nv_, nw_][f_1:=

Modul e[
Lx, L
{Lx, Ly, v, w}, w= M; V = ( 01 é)w
VLx2 + Ly2 -

Nest [ (v. {Ox#, Oy#} &), Nest [(w. {ox#, 8y#} &), f, nw], nv] /.
{Lx » D[f, x], Ly »D[f, y1} //Sinplify
]

GaugeDerivative[O, 11[L[X, y11

LoD [x, y)? e L@0) [x, v
"Ridgeness' isgiven by Lyy:

GaugeDerivative[2, O][L[X, Y11
(LO2 [x, y] L0 x, y1? 2LV [x, y] LG [x, y] LED [x, y] «LOD x, y]?LEO [x, y])/
(LOD x, y]® L3O x, y)?)

For easier reading, one can convert the above expression into subscript notation via pattern matching in a single
statement:

% /. f_(nx—‘ ny_) [X_, Y_1=fsri ngJoi n[Tabl e["x", {nx}], Tabl e["y", {ny}1]

2L Ly Ly s Lo L2+ L2 Ly,
L + L3

The next statement exploits Mathematica's powerful pattern matching to replace (with the operator /. ) any occurrence
of an analytical derivative into a discrete convolution operator. Thus, in one line we write the complete discrete
implementation for any order:

Li st GaugeDerivative[t_, nv_, nw_J[inmg_]: =
GaugeDerivative[nv, nw] [L[X, Y]] /.
LM ") [x, y] = Gaussi anDerivative[{t, nx}, {t, ny}][inmy]
The gradient L, of an X-ray image at scale t=2:

im=1nport ["hands. gi f"1[1, 11;



Li st Densi tyPl ot [Li st GaugeDerivative[2, 0, 1]1[im1;

RidgesL,y at scalet=2andt = 8:

Di spl ayToget her Array[Li st DensityPl ot /@
{Li st GaugeDeri vative[2, 2, O][i m], ListGaugeDerivative[8, 2, O][im}];

m Example: Gaussian Deblurring

To deblur Gaussian blur [18], one can extrapolate an image L[x,y,t0] at scale tO towards smaller t viaa Taylor expan-
sion [2][3]. First, we import an MRI image of a head from the first frame of a DICOM dataset. (!!! itsa GIF file here,
not DICOM .. do you have a DICOM version)

img = Inport ["nr128.gi f"]1[1, 11;

We then perform a Taylor expansion of L [x, y, t ] with respect to scalet o around t o and substitute the derivatives
O by the Laplacian operator 66—; + %, which is equal to 8; according to the diffusion equation % = % + ?)ZTIE that
governs linear scale space. Thus, we obtain adifferential deblurring operator.
Bl ur Expansi on[order_]:=Series[L[Xx, y, t], {t, tO, order}] /.
L©0n ) x, y, t0] > Nest [(Ox, x# +0y y#) & L[x, y, t0], n]; BlurExpansion[4]
LiX, ¥, t0] + (L©®20 [x, y, t0] +LZ%®[x y, t0]) (t -t0) +
(LO40 x, y, t0] +2L@220 [x, y, t0] +L*%0 [x, y, t0]) (t -t0)2+

ok NP Y

(LOCO X, y, t0] +3LE*0[x, y, t0] +3L*2%[x, y, t0] +L®%%[x, y, t0])

(t —t0)3+% (LOBO [x y, t0] +4L 260 [x, y, t0] +6L% 4% [x, y, t0] +

410620 x, y, t0] +LB00 [x, y, t0]) (t ~t0)*+O[t -t0]°

We substitute the Gaussi anDer i vat i ve command for the symbolic derivatives of L [x, y, t ] to obtain an
instantly working deblurring command.



Debl ur [ing_, order_, gt_, At_]:=Normal [Bl ur Expansi on[order]] /.
{L[x, y, t0] = ing,
LM y_.0) [x, y, t0] :» Gaussi anDerivative[{gt, nx}, {gt, ny}][ing],
(t -t0) > (At —gt)}

gt denotes the scale, that is inflicted by the Gaussian derivatives. 4t stands for the scaleinterval, by which to deblur.
First, we generate ablurred image at scalet = 2.

bl ur = Gaussi anDerivative[{2, 0}, {2, 0}]1[ing];

Then, we deblur it by At = —2.

deblur4 = Debl ur [blur, 4, 2.0, -2];
debl ur8 = Debl ur [blur, 8, 2.7, -2];

The result speaks for itself. Note, that we can rerun this example for any order of Taylor expansion generating the
Mathematica code on the fly.

Di spl ayToget her Array[Li st Densi tyPl ot /@ {bl ur, debl ur4, debl ur8}1;

Example Il: Geometry-driven diffusion

The Perona & Malik equation (edge preserving smoothing evolution PDE [16, 15]) for 3D is given by

ot _ v (e T
as

The exponentia term is the conductivity and is a decreasing function of the gradient magnitude. After loading a
standard Mathematica package to obtain the commands G- ad for the gradient and Di v for the divergence, this formula
for 3 dimensionsis easily expanded and implemented for discrete images.

<< Cal cul us” Vect or Anal ysi s’;
Set Coordi nates[Cartesian[x, y, z11;

_ Gad[L[x,y,2]12

Div[E W2 Gad[L[x, y, z]1] // ExpToTrig // Ful | Sinplify

L(0,0,1) ¢ 12

e_—kzx_xL (k2_2|_(0,0,l) X, VY, 2]2) L (0.0,2) X, Yy, z] +

1
k2
L(0.1,0) x.y.212

e kT (kZ*ZL(OYl'O) [Xl y’ Z]2> L(OY2'O> [X, y, Z] B

(1.0.0) 1y,y,2?
e’L4k2[—y4— (k2—2L(1‘0'0) (X, VY, 2]2) L2000 x, y, z]



As we have seen before, the derivatives are conveniently converted into subscript notation via pattern matching in a
single statement.

%/. LMX_ny_.nz_) [X, Y, Z] = Lstri ngJoi n[{Tabl e["x", {nx}], Tabl e["y", {ny}], Tabl e["z", {nz}]}]

2
Ly 2
ki

2
e iF (k2 -2L%) Lyx + € 2 (k? -21L7) Lyy+e’?[ (k2 =2 L2) Ly,
k2

Via pattern matching we can convert these derivatives to discrete Gaussian derivative operators as explained in the
previous section, and we can applied them in e.g. aforward Euler, Runge-Kutta or AOS [22] iteration scheme.

Advanced mathematics

MathVisionTools is not a package that implements the basic image processing routines, as are available in many other
packages. It is dedicated to be a design tool for advanced mathematical reasoning and experimentation, and it is

destined to fill that niche. Current directions of research and development in MathVisionTools are invariant stochastic
processes of medical image data in scale space and on the Euclidean manifold to obtain perceptua grouping measures.

The appendices list examples of code in MathVisionTools and some pages from the Help Browser in Mathematica for
MathVisionTools routines. We just scratched the surface of the vast possibilities in image calculus that is now accessi-
ble through MathVisionTools and Mathematica. Applications currently being built in MathVisionTools are:

- multi-scale optic flow detection on 2D-time cardiac image sequences [29];

- multi-scale singularity techniques for robust scene retrieval in CAD [25];

- active shape and active appearance algorithms for cardiac shape variability analysis [26];

- detection of stellate tumorsin mammography (based on [30]);

- geometry-driven diffusion techniques for enhancement (edge-preserving smoothing) [13, 15];
- invertible orientation-spaces for dim contour enhancement (orientation scores [27]);

- perceptual grouping of elongated structures through stochastic completion fields [21];

- 2D tensor voting with steerable filters for catheter detection in low-dose fluoroscopy[23];

- 3D radial basis functions interpolation for neuronavigation atlas matching [24];

- and many more in development.

Conclusion and call

Mathematica has proven to be an ideal prototyping tool in advanced image analysis. The routines and commands
collected in MathVisionTools accelerate the process of developing new algorithms. We call for participation by inter-
ested institutes and companies.

Participation will be on an exchange basis. The code will be made available to partners that contribute code to the
project.

Please contact:

Prof. Bart M. ter Haar Romeny, Dipl. Ing. Markus van Almsick, H.E. Bennink
Eindhoven University of Technology

Department of Biomedical Engineering

Den Dolech 2, WH2.106

5600 MB Eindhoven, the Netherlands

Tel. +31-40-2475537



Fax +31-40-2472740

Email: B.M.terHaarRomeny@tue.nl, M.v.Almsick@tue.nl, H.E.Bennink@student.tue.nl
URL BMIA: http://www.bmi2.bmt.tue.nl/image-analysis/

URL MathVisionTools: www.mathvisiontools.net

References

[1] Computer Vision Homepage - Software: http://www.cs.cmu.edu/afs/cs/project/cil/www/v-source.html.
[2] MICCAI conferences: http://www.miccai.org.

[3] Nature Biology: Need for open source and data: http://www.nature.com/nbt/journal/v22/n8/full/nbt0804-1037.html;jsessionid=7D3D4BCDAFD331B20-
E0226093857ABAA

[4] Mathematica users: http://www.mathematica-users.org/webMathematica/wiki/wiki.jsp.
See also: http://forums.wolfram.com/.

[5] MathWorld: http://mathworld.wolfram.com/

[6] International Mathematica Symposium: http://internationalmathematicasymposium.org/IMS2006/

[7] Mathematica WorkBench (debugger/profiler): http://www.wolfram.com/news/workbenchprerelease.html

[8] Mathematica packages: http://www.wolfram.com/products/field_specific.html

[9] MathVisionTools website: http://www.bmi2.bmt.tue.nl/image-analysis/Research/Software/Mathematica/AddOns/MathVisionTools/index.html

[10] M. A. van Almsick, B. M. ter Haar Romeny, "MathVisionTools, the design of a new framework for biomedical image analysis", Wolfram Developers
Conference 2004, Urbana-Champaign.

[11] B. M. ter Haar Romeny, "Computer Vision and Mathematica 4", Computing and Visualization in Science, vol. 5, no. 1, pp. 53-65, Springer, 2002.
PDF 1.7mB), Mathematica 4 Notebook (3.1mB).

[12] B.M. ter Haar Romeny, M.A. van Almsick, "Rapid prototyping of biomedical image analysis applications with Mathematica". Proc. Medicon 2004,

Ischia, Italy. MS-WOFd, PDF.

[13] B.M.ter Haar Romeny,"Front-End Vision and Multi-Scale Image Analysis. Multi-Scale Computer Vision Theory and Applications, written in Mathemat-
ica". Springer, 2003.

[14] L. M. J. Florack, "Image Structure", Dordrecht: Kluwer Academic Publishers, 2001.
[15] B. M. ter Haar Romeny (ed.), "Geometry-driven diffusion in computer vision". Dordrecht: Kluwer Academic Publishers, 1994.

[16] P. Perona and J. Malik, "Scale-space and edge detection using anisotropic diffusion”, IEEE Tr. on Pattern Analysis and Machine Intelligence, vol. 12,
pp. 629-639, July 1990.

[17] B. M. ter Haar Romeny, L. M. J. Florack, "Front-End Vision, a Multiscale Geometry Engine". Proc. First IEEE International Workshop on Biologically
Motivated Computer Vision (BMCV2000), May 15-17, 2000, Seoul, Korea. Lecture Notes in Computer Science vol. 1811, pp. 297-307, Springer-Verlag,

Heidelberg, Germany, 2000. PDF (1.7mB)

[18] B. M. ter Haar Romeny, L. M. J. Florack, M. de Swart, J. Wilting, and M. A. Viergever, "Deblurring Gaussian blur," in Proceedings Mathematical
Methods in Medical Imaging I, vol. 2299, (San Diego, CA), pp. 139-148, SPIE, July, 25-26 1994.

[19] J.J.Koenderink,"The structure of images",Biological Cybernetics,vol.50,pp.363-370,1984.

[20] L.M.J.Florack, B.M.ter Haar Romeny, J.J.Koenderink and M.A.Viergever, "Linear scale-space", Journal of Mathematical Imaging and
Vision,vol.4,n0.4,pp.325-351,1994.

[21] M.A. van Almsick, R. Duits, E.M. Franken, B.M. ter Haar Romeny, From Stochastic Completion Fields to Tensor Voting , Lecture Notes in Computer
Science, 3753, 124-134, 2005.



[22] J. Weickert, B. M. ter Haar Romeny, and M. A. Viergever, “Efficient and reliable schemes for nonlinear diffusion filtering,” IEEE Transactions on Image
Processing, vol. 7, no.3, pp. 390-410, 1998.

[23] E.M. Franken, M.A. van Almsick, P.M.J. Rongen, L.M.J. Florack, B.M. ter Haar Romeny, Steerable Tensor Voting, in ASCI Conference 2005; Heijen,
the Netherlands, 65-72, (2005)

[24] J. Korbeeck, B. Janssen, E. H. Bennink, A. Jansen, M. Koppert, R. Lahaije, T. Plantenga, B. M. ter Haar Romeny, Warping a neuro-anatomy atlas on
3D MRI data with Radial Basis Functions. Proc. 8th Intern. Mathematica Symposium, Avignon, France, 2006.

[25] B. Platel, E. Balmachnova, L.M.J. Florack, F.M.W. Kanters, B.M. ter Haar Romeny, Using Top-Points as Interest Points For Image Matching,
in Deep Structure, Singularities, and Computer Vision; Editors: O. Fogh Olsen, L. M. J. Florack and A. Kuijper, Maastricht, Netherlands, 211 - 222, 2005.

[26] H.C. van Assen, M.G. Danilouchkine, A.F. Frangi, S. Ordas, J.J.M. Westenberg, J.H.C. Reiber, B.P.F. Lelieveldt, “SPASM: a 3D-ASM for Segmenta-
tion of Sparse and Arbitrarily Oriented Cardiac MRI Data, Med. Image Analysis, 10(2), 286-303, 2006.

[27] R. Duits, M. Duits, M.A. van Almsick, L.M.J. Florack, A new reconstruction from orientation bundle functions as an application of generalized wavelet
theory, in Proc. Early Cognitive Vision Workshop 2004, Isle of Skye, 2004.

[28] B. M. ter Haar Romeny, B. Titulaer, S. Kalitzin, G. Scheffer, F. Broekmans and E. te Velde, "Computer assisted human follicle analysis for fertility
prospects with 3D ultrasound", Proceedings Intern. Conf. on Information processing in Medical Imaging (IPMI '99), vol. 1613, Lecture Notes in Computer

Science, Springer-Verlag, Heidelberg, 1999. PDF.
[29] A. Suinesiaputra, L. M. J. Florack, J. J. M. Westenberg, B. M. ter Haar Romeny, J. H. C. Reiber, and B. P. F. Lelieveldt. "Optic flow computation from
cardiac MR tagging using a multiscale differential method-a comparative study with velocity-encoded MRI". In Proc. MICCAI 2003, Montréal, Canada,

Lecture notes in computer science, 2878, 483-490, 2003.

[30] N. Karssemeijer, G. M. te Brake, "Detection of Stellate Distortions in Mammograms", IEEE Tr. on Medical Imaging, vol. 15, no. 5, 611-619, Oct. 1996.
PDF

10



Printed from the Mathematica Help Browser

Mat hVi si onTool s: Oi ent ati onBundl eTr ansf or m

= i entati onBundl eTr ansf or nf img, t, @, n] generates an orientation bundle of image img with a
Kalitzin kernel of scalet with n orientations. « is the ratio between angular and radial units.

= (i entationBundl eTr ansf or misthe convolution of an image with the orientation kernel, which is done viamultipli-
L) m i wrza’ .
cation in Fourier space: F(y(r, ) (w) = F(image) (w) = an:o % e mwg w,am(e“—z— % F(image) (w)).

= The following options can be given:
Directional FourierFilter {1,1,1,.} assignsali st of weighting coefficients {wp, Wy, W,}.
m Seealso: | nverseOri ent ati onBundl eTransformandDirectional FourierFilter.

= New inVersion 2.

Further Examples
Thisloads the MathVisionTools and the Graphics Graphics' packages.
In[1]:= << G aphi cs’ G aphics’

<< Mat hVi si onTool s°
Loading a2D-image.
In[3]:= inmg=Inport ["nr256.)pg"101, 11;
Generating an orientation bundle.

In[4]:= bndl =OientationBundl eTransfornmi ng, 16, 1.2, 32];

Displaying the orientation bundle.

In[5]:= DisplayTogetherArray[
Partition[Map[Li st DensityPl ot [#, Mesh » Fal se, Frane -» Fal se] & Re[bndl 1], 41,
| mgeSi ze -» 4001];

©1988-2005 Wolfram Research, Inc. All rights reserved.



2 Printed from the Mathematica Help Browser

Reconstructing the original image from the orientation bundle.

In[6]:= newi ng =1|nverseOientati onBundl eTransf ornfbndl, 16, 1.2];

©1988-2005 Wolfram Research, Inc. All rights reserved.



Printed from the Mathematica Help Browser

In[7]:= ListDensityPl ot [newi ng, Mesh -» Fal se, Frame -» Fal se, Pl ot Range -» {0, 255}1;

Reconstructing a modified orientation bundle.

In[8]:= newing =1|nverseQrientationBundl eTransforn{l mbndl 1%, 16, 1.27;

In[9]:= ListDensityPl ot [Re[newi ng], Mesh - Fal se, Franme - Fal se, Pl ot Range -» Al | ];

In[10]:= Cear [i ng, bndl, new ny]

©1988-2005 Wolfram Research, Inc. All rights reserved.



