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Abstract. A novel fiber tracking algorithm (GTRACT) was developed
to enhance tracking through ambiguous regions where cross fibers, fiber
merging or fanning may be occurring. The software was developed using
several cross platform open-source toolkits (ITK, VTK, and FLTK). The
algorithm was evaluated using a freely available digital phantom dataset
provided by King’s College London. The results show that the GTRACT
algorithm performed significantly better than standard streamline ap-
proaches and is less affected by noise.

1 Introduction

Diffusion tensor imaging (DTI) is an emerging neuroimaging tool to study brain
connectivity. Specifically, diffusion tensor imaging is the first noninvasive in vivo
imaging tool that has the potential to generate brain connectivity trajectories
by defining the course of white matter tracts. Diffusion is the result of wa-
ter molecules’ random thermal walk, also known as Brownian motion. In white
matter fiber structures, the diffusion is restricted by the cell membrane and the
axon myelin [1], thus the diffusivity of water molecules along the fiber direction
is ten times larger than the perpendicular directions.

Current approaches for white matter fiber reconstruction can be divided into
two types: streamline (SLT) and fast marching (FMT) algorithms. The stream-
line method assumes the orientation of the principal eigenvector, represents the
orientation of the dominant axonal tracts. It has been verified that in regions
where fiber bundle orientation is homogeneous and on the order of the voxel size
or larger, the principal eigenvector direction accurately approximates the actual
fiber orientation [2, 3]. A variation of SLT is the tensorline algorithm (TEND)
was introduced by Lazar et al [3]. The algorithm uses the entire diffusion tensor
to deflect the incoming vector. The fast marching method is a level set method
where it is assumed that the front is propagating in one direction. Paker et al.
proposed the Fast Marching Tractography [4]. FMT uses the orientation and
shape of the diffusion tensor to define the speed of propagation. This front prop-
agation speed is defined in such a way that the front propagates fastest when
the propagating direction is co-linear with the eigenvector direction. The FMT
can be used to estimate the likelihood of connectivity between any two voxels,
and is capable of reconstructing branching pathways.



Currently, DTI scans are acquired at a resolution of approximately 2mm.
Given that the size of neural axons is on the order of 10nm, DTI fiber tracking
can only reflect the macroscopic structure of the fiber bundle, and can not be
used to describe the white matter fiber at the cellular level. Due to partial volume
effects, the diffusion tensor is a voxel-averaged signal. When there is non-uniform
distribution of fiber structures within a voxel, such as fiber crossing, branching,
and fanning, the directional information is averaged out [5]. SLT tracts tend to
terminate when they encounter an ambiguous region. FMT is able to handle the
fiber branching problem, but it can only find the minimal cost path between two
points, which might be erroneous, especially at ambiguous regions, where the
effects of noise are significant.

Noise in the acquired diffusion tensor images causes perturbations in the re-
sulting diffusion tensor [6]. These perturbations affect both the geometry and
orientation of the tensor causing the eigenvector to deviate from the true direc-
tion. This error accumulates as the tracking propagates [7–9] and is a function
of the the signal-to-noise ratio (SNR), the shape of the trajectories, anisotropy,
resolution and the particular interpolation method used.

Here we propose a new tracking algorithm: Guided Tensor Restored Anatom-
ical Connectivity Tractography (GTRACT) that is aimed at solving the fiber
crossing problem and quantifying connectivity between two regions with known
anatomical connection.

2 Method

Based on previous work by this lab to study schizophrenia, we are interested in
the connectivity between the cerebellum and thalamus. This fiber path starts
from cerebellum, crosses from one hemisphere to another at the cerebellar pe-
duncle, and tracks to the thalamus. SLT based methods we have tested have
failed to track the fiber bundle connecting these two regions. This has lead to
the development of a new iterative tracking algorithm, GTRACT. During the
first pass of the algorithm, a graph search algorithm is used to facilitate tracking
through ambiguous regions. A centerline fiber is computed from the first pass
fibers and used to guide the tracking through ambiguous regions during a second
pass of tracking.

2.1 GTRACT Algorithm

The GTRACT algorithm consists of four steps. The first step generates an initial
guess for the fiber tracts. It includes a forward tracking and a backward tracking,
using a partial and restricted 3D graph search algorithm. Partial means the
3D graph search is only performed in certain regions. Restricted means this
algorithm uses a preset energy threshold and stopping criteria to reduce the
search space, thus speeding up the algorithm tremendously. This step produces a
group of energy minimized paths (3D optimal path with the maximum alignment
to the tensor field) connecting two pre-defined regions, and these paths serve



as an approximation to the possible connections. This algorithm simulates the
branching nature of the fiber paths and helps the fiber to propagate through
ambiguous regions.

The second step of the algorithm is a merging operation that analyzes fiber
bundles from forward tracking and backward tracking together, keeping only one
copy of the fibers when duplicate copies exist, and discard fibers that lie far away
from the main bundle. The third step creates the guide fiber. After the fibers
are merged together, they are resampled into the same number of sub-divisions,
and the mean position of the fiber bundle is calculated, which is similar to the
center line of the fiber bundle.

The forth and final step is guided fiber tracking. This is an improved stream-
line tracking algorithm, which takes the mean fiber direction from step 3 as a
guide to perform the fiber tracking. It incorporates the idea of the narrow band
searching method, and produces smooth and accurate results.

The GTRACT software was written in C++ and was developed using several
open-source cross platform toolkits: ITK, VTK and FLTK. The program has
been tested under both Microsoft Windows and Linux based platforms. The
software is freely available at the website http://mri.radiology.uiowa.edu.

2.2 Validation Data

Diffusion tensor phantom simulation data was obtained from the Centre for Neu-
roimaging Sciences, Institute of Psychiatry, King’s College London
(http://neurology.iop.kcl.ac.uk/dtidataset/Common DTI Dataset.htm). They
have developed a database for simulated common fiber tract trajectories that
can be used for testing, validation and comparison of various tractography al-
gorithms. There are ten different trajectory structures in total. Datasets are
provided over a range of SNR values (7, 15, and 31). The DTI data were sim-
ulated using a spin-echo sequence with the following parameters: number of
encoding directions = 30 [10], b-value=1000 s/mm2, TE=90ms, NEX= 4, image
resolution= 2x2x2mm.

For this study we focused on two of the datasets: linear tract and orthogonal
crossing. The linear tract contains FA values along the tract that decreasing
linearly from left to right, the FA value is between 0.7 and 0.15. This tract is
overlaid on an isotropic, homogeneous background. T2 values for the tract and
background were assumed to be the same as white matter (65 ms) and grey
matter (95 ms) at 1.5T, respectively. The FA image shown here has a SNR of
31. For the crossing trajectories, two fiber bundles exist, one with a higher FA
value (approximately 0.6), and one with a lower FA value (approximately 0.4).
These tracts are overlaid in the same isotropic homogeneous background used
for the linear trajectory.

Starting and ending regions were manually placed at the two ends of the fiber
tract to be studied. The fiber structure was then extracted using a streamline
algorithm [9, 11] with the following parameters: seed threshold = 0.3, tracking
threshold = 0.25, step size = 1 voxel (2mm) and 0.1 voxel (0.2mm), curvature
threshold = 45o. The GTRACT algorithm was also applied, using the following



Fig. 1. Fiber tracking generated using the STL and GTRACT algorithms in the or-
thogonal crossing phantom.

parameters: seed threshold = 0.30, tracking threshold = 0.25, step size = 1
voxel (2mm), maximum branching points = 5, branching anisotropy threshold
= 0.28, branching curvature threshold = 45o, maximum length = various among
different trajectories, guided tracking curvature threshold = 15o. The tracking
errors were accessed and compared between the methods.

3 Results

Both SLT and GTRACT methods are applied to the simulated phantom data.
Compared to the SLT method, GTRACT was able to produce smoother fiber
tracts and capable of handling the fiber crossing problem correctly (Figure 1).

The tracking error was accessed on two phantoms, the linear trajectory and
the orthogonal crossing trajectory. The ideal tracks for these two phantoms are
horizontal straight lines, one for every voxel at the far left where the FA value
is greater than 0.3. The errors were averaged among the fibers. When calculat-
ing the error for the methods, only the fibers reaching the ending region were
analyzed. Those terminating in the middle were not considered.

Figure 2 shows the error distance from the ideal track for both SLT and
GTRACT methods for the linear trajectory under different signal-to-noise ratios
(SNR = 7, 15, and 31). From the graphs, we can see that the tracking errors are
nearly constant and cumulative. The slope for the error curves in the SNR=7
phantom are 0.0086 (SLT) and 0.0032 (GTRACT). In the SNR=15 phantom, the
slopes were 0.0066 for SLT and 0.0046 for GTRACT. The SNR=31 phantom had
equivalent slopes of 0.0046. While the tracking error for SLT is largely related to
the SNR level, the GTRACT method has a smaller error and is less sensitive to
the SNR. For the SNR=7 and SNR=15 phantoms, the error for the GTRACT
algorithm is significantly smaller (p < 0.01) as compared to the both step sizes
for the STL method. When the SNR=31, the error levels of two methods were not



Fig. 2. Fiber tracking error for the STL and GTRACT algorithms in the linear phan-
tom. Three different SNR values are shown: 7, 15, and 31.

different. Similar error measurements were obtained in the orthogonal crossing
trajectory. The GTRACT showed significantly (p < 0.01) lower tracking error
at SNR=7 and SNR=15. For the SNR=31, the error between the methods was
similar.

4 Discussion

A novel fiber tracking algorithm GTRACT was developed and implemented us-
ing open-source tools for image processing and visualization. A validation study
was conducted using freely available synthetic phantom data. Compared to the
SLT method, GTRACT is able to produce smoother fiber tracts and tracking
through the fiber crossing region. The tracking error was evaluated on the linear
and orthogonal crossing trajectories with various SNR values, the results show
that GTRACT has smaller tracking error and is insensitive to image noise.
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