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Abstract

Statistical Shape Models are a popular method for segmenting three-dimensional medical images. To
obtain the required landmark correspondences, various automatic approaches have been proposed. In
this work, we present an improved version of minimizing the description length (MDL) of the model. To
initialize the algorithm, we describe a method to distribute landmarks on the training shapes using a con-
formal parameterization function. Then, we introduce a novel procedure to modify landmark positions
locally without disturbing established correspondences. We employ a gradient descent optimization to
minimize the MDL cost function, speeding up automatic model building by several orders of magnitude
when compared to the original MDL approach. The necessary gradient information is estimated from
a singular value decomposition, a more accurate technique to calculate the PCA than the commonly
used eigendecomposition of the covariance matrix. In this work, we first present a basic version where
spatial locations are used in the MDL cost function; next, we introduce an extended version where any
combination of features can be used as a metric. As an example application, we present results based on
local curvature measurements. Finally, we present results for synthetic and real-world datasets demon-
strating the efficiency of our procedures and give details about the implementation using the Insight
Toolkit (ITK).
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1 Introduction

Since their introduction by Cootes et al. [4], Active Shape Models (ASMs) and statistical shape methods
in general have become popular tools for automatic segmentation of medical images. The main challenge
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of the approach is the point correspondence problem in the model construction phase: On every training
sample for the shape model, landmarks have to be placed in a consistent manner. While manual labeling
is a time-consuming but feasible solution for 2D models when using only a limited number of landmarks,
it is highly impractical in the 3D domain: Not only is the required number of landmarks higher than in the
2D case, but it also becomes increasingly difficult to identify and pinpoint corresponding points, even for
experts.

Several automated methods to find the correspondences in 3D have been proposed. Brett and Taylor [3]
use a pairwise corresponder based on a symmetric version of the ICP algorithm. All training shapes are
decimated to generate sparse polyhedral approximations and then merged in a binary tree, which is used to
propagate landmark positions. Shelton [20] measures correspondence between surfaces in arbitrary dimen-
sions by a cost function which is composed of three parts representing Euclidean distance, surface defor-
mation and prior information. The function is minimized using a multi-resolution approach that matches
highly decimated versions of the meshes first and iteratively refines the results. Paulsen and Hilger [19]
match a decimated template mesh to all training shapes using thin plate spline warping controlled by a small
set of manually placed anatomic landmarks. The resulting meshes are relaxed to fit the training shapes
by a Markov random field regularization. Another approach based on matching templates is presented by
Zhao and Teoh [23]: They employ an adaptive-focus deformable model to match each training shape to all
others without the need for manually placed landmarks. The shape yielding the best overall results in this
process is subsequently used to determine point correspondences, enhanced by a ”bridge-over” procedure
for outliers. Another approach presented by Meier in [16] explores using local curvature measurements
for establishing pairwise correspondence. The cost function is based on curvature (C) and shape index (S)
metrics defined in [15].

A common characteristic of these methods is that they base their notion of correspondence on general
geometric properties, e.g. minimum Euclidean distance and low distortion of surfaces. A different approach
is presented by Davies et al. [7] who propose to minimize a cost function based on the minimum description
length of the resulting statistical shape model. In a recent comparison [21], this approach has shown to be
superior to other correspondence methods. However, the optimization of the MDL criterion for 3D shapes
is complex to implement and computationally expensive. In [13], we presented an optimized procedure
for minimizing the description length which is easier to implement and more efficient than the original
approach. In this paper, we describe an implementation of our algorithm using the pipeline architecture of
the open source toolkit ITK. We will start by reviewing the theory of the algorithm and present some results
before we present the ITK implementation in Sect. 6.

2 Fundamentals

2.1 Statistical Shape Models

The most popular kind of shape models uses point distribution models (PDMs), which represent each d-
dimensional training sample as a set of n landmarks. For every sample, landmark positions are defined
by a single vector x, storing the coordinates for landmark i at

�
xi � xi � n � xi � 2n � . The vectors of all training

samples form the columns of the landmark configuration matrix L. Applying principal component analysis
(PCA) to this matrix delivers the principal modes of variation pm in the training data. Restricting the model
to the first c modes, all valid shapes can be approximated by the mean shape x̄ and a linear combination of
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displacement vectors:

x � x̄
� c

∑
m � 1

ympm (1)

Cootes used an eigenvector decomposition of the covariance matrix of L to calculate the PCA [4], a method
commonly employed for this purpose. However, the same results can also be achieved by a singular value
decomposition (SVD), which is numerically more stable and thus more accurate when the covariance matrix
is ill-conditioned [14].

Theorem 1 Any m � n real matrix A with m � n can be written as the product

A � UDVT (2)

where U and V are column orthogonal matrices of size m � n and n � n, respectively, and D is a n � n
diagonal matrix. Then U holds the eigenvectors of the matrix AAT and D2 the corresponding eigenvalues.

Without calculating the covariance matrix, the PCA can thus be obtained by the SVD of the matrix A �
1�
s � 1

�
L � L̄ � , where s is the number of samples and L̄ a matrix with all columns set to x̄. In addition to the

increased accuracy, the matrices U and V allow calculating gradient information for the eigenvalues which
we will use during the optimization stage of the model-building process.

2.2 Correspondence by minimizing description length

A prerequisite for statistical shape models is a set of landmark points located at corresponding positions
on all training shapes. To quantify this correspondence, the MDL approach introduced by Davies et al. [6]
defines a cost function F which is based on the minimum description length of the generated model. In this
work, we use a simplified version of the MDL as proposed by Thodberg [22], where F is defined as:

F � ∑
m

Lm with Lm �
�

1
�

log
�
λm 	 λcut � for λm � λcut

λm 	 λcut for λm 
 λcut
(3)

This formulation features one free parameter λcut which represents the expected noise in the training data.
Since all shapes are rescaled to produce a mean shape with RMS radius r � 1 	�� n for the PCA, the optimal
value for λcut depends on the original average radius of the training shapes r̄:

λcut ��
 σ
r̄ � 2

, (4)

where σ is the standard deviation of noise in the training data. In coherence with the voxel quantization
error, Thodberg choses σ � 0 � 3 and uses r̄ � 100 in all his experiments. While we adopt the same σ-value,
we modify r̄ depending on the resolution of the images from which the training shapes are extracted.

2.3 Using different metrics for correspondence

The basic MDL method uses 3D spatial location information as its metric. However, it is also possible to use
any other local metrics, and minimize the model description length with respect to these. A good example
of such features that can be used for establishing correspondence is local curvature metrics.



5

In this work, we present results using the local curvature metrics presented in Koenderink [15], namely, the
shape index S and the curvedness C. C and S can be computed as functions of the two principal curvatures
of the surface. They basically are equivalent to a polar representation of the principal curvatures κ1 and κ2.

C � 2
π

ln � �
κ2

1
� κ2

2 � 	 2 (5)

S � � 2
π

arctan
κ1
� κ2

κ1 � κ2
(6)

C and S improve the curvature measurement by decoupling the size and shape aspects of the curvature. C
describes how curved an object is, and is closely related to the size. S, on the other hand, is indicating
the shape of the surface in terms of concaveness and convexness. This pair of metrics is very suitable for
measuring correspondence of two surfaces, since they provide a means of measuring shape in a very intuitive
way.

It should be noted that, even though we only present results using C and S as metrics in this work, our
implementation provides complete flexibility in the choice of features to be used. This is achieved by letting
the user provide the number of features per point and feature values, without any constraints. The feature
values should be computed offline and stored in a feature file for each object in the population.

3 Mesh Parameterization

To define an initial set of correspondences and a means of manipulating them efficiently, we need a conve-
nient parameter domain for our training shapes. For closed 2D objects, the natural choice for this parameter
domain is the arc-length position on the contour: Choosing an arbitrary starting point and normalizing the
total arc-length to 1, all positions on the contour (i.e. all potential landmark positions) can be described by
a single parameter p ��� 0 � � 1 � .
In order to minimize complexity for the parameterization of 3D shapes, we will restrict the discussion to
closed two-manifolds of genus 0 (i.e. surfaces without holes and self-intersections). Objects of this class are
topologically equivalent to a sphere and most shapes encountered in medical imaging are of this type(e.g.
liver, kidneys and lungs). The task is to find a one-to-one mapping which assigns every point on the
surface of the mesh a unique position on the unit sphere, described by two parameters longitude θ ��� 0 � � 2π �
and latitude φ ��� 0 � � π � .
The mapping of an arbitrary shape to a sphere inevitably introduces some distortion. There are a number
of different approaches which attempt to minimize this distortion, typically preserving either local angles or
facet areas while trying to minimize distortions in the other. An overview of recent work on this topic can
be found in [9].

For an initial parameterization, Davies uses diffusion mapping, a simplified version of the spherical har-
monics method described by Brechbühler [2]. For our optimization strategy (Sect. 4), an angle preserving
method is also suitable: Moving neighboring points on the parameterization sphere in a specific direction,
we expect the corresponding landmarks on the training shape to move in a coherent direction as well. This
behavior is guaranteed by conformal mapping functions, transformations that preserve local angles.
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3.1 Creating a conformal mapping

Definition 1 Each training sample for the statistical shape model is represented as a triangulated mesh
K � �

V � E � with vertices u � v � V and edges � u � v � � E. The vertex positions are specified by f : V � R3, an
embedding function defined on the vertices of K. A second function ω : V � R3 specifies the coordinates
as mapped on the unit sphere,

�
v � V : � ω �

v � � � 1.

Gu et al. present a variational method to create a conformal parameterization in [12]. From an initial Gauss
map, where ω

�
v � represents the normal vector of v, they use a gradient descent optimization to minimize the

string energy of the mesh, defined as:

E
�
K � ω � � ∑�

u � v ��� E

ku � v 	 ω �
u � � ω

�
v �
	 2 (7)

Minimizing the string energy with all edge weights ku � v set to 1 yields the barycentric mapping, where each
vertex is positioned at the center of its neighbors. Subsequently, a conformal mapping can be obtained using
edge weights depending on the opposing angles α � β of the faces adjacent to � u � v � as in:

ku � v � 1
2

�
cot α � cotβ � (8)

During the optimization process, all vertices must constantly be projected back onto the sphere by ω
�
u � �

ω � �
u � 	 � ω � �

u � � . The formal correctness of this approach was later proved in [11].

3.2 Spherical harmonics

An alternative method for obtaining a spherical parametrization of the input objects is to use spherical har-
monics functions. In summary, the SPHARM description is a hierarchical, global, multi-scale boundary
description that can only represent objects of spherical topology [2]. The spherical parameterization is
computed via optimizing an equal area mapping of the 3D voxel mesh onto the sphere and minimizing an-
gular distortions. The basis functions of the parameterized surface are spherical harmonics. Each individual
SPHARM description is composed of a set of coefficients, weighting the basis functions. Truncating the
spherical harmonic series at different degrees results in object representations at different levels of detail.
SPHARM is a smooth, accurate fine-scale shape representation, given a sufficiently high representation
level. Based on a uniform icosahedron-subdivision of the spherical parameterization, we obtain a Point
Distribution Model (PDM).

Spherical harmonic basis functions Y m
l � � l � m � l of degree l and order m are defined on θ � � 0;π � � φ �� 0;2π � by the following definitions:

Y m
l

�
θ � φ � � 2l

�
1

4π

�
l � m � !�
l
�

m � !
Pm

l

�
cosθ � eimφ (9)

Y � m
l

�
θ � φ � � � � 1 � m Y m

l 

�
θ � φ � � (10)

where Y m
l 
 denotes the complex conjugate of Y m

l and Pm
l the associated Legendre polynomials

Pm
l

�
w � � � � 1 � m

2l l!

�
1 � w2 � m

2
dm � l

dwm � l

�
w2 � 1 � l � (11)
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Our ITK-compatible implementation for generating the spherical harmonics representation of a surface, as
well as other classes for handling spherical harmonics representation, is publicly available at UNC Neurolib
repository ( www.ia.unc.edu/dev/). These classes are not provided as part of this work, since the initial
parametrization is assumed to be precomputed and stored.

3.3 Mapping landmarks

Following the preceding sections, the parameterization is defined by a spherical mesh with the same topol-
ogy as the training sample. In order to obtain the 3D position for an arbitrary landmark at the spherical
coordinates

�
θ � φ � , which is generally not a vertex, we have to find the intersection between a ray from the

origin to
�
θ � φ � and the parameterization mesh. Since mapping landmarks is the most computationally ex-

pensive part of the model-building process, an intelligent search strategy of ordering the triangles according
to the likelihood of ray intersection speeds up the algorithm considerably. Intersected triangle indices for
each landmark are cached and, in the case of a cache miss, neighboring triangles are given priority when
searching for the ray intersection. To test a triangle for intersection, we use the method described in [17],
which conveniently produces the barycentric coordinates of the intersection point. The same coordinates
used on the respective triangle of the training mesh yield the final landmark position.

4 Optimizing Landmark Correspondences

With an initial conformal parameterization ωi for each training sample i, we can acquire the necessary
landmarks by mapping a set of spherical coordinates to each shape. To optimize the point correspondences
with the MDL criterion, two possibilities are available: We can either change the individual ω i and maintain
a fixed set of global landmarks or modify individual landmark sets Ψi.

In this work, we opted for the first alternative, which has the advantage that the correspondence is valid
for any set of points placed on the unit sphere. Therefore, it is possible to alter number and placement of
landmarks on the unit sphere at any stage of the optimization, e.g. to better adapt the triangulation to the
training shapes. Moreover, we do not need to worry about the correct ordering of landmarks: Since the valid
set on the unit sphere is fixed, ensuring a one-to-one mapping to the training shapes is sufficient.

4.1 Re-parameterization

To modify the individual parameterizations in an iterative optimization process, we need a transformation
function of the type ω � � Φ

�
ω � . In [7], Davies et al. use symmetric theta transformations for that purpose:

Employing a wrapped Cauchy kernel with a certain width and amplitude, landmarks near the kernel position
are spread over the sphere, while landmarks in other regions of the surface are compressed. By accumulating
the effects of thousands of kernels at different positions, arbitrary parameterizations can be created.

While this re-parameterization method produces the required effect, it is an inefficient means of modifying
surface parameterizations. The main disadvantage is that it is a global modification, i.e. adding one new
kernel modifies all landmark positions on the object. Intuitively, it would be desirable to keep established
landmark correspondences stable. Therefore, we suggest a new method for modifying parameterization
functions based on kernels with strictly local effects.

We will assume that we know a principal direction
�
∆θ � ∆φ � in which the vertices of a local neighborhood on

the parameterization mesh should move to improve landmark correspondences. Then we define a Gaussian

www.ia.unc.edu/dev/
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envelope function to change each spherical coordinate by c
�
x � σ ��� �

∆θ � ∆φ � with

c
�
x � σ � �

����
e � x2

2σ2 � e ��� 3σ 	 2
2σ2 for x 
 3σ

0 for x � 3σ
(12)

The variable x denotes the Euclidean distance between the center of the kernel and the specific vertex of the
parameterization mesh, while σ specifies the size of the kernel. The movements are cut off at 3σ to limit
the range and keep the modification local. During the course of the optimization, σ is decreased to optimize
larger regions at the beginning and details at the end. Three examples for possible kernel configurations
with different σ-values are shown in Fig. 1.

Figure 1: Kernel configurations for σ values of 0.4, 0.3 and 0.2. Red colors mark regions with large vertex
movements, blue ones those with no modification.

The proposed method of modification does not work if a kernel includes one of the poles of the spherical
parameterization mesh (φ � 0 or φ � π) because vertices would all move either toward or away from this
point, depending on ∆φ. Nevertheless, the positions of the different kernels have to change in the course of
the optimization in order to guarantee an equal treatment for all vertices of the parameterization mesh. This
limitation is overcome by defining specific kernel configurations as shown in Fig. 1, which do not cover
the pole sections of the sphere. By keeping these configurations fixed and instead rotating all parame-
terizations and the global landmark collection by a random rotation matrix, the relative kernel positions are
changed without touching a pole. The random rotation matrices for these operations are acquired using the
method described in [1].

4.2 Calculating MDL gradients

Given a kernel at a certain position, we need the direction
�
∆θ � ∆φ � for the movement which minimizes the

cost function. Since all modifications of the parameterization change landmark positions on the training
sample, the first step is to quantify the effect landmark movements have on the MDL value. As shown in
[8], the work of Papadopoulo and Lourakis on estimating the Jacobian of the SVD [18] can be used for that
purpose, calculating the gradients of the MDL objective function with respect to individual landmarks.

The calculation of the singular value derivatives does not add a significant computational overhead. Given
the centered and un-biased landmark configuration matrix A from Sect. 2.1, the derivative for the m-th
singular value dm is calculated by:

∂dm

∂ai j
� uim � v jm (13)
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Figure 2: Gradients of the MDL cost function visualized for two sample shapes. The value of the directional
derivative is color-coded ranging from blue for weak gradients to red for the strongest gradients.

The scalars uim and v jm are elements of the matrices U and V from (2). Since our MDL cost function uses
λm � d2

m, we can derive the MDL gradients as

∂F
∂ai j

� ∑
m

∂Lm

∂ai j
with

∂Lm

∂ai j
� � 2uimv jm 	 dm for λm � λcut

2dmuimv jm 	 λcut for λm 
 λcut
(14)

This derivation yields a 3D gradient for every landmark, revealing the influence of its movements on the
cost function. Two examples of the resulting gradient fields are visualized in Fig. 2.

4.3 Putting it all together

The final step is to transform the calculated gradient fields into optimal kernel movements k � �
∆θ � ∆φ �

on the parameterization mesh. Using the chain rule, we get:

∂F
∂k
� ∂F

∂ai j

∂ai j

∂k
(15)

We use finite differences to estimate the surface gradients ∂ai j 	 ∂k.

Both Davies [5] and Thodberg [22] describe cases in which the MDL optimization can lead to landmarks
piling up in certain regions or collapsing to a point. Davies keeps one shape as a master example with fixed
landmarks to prevent this effect while Thodberg suggests adding a stabilizing term to the cost function. Since
we have never observed the problematic behavior with our new re-parameterization, we do not employ any
of these methods.

In addition to modifying the mapping functions ωi by re-parameterization, other variables which influence
landmark positions can be included in the optimization. The rotation of each mapping ω i determines the
position of the first landmark on the training shape and the relative orientation of all others. By calculating
gradients for rotating the parameterization mesh around the three Euclidean axes and using those instead of
the surface gradients ∂ai j 	 ∂k in (15), we have an efficient method to optimize this variable.
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Table 1: The collection of datasets used for the evaluation.
Cuboids Ellipsoids Livers

Origin synthetic synthetic clinical
Mean size (radius in voxels) 100 100 70
Number of samples 20 20 21
Perceived sample variance low medium high
Sample complexity (# vertices) 486 962 1500–2000
Model complexity (# landmarks) 642 642 2562

Table 2: Cost function values F and number of used iterations I for all datasets. Times are given in hours
and minutes.

Cuboids Ellipsoids Livers
State Time I F Time I F Time I F

Initial values 0:00 0 15.86 0:00 0 17.47 0:00 0 X
After optimization 0:11 900 10.96 0:13 1400 13.13 X X X

5 Results

5.1 Spatial location based MDL

Datasets

As previously noted, the basic method uses the 3D spatial location of vertices for establishing correspon-
dence. We tested the presented method on two synthetic and one real-life dataset. Synthetic data has the
advantage that the global minimum of the cost function is known, since it can be calculated from the corre-
spondences inherent for generated data. A tabular description of all employed datasets is given in Tab. 1.

Optimization of Point Correspondences

Using the algorithm presented herein, we created statistical shape models for all three datasets on an Intel
Dual Xenon 3.0GHz platform. The results of the optimization are summarized in Tab. 2. An extensive eval-
uation of the created shape models including a comparison with the original MDL approach was conducted
in [13]. It turned out that our new algorithm is several orders of magnitude faster and delivers significantly
better models than the original approach.

5.2 Local curvature based MDL

The extended version of the presented method can use any number of local features for establishing corre-
spondence. The feature values at each location are provided in input files. Here, we present results of an
experiment where we used the previously presented local curvature metrics C and S as our features. Figures
3 and 4 show the results of this optimization, visualized such that corresponding locations across the pop-
ulation are colored in the same way. Figure 3 shows the φ value correspondence and Figure 4 shows the θ
value correspondence, where φ and θ are the usual spherical coordinates.
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Figure 3: The φ values of our population after curvature based correspondence is run. Similar colors across the

objects show corresponding φ values on each object.

Note that even though we present results using only C and S metrics, our tool allows the usage of any desired
optimization metric, or any combination thereof. This is achieved by making the correspondence based on
input read through a file, and not internal computations. This provides great flexibility and enables exploring
various shape metrics and inspecting the quality of the correspondence they imply, without even modifying
the code.

6 Implementation

Although the proposed algorithm is easier to implement than the original MDL optimization, it is still
a challenge. One of the earliest problems encountered was that ITK, while offering a large variety of
2D and 3D image filters, provides only very limited mesh support. Most of the functionality necessary
for parameterizing meshes — beginning with efficient access to vertices, edges and faces — had to be
implemented from scratch in diverse subclasses of itk::Mesh. Consequently, there was a lot of work to do
apart from designing the core components of the algorithm. An overview of how these classes act together
in the algorithm for automatic model building is given in Fig. 5. Detailed information on all implemented
classes is presented in Appendix A.
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Figure 4: The θ values of our population after curvature based correspondence is run. Similar colors across the

objects show corresponding θ values on each object.
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A main() function is provided along with these classes as a ready to use tool. The only parameters to this
tool are an input list file, a landmark file, and a model radius. The input list file is a simple text file
including the paths for all the input mesh files representing the input objects in the population. For each
object, there should be separate files containing the vertices, the faces, the parametrization, and the features
(if the features rather than the spatial locations are to be used). Each of these files should have the same
name, but different extensions: � pts for the vertices, � f ce for the faces, � par for the parametrization, and � txt
for the features. More information about the file formats can be found in the Appendix A.14.

The landmark file is a separate mesh file that represents the locations that we want to include in the
evaluation of the MDL cost function. This can be the same as one of the objects in the population if the
resolution of the mesh is suitable. A typical usage, however, would have high-resolution input meshes with
a coarser landmark mesh, so that the optimization proceeds faster. The last parameter, the model radius, is a
variance threshold that is used to determine the amount of noise in the data.

A detailed overview of how the main() function works is useful to demonstrate how the various classes
should be put together. Initially, an instance of the StatisticalShapeModel3DCalculator class is cre-
ated, and it is provided with a cost function, which is an instance of the SimplifiedMDLCostFunction
class. Note that one can either choose the StatisticalShapeModel3DCalculator class itself and use
spatial locations as a metric, or use the subclass StatisticalShapeModel3DCalculatorWithFeatures
and use arbitrary local features. Next, the input meshes and the landmark mesh are loaded.
If a parametrization file is not already provided along with the input meshes, a suitable ini-
tial parametrization is computed, either via conformal spherical parametrization or via spheri-
cal harmonics basis functions (the former method is illustrated in the provided main() func-
tion). Any other method that generates a spherical parametrization can be used as well. The
resulting instances of the SphericalParametrizedTriangleMesh class are then provided to the
StatisticalShapeModel3DCalculator. After the StatisticalShapeModel3DCalculator is updated,
all that remains to do is to output the final versions of the meshes. Across the population of output meshes,
the points with the same

�
φ � θ � values will be corresponding.

7 Conclusions

We presented our automatic statistical shape model building method and its implementation in the open
source ITK framework. It offers an efficient, robust and versatile approach to automatic model building
that should further propagate the use of 3D shape models in clinical practice. To represent more complex
shapes (e.g. brain ventricles), the mesh surface could be cut and parameterized over multiple domains
instead of a single sphere.

Future research will investigate how far the established correspondences can be used to reorganize landmarks
after the optimization in order to represent the geometry of the model optimally with a minimum number
of points. Additionally, the stability of our re-parameterization method against landmark collapse has to be
verified using a larger number of test datasets.
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Figure 5: An overview of the pipeline involved in the algorithm for automatic model building. Each training
sample is read from disk and parameterized conformally. Using a landmark mesh which is also read from
disk, shapes with the same number of vertices are created. These are aligned by a Generalized Procrustes
matching and scaled to tangent size. In each optimization step, all parameterizations are modified by the
Gaussian warp filter and the results written back to the original data (dotted line). Subsequently, landmarks
and parameterizations are rotated with the same transform (i.e. landmark positions on the generated meshes
do not change), again overwriting the original values.
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A Appendix: Class implementations

In the following, we present all implemented classes one by one.

A.1 IndexedTriangleMesh

The itk::IndexedTriangleMesh class represents a three-dimensional, two-manifold mesh consisting ex-
clusively of triangle cells. It derives from the itk::Mesh class and hence inherits all the common function-
ality related to points and cells. It was designed to allow fast and easy access to adjacency information of
points, edges and faces. This information is precalculated and stored in the overwritten BuildCellLinks()
method. In order to stay up-to-date, this method has to be called after all topological modifications to
the mesh. In addition to indexing points, the class also indexes faces (i.e. triangles) and edges. Although
edges do have a direction, an edge shared by two faces is only stored once under a single index. The in-
dex data type can be specified as a template parameter, for meshes with less than 65,536 faces, edges
and vertices, unsigned short is recommended to save memory. There is an assignment operator for an
itk::IndexedTriangleMesh, which can be used e.g. in filters to initialize the output with the input. It is
important to note that the operator only copies the pointers (i.e. performs a shallow copy) for all itk::Mesh
information, while all adjacency information is copied by value (deep copy).

Point related functionality.

In addition to the GetPoint() method of the itk::Mesh class that copies point information to a supplied
pointer, there is an overloaded version that returns a reference to the point. For a given edge, the two points
forming it can be queried with GetPointIndexForEdge(). If one point of the edge is known (but it is not
clear whether it has the local index 0 or 1), the other point can be queried by GetConnectedPointIndex().
The same way, the three points forming a triangle can be accessed using GetPointIndexForFace(). If
one edge of the face and thus two points forming it are known, the third point can be queried using
GetMissingPointIndex().

Edge related functionality.

The number of edges in the mesh can be queried with GetNumberOfEdges(). All edges are indexed from
0 to GetNumberOfEdges()-1. An edge is represented as a vector and can be accessed by the GetEdge()
method, its length by GetEdgeLength(). The number of edges connected to a specific point can be queried
with GetNumberOfEdgesForPoint(), their indices with GetEdgeIndexForPoint(). The following code
calculates the average edge length for a specific point:

IndexType pointId = 0;
CoordRepType avgLength = 0;
for (IndexType i=0; i<GetNumberOfEdgesForPoint( pointId ); i++)
{
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avgLength += GetEdgeLength( GetEdgeIndexForPoint( pointId, i ) );
}
avgLength /= GetNumberOfEdgesForPoint( pointId );

The three edges forming a specific triangle can be accessed by GetEdgeIndexForFace(). To test whether
two points are connected by an edge, the method GetConnectingEdgeIndex() can be used.

Face related functionality.

The number of faces in the mesh can be queried with GetNumberOfFaces(). All faces are indexed from
0 to GetNumberOfFaces()-1. The number of faces connected to a specific point can be queried with
GetNumberOfFacesForPoint(), their indices with GetFaceIndexForPoint(). Two faces count as ad-
jacent if they share at least one common point. This means that a face can (and mostly will have) more
than the obvious three adjacent faces sharing the three edges. The exact number can be queried using
GetNumberOfAdjacentFaces(), the respective face indices using GetAdjacentFaceIndex().

A.2 ParameterizedTriangleMesh

The itk::ParameterizedTriangleMesh class is the base class for a surface parameterization of a
three-dimensional, two-manifold mesh consisting exclusively of triangle cells. It derives from the
itk::IndexedTriangleMesh class and extends it by adding methods for mapping between parameter and
object space. Although coordinates in parameter space can be expressed using only two values (since the
mesh is a two-manifold), all mapping methods use the inherited, three-dimensional PointType to pass pa-
rameter coordinates. How to convert from this PointType to the two-dimensional parameter coordinates is
up to the individual subclasses. The method MapCoordinates() maps coordinates from parameter space to
object space. Object space coordinates are represented as a face index and barycentric coordinates inside this
face. If the face the mapping will lead to is already known or suspected, the method CoordinatesInFace()
can be used to find the exact barycentric coordinates. To display the parameterization graphically in
a 2D-image (e.g. for purposes of texture mapping), usually a number of different patches (images) are
used to minimize distortion. The number of patches can be assessed using GetNumberOfPatches().
The patch which should be used to display a certain face with minimal distortion can be queried with
GetPatchIndexForFace(). Once the patch is known, the two methods MapParameterizationToPatch()
and MapPatchToParameterization() can be used to map coordinates from one domain to the other. Patch
coordinates always lie in the range of [0..1]. UpdateParameterization() can be used to copy the parame-
terization from another itk::ParameterizedTriangleMesh (usually one modified by a filter operation).
Subsequently, GetParameterizationModified() reveals if the parameterization for a specific point was
changed during this process. The method SetParameterizationModified() allows filters to set the
modified-flag for a specific point or for all points at once. All presented methods are declared virtual and
— with the exception of the Get/SetParameterizationModified() methods — have to be implemented
in subclasses.

A.3 SphericalParameterizedTriangleMesh

The itk::SphericalParameterizedTriangleMesh class is derived from
itk::ParameterizedTriangleMesh and implements a surface parameterization for meshes of spherical
topology (genus zero). Internally, the parameterization is represented as a second, spherical mesh with the
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same topology as the original mesh. Coordinates of the spherical mesh are stored in a STL-array. Parameter
coordinates are represented as 3D coordinates lying on the unit sphere. The mapping from parameter to
object space is implemented by calculating the intersection of a ray (from the center of the sphere to a point
indicated by the parameter coordinates) and the triangles of the sphere. If the intersecting triangle cannot
be guessed, MapCoordinates() sorts all triangles according to their average distance to the parameter
coordinates and starts intersection testing with the closest one. To map the parameterization to 2D-images,
two patches are used (each mapping one half-sphere by means of the stereographic projection). New
methods of the class are GetSphericalMap(), which returns a reference to the coordinate array of the
spherical mesh and InitializeSphericalMap(), which reserves the necessary memory for the coordinate
array and is usually called once by filters.

A.4 ConformalSphericalParameterizationFilter

The itk::ConformalSphercialParameterizationFilter class is derived from
itk::MeshToMeshFilter and generates a conformal parameterization for meshes of spher-
ical topology. It expects an itk::IndexedTriangleMesh as input and delivers an
itk::SphericalParameterizedTriangleMesh as output. The implementation of this filter is
based on the paper by Gu et al. [12]. Internally, the first step of the algorithm is to compute a Gauss map
of the mesh, where all points are mapped to positions specified by their normal vectors. The protected
method ComputeGaussMap() calculates all face normals coherently (i.e. pointing in the correct direction)
and averages the face normals around each point. Subsequently, the string energy of the mesh is minimized
in two steps, first optimizing the barycentric energy, then the conformal energy. In some rare cases, these
optimizations do not converge and the filter will not return from the Update() function.

A.5 RotateSphericalParameterizationFilter

The itk::RotateSphericalParameterizationFilter is derived from itk::MeshToMeshFilter and
rotates the parameterization of an itk::SphericalParameterizedTriangleMesh. A rotation of the
parameterization results in rotating all mapped points/landmarks around the mesh. The function
SetTransform() is used to specify the desired rotation by means of an itk::AffineTransform. Al-
though this transform allows different transformations than just rotations, only rotations will result in a valid
output.

A.6 GaussianWarpSphericalParameterizationFilter

The itk::GaussianWarpSphericalParameterizationFilter is derived from
itk::MeshToMeshFilter and locally modifies the parameterization of an
itk::SphericalParameterizedTriangleMesh. Within a local environment around a control point, all
points of the spherical map (the parameterization) are moved in a specific direction. The magnitude of the
movement is controlled by a Gaussian envelope function, its variance determines the area that is modified.
The filter offers presets for different variances that can be activated by the SetLevelOfDetail() method.
The number of available control points also depends on the level of detail (since fewer local environ-
ments fit on the sphere if each one is larger) and can be queried by GetNumberOfControlPoints().
When the level of detail is set, the control point that is used for the warp has to be specified using
SetActiveControlPoint(). Subsequently, the direction and maximum magnitude of the movement has
to be set using SetDirection(). The direction is specified by a three-dimensional vector: The first
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element is the change in radians for the azimuth angle, the second is the change in radians for the polar
angle. The third element is not used. Note that the filter only modifies the area around one control point
at a time.

A.7 RemeshParameterizedMeshFilter

The itk::RemeshParameterizedMeshFilter is derived from itk::MeshToMeshFilter and maps a set
of landmarks from parameter space to object space, effectively remeshing the input mesh. The method
SetLandmarks() takes the landmark mesh in parameter coordinates. Each landmark point is mapped to
object space using the MapCoordinates() method of the input mesh. If the input mesh has additional data
associated with its vertices in the PointDataContainer, this data is also calculated for the new vertices
(by interpolation within each triangle). The cell data for the output mesh is copied from the landmark
mesh. Internally, the filter uses a cache to store all mapped vertices. If the parameterization changes
around a certain point (invalidating the cached values), a local neighborhood is searched first to speed up
the mapping process. These optimizations make the filter especially efficient if the used parameterization
changes only locally, e.g. by using the itk::GaussianWarpSphericalParameterizationFilter.

A.8 ProcrustesAlign3DMeshFilter

The itk::ProcrustesAlign3DMeshFilter is derived from itk::ProcessObject and aligns a set of 3D-
meshes or point sets in a common coordinate system using the generalized Procrustes matching [10]. All in-
put meshes must have the same number of points with corresponding indices. The default behavior is to use a
similarity transform to align all meshes to zero origin and scale them to best match a mean shape with norm
one. The methods AlignTranslationOn/Off(), AlignScaleOn/Off() and AlignRotationOn/Off()
can be used to deactivate certain classes of transforms. If the shapes should not be scaled to match norm
one but retain their original sizes, set UseScalingOff(). Other options are UseSingleIterationOn()
to run the algorithm only for a single iteration and UseInitialAverageOn() to start the optimization
with an average of all input shapes instead of using a single one. Before calling any other methods,
SetNumberOfInputs() should be used to specify the number of meshes to be aligned.

A.9 StatisticalShapeModel3DCalculator

The itk::StatisticalShapeModel3DGenerator is derived from itk::Object and finds the point cor-
respondences across a set of two-manifold triangular meshes. After calling SetNumberOfInputs() to pass
the number of meshes in the set, SetInput() can be used to specify the parameterized input meshes. Note
that SetInput() copies the mesh information when the method is called, i.e. the mesh and its parameteri-
zation have to be initialized before.

In addition to the input meshes, the user has to specify a landmark mesh in parameter space that will be
used to create the corresponding shapes. For the used spherical parameterizations, this means the desired
number of vertices for the model should be spread equally on the unit sphere. The necessary coordinates
can be obtained e.g. by subdividing one of the platonic solids and project all points to the sphere.

The search for optimal point correspondences is guided by a cost function that estimates the quality of a
shape model. SetCostFunction() has to be called to specify the function to be used. The best results
have been obtained with cost functions based on the Minimum Description Length of the shape model (as
presented in [7]).
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SetOptimizeParameterizationStart() determines if the algorithm should also optimize the start offsets
of the parameterizations, which practically leads to optimizing the rotation of the sample meshes. If all
samples have the same orientation, this can be turned off for a slightly faster optimization. The default is
on. SetUseAutomaticAlignment() decides if a Procrustes alignment of the sample shapes and scaling to
tangent size is conducted before building the model. The default AutomaticAlignmentOn() delivers the
best results for the vast majority of cases.

A call of Update() triggers the optimization process, which can take several hours or even days to finish,
depending on the hardware used and the number and complexity of sample meshes. The algorithm should
scale linearly with the number of samples, the number of vertices on each sample and the number of land-
marks. A rule of thumb is to decimate the sample meshes to reach a similar number of vertices as the used
number of landmarks.

The optimization uses a gradient descent algorithm with fixed step size that can be set using
SetParameterizationWarpStepLength() and SetParameterizationStartStepLength() for opti-
mization of local correspondence and rotation, respectively. Convergence is determined by compar-
ing the value of the cost function every 50 iterations. If the difference is less than the value set with
SetConvergence(), the algorithm raises its level of detail. It stops when the maximum level is reached.

After that, the resulting point correspondences can be queried using three methods: GetOutputMesh()
returns the corresponding points (landmarks) in the original coordinate system of each mesh,
GetOutputAlignedMesh() returns the landmarks in the aligned coordinate system used to build the model
and GetOutputParameterization() returns the optimal parameterization for each input.

A.10 StatisticalShapeModel3DGeneratorWithFeatures

This is a subclass derived from itk::StatisticalShapeModel3DGenerator. This class allows the us-
age of arbitrary features for the optimization of correspondence. The major change in functionality is in
InitializeMatrix(), which uses the point data associated with the mesh, rather than vertex coordinates,
for building the covariance matrix for MDL. Note that this class assumes that the input meshes have point
data associated with their vertices. The point data should be of type itk::Vector<double, n> where n is
the number of features being used. For example, for obtaining the results represented in Sect 5.2, the point
data was of type itk::Vector<double, 2>, since there were 2 features per point (C and S).

A.11 ShapeModelCalculatorCostFunction

The itk::ShapeModelCalculatorCostFunction is derived from itk::Object and forms the base
class for all cost functions to be used with the itk::StatisticalShapeModel3DCalculator. The
cost function automatically maintains a pointer to the calculator that is using it. Since it is declared
a friend of itk::StatisticalShapeModel3DCalculator, it can access all internal data of the model.
Virtual functions that have to be implemented in subclasses are GetValue(), GetGradient() and
PrepareGradients(). While GetValue() returns the current costs for the model, GetGradient() returns
the gradient in a certain direction. How this direction is interpreted is specified by the implementation of
PrepareGradients().
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A.12 VarianceBasedCostFunction

The itk::VarianceBasedCostFunction is derived from itk::ShapeModelCalculatorCostFunction
and implements the PrepareGradients() method for all cost functions based on the variance, i.e. the
eigenvalues of the model. Virtual functions that have to be implemented in subclasses are GetValue() and
GetGradient(). Both can make use of the eigenvalue gradients stored in the EVGradients matrix.

A.13 SimplifiedMDLCostFunction

The itk::SimplifiedMDLCostFunction is derived from itk::VarianceBasedCostFunction and im-
plements a simplified version of the MDL function originally presented by Davies [7]. Costs are calculated
with the objective function of Thodberg [22]. Before using this cost function, the variance threshold that
determines the amount of noise in the image data has to be set. The easiest way to set this threshold is to use
SetVarianceCutForModelRadius() and pass the average voxel radius of the sample shapes as argument.

A.14 MeshASCIIReader

The itk::MeshASCIIReader is derived from itk::MeshSource and reads a mesh from disk. The mesh
data is stored separately in two text files. The first file has a pts-extension and holds the vertices of the
mesh: Each line represents one point by the x, y and z coordinates, separated by spaces. The second file
has a fce-extension and stores the faces of the mesh: Each line represents one face by the indices of the
involved vertices, separated by spaces. The first point in the pts-file has the index 0.

Currently, only triangular faces are supported by the reader. After specifying the file prefix (the name
without the extension) with SetFilePrefix() and calling Update(), GetReadError() can be used to
query the success of the operation. If no error occurred, GetOutput() returns the imported mesh.

If local features, rather than spatial locations of the vertices, are to be used for establishing correspondence,
there should be a third file with the same name and a � txt extension. This file should have a header followed
by the list of features for each vertex, indexed the same way as in the � pts file. The header should look like
the following:

NUMBER_OF_POINTS = 4002
DIMENSION = 2
FEATURES = UNKNOWN

This means there are 4002 vertices in the mesh, and at each vertex, there are two features that should be
used for the correspondence optimization. The 4002 lines following the header will consist of two values
corresponding to the feature values at each vertex.

A.15 ParameterizedMeshASCIIReader

The itk::ParameterizedMeshASCIIReader is derived from itk::MeshSource and reads a spherical pa-
rameterized mesh from disk. The mesh data is stored separately in three text files. In addition to the pts-
and fce-file that itk::MeshASCIIReader is using as well, there is a third file with a par-extension which
stores the position of all points in parameter space. For spherical parameterized meshes, this position is
saved as x, y and z coordinates of the point on the unit sphere, separated by spaces.
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A.16 MeshFileWriter

The itk::MeshFileWriter is the base class for mesh writers in different formats. It is derived from
itk::ProcessObject and offers a Write() method which calls GenerateData() to write the mesh to disk.
In addition, there are several methods to get and set FilePrefix, Filename and FilePattern. The subclasses
can decide which of these naming methods they want to use.

A.17 MeshSTLWriter

The itk::MeshSTLWriter is derived from itk::MeshFileWriter and stores a mesh in binary STL (stere-
olitography) format. Only triangular faces are stored. Use SetFilePrefix() to specify the filename,
which will be extended with the stl-extension.

A.18 MeshASCIIWriter

The itk::MeshASCIIWriter is derived from itk::MeshFileWriter and stores a mesh in the ASCII for-
mat described in the documentation for the itk::MeshASCIIReader class. Currently, only triangular faces
are stored. Use SetFilePrefix() to specify the filename, which will be extended with the pts- and fce-
extensions.

A.19 ParameterizedMeshASCIIWriter

The itk::ParameterizedMeshASCIIWriter is derived from itk::MeshFileWriter and stores
a spherical parameterized mesh in the ASCII format described in the documentation for the
itk::ParameterizedMeshASCIIReader class. Use SetFilePrefix() to specify the filename, which
will be extended with the pts-, fce- and par-extensions.

References

[1] J. Arvo. Fast random rotation matrices. In David Kirk, editor, Graphics Gems III, pages 117–120.
Academic Press, 1992. 4.1
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[8] A. Ericsson and K. Åström. Minimizing the description length using steepest descent. In Proc. British
Machine Vision Conference, pages 93–102, 2003. 4.2

[9] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. In N. A. Dodg-
son, M. S. Floater, and M. A. Sabin, editors, Advances in Multiresolution for Geometric Modelling,
Mathematics and Visualization, pages 157–186. Springer, Berlin, Heidelberg, 2005. 3

[10] C. Goodall. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical
Society, 53(2):285–339, 1991. A.8

[11] Craig Gotsman, Xianfeng Gu, and Alla Sheffer. Fundamentals of spherical parameterization for 3D
meshes. ACM Trans. Graph., 22(3):358–363, 2003. 3.1

[12] Xianfeng Gu, Yalin Wang, Tony F. Chan, Paul M. Thompson, and Shing-Tung Yau. Genus zero surface
conformal mapping and its application to brain surface mapping. In Proc. IPMI, pages 172–184, 2003.
3.1, A.4

[13] Tobias Heimann, Ivo Wolf, Tomos Williams, and Hans-Peter Meinzer. 3D active shape models using
gradient descent optimization of description length. In Proc. IPMI, pages 566–577. Springer, 2005. 1,
5.1

[14] Dan Kalman. A singularly valuable decomposition: The SVD of a matrix. College Math Journal,
27(1):2–23, 1996. 2.1

[15] J. J. Koenderink. Solid Shape. MIT Press, 1990. 1, 2.3

[16] D. Meier and E. Fisher. Parameter space warping: Shape-based correspondence between morphologi-
cally different objects. Trans. Med. Imag, 21(1):31–47, 2002. 1
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