
=1

Open Source Software in the Development and
Testing of an Image-Guided Robot System

Release 1.00

Peter Kazanzides

July 10, 2006

Department of Computer Science, Johns Hopkins University,USA, pkaz@cs.jhu.edu

Abstract

This paper describes the use of open source software in the development and testing of an image-guided
robot system for small animal research, presented at MICCAI2006[5]. This system relied on a signif-
icant amount of open source software, including 3D Slicer, VTK, our owncisst software, the NetLib
numerical methods, Python, and wxPython (which uses wxWidgets). In addition, several open source
development tools were used, including CVS, CMake, and Swig. The paper will be accompanied by the
source code and raw data that were used to obtain the results presented at MICCAI.

Contents

1 Introduction 1

2 Image Guided Robot System for Small Animal Research 2
2.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Software Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Application Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Robot Control Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Software for Phantom Experiments 6
3.1 Data Collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Data Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Conclusions 7

1 Introduction

We developed an image-guided robot system to assist with cancer research at the Memorial Sloan Kettering
Cancer Center (MSKCC) in New York City. The initial application for the robot system is to verify the



2

efficacy of PET scans, with various radioactive tracers, forlocating hypoxic cancer cells prior to radiation
treatment. This is important because hypoxic cells are resistant to radiation and therefore treatment can be
improved by tailoring the radiation dosage directed at them. Therefore, the basic requirement for the robot
system is to insert an oxygen measurement probe in a three-dimensional (3D) grid pattern defined with
respect to a PET scan of a tumor. Anticipated future applications include biopsy and injection of adenoviral
sequences for gene therapy, based on CT or MRI images, so the initial requirements specified a design
compatible with PET, CT, and MRI imaging modalities.

The design and validation of the system are presented at the MICCAI 2006 conference[5] and are summa-
rized below. The next section includes information about the incorporation of open source software, such
3D Slicer (www.slicer.org), and describes the robot control software in detail. Section 3.1 presents the
software environment that was used to collect the data for the results presented at MICCAI 2006. A key
point is that we found it more convenient to use Python scripts, with our Interactive Research Environment
(IRE)[6], to collect data with the robot. Section3.2describes the software that was used to analyze the raw
data. This software is based on our open sourcecisst software package (www.cisst.org/cisst), which
uses some NetLib numerical methods (www.netlib.org).

2 Image Guided Robot System for Small Animal Research

2.1 System Design

As shown in Fig.1, the system consists of a a mobile cart that houses the electronics and provides a table
top for the four axis robot and display. The robot is composedof of a two degree-of-freedom X-Y horizontal
platform and two vertical slides (Z1, Z2). The rodent bed (Fig. 2) is mounted on the X-Y platform. The
Z1 axis positions a cannula at the skin surface and the Z2 axisdrives the measurement probe (or needle, in
the future) through the cannula. The rodent bed fits inside the bore of the small animal imaging scanners at
MSKCC and contains 4 markers (fiducials) to enable the registration between image and robot coordinates.
The user provides initial estimates of the marker positionsin the image, which are then refined by image
processing operations in the application software. The user manually guides the robot’s registration probe
(mounted in place of the cannula) to the marker positions using a force control mode[7]. The image to robot
transformation is computed from the 4 marker positions in image and robot coordinates.

The robot controller consists of a rackmount computer connected via Ethernet to a DMC-2143 controller
board and AMP-20540 power amplifier (Galil Motion Control, Rocklin, CA, USA). The controller provides
low-level servo control of the four robot motors. Application software on the PC sends position goals via
Ethernet to the controller, which then moves each joint to its goal. The power amplifier provides eight analog
inputs, three of which are used for the interface to the XY andZ1 force sensors that enable the force control
mode described above.

2.2 Software Design

The software consists of two primary modules: the application (visualization) software, based on the open
source 3D Slicer package, and the robot control software, which is a C++ “wrapper” class around the Galil
API. The robot control software uses portions of our open sourcecisst package.

www.slicer.org
www.cisst.org/cisst
www.netlib.org


2.2 Software Design 3

Figure 1: Robot system

Figure 2:Rodent bed with marker bridge

Figure 3:Measurement track in PET

Application Software

The requirements for the application software are to provide visualization of PET (and eventually CT and
MRI) image data, compute the registration between image androbot coordinates, and guide the user through
the steps of the procedure, as outlined in [5]. The main steps are:

1. Load and display the PET image data.

2. Allow the user to locate the 4 markers in the image.

3. Allow the user to guide the robot’s registration probe to the 4 markers.

4. Compute the registration between image and robot coordinates.

5. Allow the user to specify a set of measurement tracks on thePET image (see Fig.3).

6. Move the robot to the specified points and record the probe measurements and corresponding voxel
intensities.

We satisfied all the requirements by using the 3D Slicer software, with the addition of custom modules for
the following:



2.2 Software Design 4

1. A module (vtkRodent), added to the Slicer modules directory, for reading the PET image and control-
ling the robot. This module includes C++ code that is linked with the robot control library, described
in Section2.2, and a TCL script, Rodent.tcl, that handles the integrationwith Slicer.

2. A region growing filter that was added to the Slicer base software. This was used to find the centroids
of the markers in the PET image, based on seed points identified by the user.

3. A standalone executable, invoked from Rodent.tcl, that performs the image to robot registration. This
program expects an input text file containing the positions of the 4 markers in image and robot coor-
dinates and outputs a text file with the 6 transformation parameters (3 translations and 3 rotations).

The vtkRodent module consists of the C++ source files vtkRodent.h and vtkRodent.cxx, and the TCL script,
Rodent.tcl. The vtkRodent.h file defines thevtkRodent class, which includes a member object of type
mskccRobot, described in the following section. The vtkRodent.cxx fileincludes wrappers formskccRobot
methods; for example, thevtkRodent::SetSpeed method calls themskccRobot::SetSpeed method. Be-
causemskccRobot member functions can throw exceptions, the correspondingvtkRodent member func-
tions usetry...catch blocks to catch them; otherwise, the application software would crash if an exception
was thrown. The vtkRodent module also includes code for reading the PET image, in a proprietary format,
and transforming it into a format readable by Slicer.

The region growing filter probably should have been put in themodules directory (if we were more proficient
with Slicer) or replaced by an existing ITK filter (if we were more familiar with ITK). Therefore, it will not
be discussed further.

The registration method was implemented as a separate executable so that it could be used to process test
data collected outside the Slicer-based application program. As noted in [5], this software currently uses
an iterative method, based on a variation of Powell’s method, but the test data was analyzed using the well-
known closed form solution based on a matrix singular value decomposition (SVD) [1][9] and we intend to
use this for the application in the near future. Therefore, Section3.2 will present the registration software
that was actually used for the data analysis.

Robot Control Software

Figure 4 depicts the architecture of a typical robot controller. We used a commercially-available Galil
motion controller board that provides the low-level servo control software. We were also able to implement
the supervisory (trajectory) control loop on the controller board due to the following simplifying factors:

1. Our robot system is a Cartesian design (X, Y, Z1, and Z2), somotion in Cartesian coordinates is
equivalent to motion in joint coordinates (i.e., no kinematic computations are required).

2. We used force sensors that provided analog outputs corresponding to forces applied on the X, Y, and
Z1 axes. Therefore, we did not require kinematics or coordinate transformations for the force control
mode.

Thus, our robot control library consists of a C++ wrapper class,mskccRobot, for the API provided by the
Galil motion controller (see files mskccRobot.h and mskccRobot.cpp). This class also contains a small
supervisory control loop that is written in the Galil-specific interpreted language and is downloaded to the
controller during initialization (see theforce controller character array in mskccRobot.cpp).



2.2 Software Design 5

Figure 4: Robot Controller Architecture Figure 5: IRE User Interface

The robot control library relies on thecisstCommon and cisstVector libraries from the open sourcecisst
software package. We did not use thecisstDeviceInterface library, described in [6],[4], because it was not
available when we began the project.

The mskccRobot class, and thecisstCommon and cisstVector classes, are automatically wrapped for use
with Python by the open source Swig tool (www.swig.org). The existence of a Python interface to the
C++ software proved invaluable during system development. Historically, all robot programming languages
have been interpreted, rather than compiled, because this enables interactivity between the user, the software,
and the robot. Although graphical user interfaces are nice,there is a limit to the number of buttons and
controls that can be displayed before overwhelming the user(not to mention the amount of effort necessary
to create all these items). By automatically wrapping everypublic member function, it is possible for the
user to invoke any class operation from the interpreter command line. Although any interpreted language
could have been used, we chose Python because it is a modern object-oriented programming language that
has a syntax similar to C++. Because our software is written in C++, it is logical to have an interactive shell
that is familiar to C++ programmers.

We created the Interactive Research Environment (IRE), Fig. 5, to provide an interactive environment that is
more user-friendly than the standard Python shell [6]. The IRE relies on the open source wxPython package
(www.wxPython.org), which includes:

• A Python interface to the open source wxWidgets cross-platform GUI package
(www.wxWidgets.org), which is written in C++.

• The Py package (formerly PyCrust), which contains a GUI-based Python shell with features such as
command completion, calltips, and history.

The cisst package facilitates the integration of the IRE into C++ programs (e.g., via an “IRE” button in
the graphical user interface). ThecisstCommon library provides anobject registry that enables the Python
and C++ software to share objects. This is especially useful when embedding the Python interpreter in an
application, using thecisstInteractive library, because it allows the user to modify C++ objects from the
Python interpreter. Although the Python interface was not used with the Slicer-based application software,
it proved valuable for system testing and all robot data reported in [5] was collected using the Python test
programs described in Section3.1.

www.swig.org
www.wxPython.org
www.wxWidgets.org


6

3 Software for Phantom Experiments

The experiments reported in [5] were performed with a phan-

Figure 6: Phantom

tom (Fig. 6) that contains 20 small hemispherical holes (and
larger holes that were not used) at 5 different heights. Four
of these holes (1, 3, 10, 11) are designated theregistration
markers because they are arranged in the same pattern as the
four markers on the rodent bed. The phantom is constructed of
Delrin for compatibility with all image modalities of interest
(PET, CT, MRI) and was accurately machined using a CNC.

For microPET imaging of the phantom, the hemispherical
holes were filled with contrast agent (radioactive tracer).After
scanning, the Slicer-based application software was used to find the centroid of each marker in the image.
For the robot measurements, the robot’s registration probewas manually guided to each accessible hole,
using the Python test program described below.

3.1 Data Collection

The attached Python test program, collect.py, was used for the data collection. TheCollectAll function
uses the known CNC coordinates to facilitate the data collection process by moving the robot’s registration
probe to the vicinity of each of the 20 markers (this assumes that the CNC coordinate system is roughly
aligned with the robot coordinate system). TheCollect function is called to find the position of each
marker. The procedure is as follows:

1. Put the robot in force control mode so that the user can guide the registration probe to the marker.

2. When the Enter key is pressed, record the robot’s positionand then slowly move the probe 2.5 mm
above the marker.

3. Query whether the user wishes to collect the point again. If so, go back to Step 1.

We found this method to be necessary to handle errors due to compliance. The registration probe would
often deflect when manually placed in the hemispherical hole; this deflection was evident when the probe
was retracted in Step 2. An alternative solution would have been to automate the procedure by using the
force feedback to seat the ball inside the hole (similar to the ball-in-cone method reported in [7]). This was
not possible, however, due to limitations of the low-cost force sensors used for this system.

3.2 Data Analysis

The key results in [5] were measurements of the Target Registration Error (TRE) and the Fiducial Local-
ization Error (FLE) for the image and robot markers (for a definition of these terms, see [8]). We used two
methods for estimating the FLE:

1. Compute the Fiducial Registration Error (FRE) that results from matching the marker positions in the
image or robot coordinate system with the known marker positions (in CNC coordinates). Estimate
FLE from FRE using the equation given in [3] (equation (3) in [5]). To improve the robustness of the
estimate, all available markers (14 image, 16 robot) are used for the registration.



7

2. Compute the Fiducial Distance Error (FDE), which is the difference, for each pair of markers, between
the measured distance and the known distance (seeDistances.cpp) [5]. FLE is estimated from FDE
using an empirical relationship that was determined by simulation.

The TRE was obtained by computing the transformation between image and robot coordinates (using the 4
registration markers) and then transforming all other markers into a common coordinate system. The TRE
is the mean value of the error (distance) between each set of corresponding points.

Both the FLE computation (first method) and the TRE computation require a registration between a num-
ber of paired points. We created an analysis program,Accuracy.cpp, based on the method described by
Arun[1], as modified by Umeyama[9] to handle cases where the determinant is -1. This program used the
fixed size vector and matrix classes provided bycisstVector and the SVD function,nmrSVD, provided by the
cisstNumerical wrapping of the LAPACK3E method (www.netlib.org). As a result, the amount of new
code required to implement the registration was minimal.

The analysis program expects one or two command line arguments that specify the file names of the input
data. If one file name is specified, the program performs a registration between the CNC coordinates (hard-
coded in the program) and the specified input data (image or robot coordinates), using all available markers.
This provides the FRE that is used to estimate FLE using the first method described above. If two file names
are specified, the program performs a registration, using the four registration markers, between the two data
sets (e.g., image and robot coordinates). The program then transforms all marker positions to the same
coordinate system and computes the difference between eachmatched pair of markers. The TRE is obtained
by computing the mean difference between the marker pairs that were not used for registration. The raw
data and the software files used to process the data are attached to this paper.

4 Conclusions

We constructed an image-guided robot system to assist with cancer research and performed phantom ex-
periments to measure its accuracy. Both the construction and phantom experiments benefited significantly
from the use of open source software. The 3D Slicer software package provided the bulk of the application
software – it was only necessary for us to add custom modules for reading the PET image data (proprietary
format), locating the marker centroids in the image, performing the image to robot registration, and control-
ling the motion of the robot. Although we do not consider ourselves proficient in the use of 3D Slicer, it
was still easy enough for us to accomplish our goals. Our taskwould have been even easier if we had been
more experienced with Slicer and ITK; it is likely that some of our custom modules (e.g., locating marker
centroids, performing image to robot registration) are already available in these packages.

The robot control module and the test and analysis software benefited from the open sourcecisst software
developed in our lab and available atwww.cisst.org/cisst. This was the first time that we used the Galil
motion controller, so we did not already have a device interface for it. Furthermore, thecisstDeviceInterface
library was not mature when we began this project, so our solution (themskccRobot class described earlier)
is not compatible with it. We plan to create addiGalil class, derived fromddiDeviceInterface, that
uses the Command Pattern mechanism described in [6].

3D Slicer andcisst also utilize a number of other open source software packages, such as VTK for visualiza-
tion, TCL and Python for scripting, and wxPython/wxWidgetsfor cross-platform GUI development. Most
of our development tools are also open source, as described in [6]. In fact, the only proprietary software used
for this project is Microsoft Windows, Microsoft Visual Studio.NET 2003, and the Galil drivers (binaries
available fromwww.galilmc.com/support/download.html).

www.netlib.org
www.cisst.org/cisst
www.galilmc.com/support/download.html


References 8

The existence of these open source software packages facilitated the development and testing of this image-
guided robot, so that it could be made available for cancer research as quickly as possible. The robot was
installed at MSKCC in January 2005 and is currently in experimental use[2].

Acknowledgments

Emese Balogh performed the initial implementation, at JHU,of many of the 3D Slicer modules, including
the software for reading the PET image data, locating the marker centroids in the images, and wrapping
the robot control library for use with Slicer. Jenghwa Changmade improvements to these modules at
MSKCC. Iulian Iordachita and Jack Li performed the mechanical design and assembly of the robot system.
Anton Deguet, Ofri Sadowsky, Ankur Kapoor, and Andy LaMora contributed to the development of the
cisst package. Bixiu Wen, Pat Zanzonico, Andrei Pugachev, Qing Chen, Jose Campa, and C. Clifton Ling
provided valuable assistance and input at MSKCC. Gabor Fichtinger and Russell Taylor provided assistance
and advice at JHU. This work is supported by NIH RO1 CA84596 and NSF EEC 9731748.

References

[1] K.S. Arun, T.S. Huang, and S.D. Blostein. Least-squaresfitting of two 3-D point sets.IEEE Trans. on
Pattern Analysis and Machine Intelligence, 9(5):698–700, Sep 1987.2.2, 3.2

[2] J. Chang, B. Wen, P. Kazanzides, P. Zanzonico, R. Finn, and C. Ling. PO2 measurements in animal
tumors using an image-guided robotic system. InAAPM 48th Annual Meeting, Orlando, FL, Aug 2006.
4

[3] J.M. Fitzpatrick, J.B. West, and C.R. Maurer. Predicting error in rigid-body point-based registration.
IEEE Trans. on Medical Imaging, 17(5):694–702, Oct 1998.1

[4] A. Kapoor, A. Deguet, and P. Kazanzides. Software components and frameworks for medical robot
control. InIEEE Intl. Conf. on Robotics and Automation, pages 3813–3818, Orlando, FL, May 2006.
2.2

[5] P. Kazanzides, J. Chang, I. Iordachita, J. Li, C. Ling, and G. Fichtinger. Design and validation of
an image-guided robot for small animal research. InMICCAI, Copenhagen, Denmark, Oct 2006.
(document), 1, 2.2, 2.2, 2.2, 3, 3.2, 1, 2

[6] P. Kazanzides, A. Deguet, A. Kapoor, O. Sadowsky, A. LaMora, and R. Taylor. Development of open
source software for computer-assisted intervention systems. 1, 2.2, 4

[7] P. Kazanzides, J. Zuhars, B. Mittelstadt, and R.H. Taylor. Force sensing and control for a surgical robot.
In IEEE Intl. Conf. on Robotics and Automation, pages 612–617, Nice, France, May 1992.2.1, 3.1

[8] C.R. Maurer, J.M. Fitzpatrick, M.Y. Wang, R.L. Galloway, R.J. Maciunas, and G.S. Allen. Registra-
tion of head volume images using implantable fiducial markers. IEEE Trans. on Medical Imaging,
16(4):447–462, Aug 1997.3.2

[9] S. Umeyama. Least-squares estimation of transformation parameters between two point patterns.IEEE
Trans. Pattern Anal. and Mach. Intell., 13(4):376–380, Apr 1991.2.2, 3.2


	Introduction
	Image Guided Robot System for Small Animal Research
	System Design
	Software Design
	Application Software
	Robot Control Software


	Software for Phantom Experiments
	Data Collection
	Data Analysis

	Conclusions

