Open Source Software in the Development and
Testing of an Image-Guided Robot System

Release 1.00
Peter Kazanzides

July 10, 2006
Department of Computer Science, Johns Hopkins UniveldBA, pkaz@cs.jhu.edu

Abstract

This paper describes the use of open source software in edogenent and testing of an image-guided
robot system for small animal research, presented at MICZDA6B]. This system relied on a signif-
icant amount of open source software, including 3D SlicefKVour owncisst software, the NetLib
numerical methods, Python, and wxPython (which uses wx¥fg)g In addition, several open source
development tools were used, including CVS, CMake, and Swhg paper will be accompanied by the
source code and raw data that were used to obtain the resedsnied at MICCAI.

Contents
1 Introduction 1
2 Image Guided Robot System for Small Animal Research 2
2.1 System Design. . . . . . e e e e e e e 2
2.2 Software Design . . . . . . . . e e e e e e 2
Application Software. . . . . . . . ... e e 3
Robot Control Software . . . . . . . . . . . e e 4
3 Software for Phantom Experiments 6
3.1 DatacCollection. . . . . . . . . e 6
3.2 DataAnalysis. . . . . . . . e 6
4 Conclusions 7

1 Introduction

We developed an image-guided robot system to assist wittecaasearch at the Memorial Sloan Kettering
Cancer Center (MSKCC) in New York City. The initial appliat for the robot system is to verify the



efficacy of PET scans, with various radioactive tracers]doating hypoxic cancer cells prior to radiation
treatment. This is important because hypoxic cells aretadi to radiation and therefore treatment can be
improved by tailoring the radiation dosage directed at th&herefore, the basic requirement for the robot
system is to insert an oxygen measurement probe in a thmeendional (3D) grid pattern defined with
respect to a PET scan of a tumor. Anticipated future appdicatinclude biopsy and injection of adenoviral
sequences for gene therapy, based on CT or MRI images, soitia iequirements specified a design
compatible with PET, CT, and MRI imaging modalities.

The design and validation of the system are presented at lBEM 2006 conferencd]] and are summa-
rized below. The next section includes information aboetititorporation of open source software, such
3D Slicer (ww. sl i cer. org), and describes the robot control software in detail. $a@il presents the
software environment that was used to collect the data ®rékults presented at MICCAI 2006. A key
point is that we found it more convenient to use Python sgriwith our Interactive Research Environment
(IRE)[6], to collect data with the robot. Sectié2 describes the software that was used to analyze the raw
data. This software is based on our open sougis® software packagemwv. ci sst. org/ ci sst), which
uses some NetLib numerical methodes. net | i b. or g).

2 Image Guided Robot System for Small Animal Research

2.1 System Design

As shown in Fig.1, the system consists of a a mobile cart that houses the @lexdtrand provides a table
top for the four axis robot and display. The robot is compasfeaf a two degree-of-freedom X-Y horizontal
platform and two vertical slides (Z1, Z2). The rodent bedy(F2) is mounted on the X-Y platform. The
Z1 axis positions a cannula at the skin surface and the Z2daixiss the measurement probe (or needle, in
the future) through the cannula. The rodent bed fits insidéotire of the small animal imaging scanners at
MSKCC and contains 4 markers (fiducials) to enable the megish between image and robot coordinates.
The user provides initial estimates of the marker positionthe image, which are then refined by image
processing operations in the application software. The ms@ually guides the robot’s registration probe
(mounted in place of the cannula) to the marker positionsguaiforce control modé[. The image to robot
transformation is computed from the 4 marker positions iagmand robot coordinates.

The robot controller consists of a rackmount computer comkvia Ethernet to a DMC-2143 controller
board and AMP-20540 power amplifier (Galil Motion ControbdRlin, CA, USA). The controller provides
low-level servo control of the four robot motors. Applicati software on the PC sends position goals via
Ethernet to the controller, which then moves each jointstgdal. The power amplifier provides eight analog
inputs, three of which are used for the interface to the XY ahdorce sensors that enable the force control
mode described above.

2.2 Software Design

The software consists of two primary modules: the applcatvisualization) software, based on the open
source 3D Slicer package, and the robot control softwareghik a Ct+ “wrapper” class around the Galil
API. The robot control software uses portions of our opernaeisst package.


www.slicer.org
www.cisst.org/cisst
www.netlib.org

2.2 Software Design 3

Figure 2:Rodent bed with marker bridg

_-lox|

Figure 1: Robot system Figure 3:Measurement track in PET

Application Software

The requirements for the application software are to pmvwidualization of PET (and eventually CT and
MRI) image data, compute the registration between imageamt coordinates, and guide the user through
the steps of the procedure, as outlinedSh The main steps are:

Load and display the PET image data.

Allow the user to locate the 4 markers in the image.

Allow the user to guide the robot's registration probeht® 4 markers.

Compute the registration between image and robot coatein

Allow the user to specify a set of measurement tracks o EiEimage (see Fid).

o g > w bh P

. Move the robot to the specified points and record the probasorements and corresponding voxel
intensities.

We satisfied all the requirements by using the 3D Slicer sofwwith the addition of custom modules for
the following:



2.2 Software Design 4

1. A module (vtkRodent), added to the Slicer modules dirgctor reading the PET image and control-
ling the robot. This module includest@ code that is linked with the robot control library, descdbe
in Section2.2, and a TCL script, Rodent.tcl, that handles the integratidh Slicer.

2. Aregion growing filter that was added to the Slicer basensok. This was used to find the centroids
of the markers in the PET image, based on seed points idenbyi¢he user.

3. A standalone executable, invoked from Rodent.tcl, tediopms the image to robot registration. This
program expects an input text file containing the positidrhi® 4 markers in image and robot coor-
dinates and outputs a text file with the 6 transformation patars (3 translations and 3 rotations).

The vtkRodent module consists of theé-€source files vtkRodent.h and vtkRodent.cxx, and the TClpscri
Rodent.tcl. The vtkRodent.h file defines thiekRodent class, which includes a member object of type
mekccRobot , described in the following section. The vtkRodent.cxx ifileludes wrappers farskccRobot
methods; for example, the kRodent : : Set Speed method calls theskccRobot : : Set Speed method. Be-
causemskccRobot member functions can throw exceptions, the correspondik@odent member func-
tionsusery. .. cat ch blocks to catch them; otherwise, the application softwavaldicrash if an exception
was thrown. The vtkRodent module also includes code foringathe PET image, in a proprietary format,
and transforming it into a format readable by Slicer.

The region growing filter probably should have been put imtleelules directory (if we were more proficient
with Slicer) or replaced by an existing ITK filter (if we wereone familiar with ITK). Therefore, it will not
be discussed further.

The registration method was implemented as a separatetakézso that it could be used to process test
data collected outside the Slicer-based application pragrAs noted in%], this software currently uses
an iterative method, based on a variation of Powell's methatithe test data was analyzed using the well-
known closed form solution based on a matrix singular vakmochposition (SVD) ][9] and we intend to
use this for the application in the near future. Therefoexgti®n3.2 will present the registration software
that was actually used for the data analysis.

Robot Control Software

Figure 4 depicts the architecture of a typical robot controller. Vedia commercially-available Galil
motion controller board that provides the low-level sereatcol software. We were also able to implement
the supervisory (trajectory) control loop on the controbeard due to the following simplifying factors:

1. Our robot system is a Cartesian design (X, Y, Z1, and Z2)neton in Cartesian coordinates is
equivalent to motion in joint coordinates (i.e., no kineilmabmputations are required).

2. We used force sensors that provided analog outputs pordig to forces applied on the X, Y, and
Z1 axes. Therefore, we did not require kinematics or coatditransformations for the force control
mode.

Thus, our robot control library consists of a€wrapper classyskccRobot , for the API provided by the
Galil motion controller (see files mskccRobot.h and mskdziR@pp). This class also contains a small
supervisory control loop that is written in the Galil-sgacinterpreted language and is downloaded to the
controller during initialization (see theor ce_control | er character array in mskccRobot.cpp).



2.2 Software Design 5

Application Trajectory Control Servo Control
(non-real-time) (100 Hz typ.) (1000 Hz typ.)
T
Compute Goal Interpolate o
API on Trajectory Setpoint E-
5]
o
Compute Joint Compute
Goals Control
Figure 4: Robot Controller Architecture Figure 5: IRE User Interface

The robot control library relies on thesstCommon and cisstVector libraries from the open souragsst
software package. We did not use tisstDevicelnterface library, described in§],[4], because it was not
available when we began the project.

ThenskccRobot class, and theisstCommon and cisstVector classes, are automatically wrapped for use
with Python by the open source Swig to@wy. swi g. org). The existence of a Python interface to the
C++ software proved invaluable during system developmentiorcally, all robot programming languages
have been interpreted, rather than compiled, becausenthiidess interactivity between the user, the software,
and the robot. Although graphical user interfaces are rleere is a limit to the number of buttons and
controls that can be displayed before overwhelming the @metrto mention the amount of effort necessary
to create all these items). By automatically wrapping eyarglic member function, it is possible for the
user to invoke any class operation from the interpreter candrline. Although any interpreted language
could have been used, we chose Python because it is a modectratiented programming language that
has a syntax similar to€+. Because our software is written int€, it is logical to have an interactive shell
that is familiar to G-+ programmers.

We created the Interactive Research Environment (IRE), ;i@ provide an interactive environment that is
more user-friendly than the standard Python sl@&lIThe IRE relies on the open source wxPython package
(www. wxPyt hon. or g), which includes:

e A Python interface to the open source wxWidgets crossaiatf GUI package
(www. wxW dget s. or g), which is written in G-+.

e The Py package (formerly PyCrust), which contains a GUkH&ython shell with features such as
command completion, calltips, and history.

The cisst package facilitates the integration of the IRE inté+Cprograms (e.g., via an “IRE” button in
the graphical user interface). ThisstCommon library provides arobject registry that enables the Python
and C++ software to share objects. This is especially useful whebeelting the Python interpreter in an
application, using theisstinteractive library, because it allows the user to modify-€ objects from the
Python interpreter. Although the Python interface was seiduwith the Slicer-based application software,
it proved valuable for system testing and all robot data megloin [5] was collected using the Python test
programs described in Secti@mlL


www.swig.org
www.wxPython.org
www.wxWidgets.org

3 Software for Phantom Experiments

The experiments reported iB][were performed with a phan-

tom (Fig. 6) that contains 20 small hemispherical holes (an [ JTE]
larger holes that were not used) at 5 different heights. Fo N @:
of these holes (1, 3, 10, 11) are designated rtgestration [c1]] “T[8]
markers because they are arranged in the same pattern as t ) : @:
four markers on the rodent bed. The phantom is constructed of (3] E
Delrin for compatibility with all image modalities of intest ' @/:
(PET, CT, MRI) and was accurately machined using a CNC. o] 1° Tl

For microPET imaging of the phantom, the hemispherical

holes were filled with contrast agent (radioactive tracafjer Figure 6: Phantom

scanning, the Slicer-based application software was wsé&dd the centroid of each marker in the image.
For the robot measurements, the robot’s registration pvadee manually guided to each accessible hole,
using the Python test program described below.

3.1 Data Collection

The attached Python test program, collect.py, was used&data collection. Théol | ect All function
uses the known CNC coordinates to facilitate the data dadle@rocess by moving the robot’s registration
probe to the vicinity of each of the 20 markers (this assurhasthe CNC coordinate system is roughly
aligned with the robot coordinate system). Tém® | ect function is called to find the position of each
marker. The procedure is as follows:

1. Put the robot in force control mode so that the user caregiiel registration probe to the marker.

2. When the Enter key is pressed, record the robot’s posarahthen slowly move the probe 2.5 mm
above the marker.

3. Query whether the user wishes to collect the point aghsuo,lgo back to Step 1.

We found this method to be necessary to handle errors duempl@mce. The registration probe would
often deflect when manually placed in the hemispherical;thbie deflection was evident when the probe
was retracted in Step 2. An alternative solution would hasenbto automate the procedure by using the
force feedback to seat the ball inside the hole (similar ¢éotthll-in-cone method reported i]]. This was
not possible, however, due to limitations of the low-costéosensors used for this system.

3.2 Data Analysis

The key results ing] were measurements of the Target Registration Error (TRE)the Fiducial Local-
ization Error (FLE) for the image and robot markers (for am&éin of these terms, se&]). We used two
methods for estimating the FLE:

1. Compute the Fiducial Registration Error (FRE) that rssfubm matching the marker positions in the
image or robot coordinate system with the known marker posit(in CNC coordinates). Estimate
FLE from FRE using the equation given i8] [[equation (3) in §]). To improve the robustness of the
estimate, all available markers (14 image, 16 robot) ard taethe registration.



2. Compute the Fiducial Distance Error (FDE), which is tHeedence, for each pair of markers, between
the measured distance and the known distanceDjsgeances. cpp) [5]. FLE is estimated from FDE
using an empirical relationship that was determined by Kitian.

The TRE was obtained by computing the transformation betireage and robot coordinates (using the 4
registration markers) and then transforming all other mexrknto a common coordinate system. The TRE
is the mean value of the error (distance) between each setr@sponding points.

Both the FLE computation (first method) and the TRE compomatequire a registration between a num-
ber of paired points. We created an analysis progwaour acy. cpp, based on the method described by
Arun[1], as modified by Umeyam€é] to handle cases where the determinant is -1. This prograd the
fixed size vector and matrix classes providectisgt\Vector and the SVD functionpnr SVD, provided by the
cisstNumerical wrapping of the LAPACK3E methodmw. net i b. org). As a result, the amount of new
code required to implement the registration was minimal.

The analysis program expects one or two command line argisntiggt specify the file names of the input
data. If one file name is specified, the program performs atradgjion between the CNC coordinates (hard-
coded in the program) and the specified input data (imagebat mmordinates), using all available markers.
This provides the FRE that is used to estimate FLE using tsienfiethod described above. If two file names
are specified, the program performs a registration, usiadatr registration markers, between the two data
sets (e.g., image and robot coordinates). The program thesforms all marker positions to the same
coordinate system and computes the difference betweemegtched pair of markers. The TRE is obtained
by computing the mean difference between the marker padtsvikre not used for registration. The raw
data and the software files used to process the data areeattacthis paper.

4 Conclusions

We constructed an image-guided robot system to assist @ither research and performed phantom ex-
periments to measure its accuracy. Both the constructidrphantom experiments benefited significantly
from the use of open source software. The 3D Slicer softwackame provided the bulk of the application
software — it was only necessary for us to add custom modategéding the PET image data (proprietary
format), locating the marker centroids in the image, penfag the image to robot registration, and control-
ling the motion of the robot. Although we do not consider elrss proficient in the use of 3D Slicer, it
was still easy enough for us to accomplish our goals. Ourwamkd have been even easier if we had been
more experienced with Slicer and ITK; it is likely that sonfeoar custom modules (e.g., locating marker
centroids, performing image to robot registration) areadly available in these packages.

The robot control module and the test and analysis softwanefiied from the open sourcesst software
developed in our lab and availablevatn. ci sst . or g/ ci sst . This was the first time that we used the Galil
motion controller, so we did not already have a device iateffor it. Furthermore, th@sstDevicel nterface
library was not mature when we began this project, so outisal{thenskccRobot class described earlier)
is not compatible with it. We plan to createddi Gal i | class, derived fromldi Devi cel nt er f ace, that
uses the Command Pattern mechanism describeg].in [

3D Slicer anctisst also utilize a number of other open source software packageh as VTK for visualiza-
tion, TCL and Python for scripting, and wxPython/wxWidgéis cross-platform GUI development. Most
of our development tools are also open source, as descrijef In fact, the only proprietary software used
for this project is Microsoft Windows, Microsoft Visual Stio.NET 2003, and the Galil drivers (binaries
available fromwww. gal i | mc. cont support/ downl oad. htmi ).


www.netlib.org
www.cisst.org/cisst
www.galilmc.com/support/download.html

References 8

The existence of these open source software packagesdiaalthe development and testing of this image-
guided robot, so that it could be made available for cancsgareh as quickly as possible. The robot was
installed at MSKCC in January 2005 and is currently in experital usef].

Acknowledgments

Emese Balogh performed the initial implementation, at JefUnany of the 3D Slicer modules, including
the software for reading the PET image data, locating thekenarentroids in the images, and wrapping
the robot control library for use with Slicer. Jenghwa Changde improvements to these modules at
MSKCC. lulian lordachita and Jack Li performed the mechalniesign and assembly of the robot system.
Anton Deguet, Ofri Sadowsky, Ankur Kapoor, and Andy LaMommfributed to the development of the
cisst package. Bixiu Wen, Pat Zanzonico, Andrei Pugachev, QingnChose Campa, and C. Clifton Ling
provided valuable assistance and input at MSKCC. GabotiRgdr and Russell Taylor provided assistance
and advice at JHU. This work is supported by NIH RO1 CA84596 d6F EEC 9731748.

References

[1] K.S. Arun, T.S. Huang, and S.D. Blostein. Least-squditéag of two 3-D point sets|EEE Trans. on
Pattern Analysis and Machine Intelligence, 9(5):698—700, Sep 1982.2, 3.2

[2] J. Chang, B. Wen, P. Kazanzides, P. Zanzonico, R. Find,&nLing. PO2 measurements in animal
tumors using an image-guided robotic systemA&PM 48th Annual Meseting, Orlando, FL, Aug 2006.
4

[3] J.M. Fitzpatrick, J.B. West, and C.R. Maurer. Predigterror in rigid-body point-based registration.
|EEE Trans. on Medical Imaging, 17(5):694—702, Oct 1994

[4] A. Kapoor, A. Deguet, and P. Kazanzides. Software comeptsrand frameworks for medical robot
control. InIEEE Intl. Conf. on Robotics and Automation, pages 3813—-3818, Orlando, FL, May 2006.
2.2

[5] P. Kazanzides, J. Chang, I. lordachita, J. Li, C. Lingd &. Fichtinger. Design and validation of
an image-guided robot for small animal research. MHCCAI, Copenhagen, Denmark, Oct 2006.
(document)1,2.2,2.2,2.2 3,3.2 1,2

[6] P. Kazanzides, A. Deguet, A. Kapoor, O. Sadowsky, A. Ladl@and R. Taylor. Development of open
source software for computer-assisted intervention systé, 2.2, 4

[7] P. Kazanzides, J. Zuhars, B. Mittelstadt, and R.H. Tey#orce sensing and control for a surgical robot.
In |EEE Intl. Conf. on Robotics and Automation, pages 612—617, Nice, France, May 1992, 3.1

[8] C.R. Maurer, J.M. Fitzpatrick, M.Y. Wang, R.L. GallowaR.J. Maciunas, and G.S. Allen. Registra-
tion of head volume images using implantable fiducial markdEEE Trans. on Medical Imaging,
16(4):447-462, Aug 19973.2

[9] S. Umeyama. Least-squares estimation of transformatgmameters between two point patterizEE
Trans. Pattern Anal. and Mach. Intell., 13(4):376—380, Apr 19912.2, 3.2



	Introduction
	Image Guided Robot System for Small Animal Research
	System Design
	Software Design
	Application Software
	Robot Control Software


	Software for Phantom Experiments
	Data Collection
	Data Analysis

	Conclusions

