
Using a Mask to Decrease Computation Time
for SpatialObject to Image Conversions

Release 1.0

Dan Mueller1

July 23, 2006

1Queensland University of Technology, Brisbane, Australia

Abstract

This article presents an approach for decreasing the computational time for converting a sparse

SpatialObject to an Image. The method is applicable for SpatialObjects which occupy less

volume than the total output Image (which occurs often, especially when using TubeSpatialObjects to

represent vessels). A new filter MaskedSpatialObjectToImageFilter is introduced which dramatically

decreases the execution time by creating a mask of relevant pixels. The mask is computed by calling the

conventional SpatialObjectToImageFilter at a lower resolution, which is significantly faster for large

images. The mask is then up-sampled to control which areas are further processed.

Keywords: ITK, SpatialObject, Image, convert, fast, time, speed

1 Introduction

The ITK SpatialObject library provides an effective and powerful mechanism for representing objects as simple

geometric models. For many applications it is useful to convert an SpatialObject model to an Image. Currently the

SpatialObjectToImageFilter can be used in such occasions, however the computational time for conversion of

large images (> 256×256×256 pixels) can be very long.

This article introduces a new filter MaskedSpatialObjectToImageFilter which uses a mask to decrease the time

spent converting sparse SpatialObjects. By ‘sparse’ I mean SpatialObjects which occupy less space than the

output Image. This situation is common, especially for applications using tubes to represent vessels.

In this article I briefly discuss the implementation and usage of the new filter, and demonstrate the speed increases with

a number of ‘toy’ and real datasets.

2 Implementation

2.1 Design

Currently MaskedSpatialObjectToImageFilter extends SpatialObjectToImageFilter and overrides

GenerateData(), however it may be possible to re-factor SpatialObjectToImageFilter::GenerateData()

to allow the sharing of much of this code. Some parameters and helper methods have been added to the new filter.



Using a Mask to Decrease Computation Time for SpatialObject to Image Conversions 2

In terms of additional methods, the GenerateMask() method is the most interesting. If the user does not provide a

mask (as the second input) this method is responsible for automatic mask generation. It does this by converting the

input SpatialObject to a low-resolution mask. The computation of this low-resolution mask is significantly less than

at full-size. A binary dilation is applied to ensure the low-resolution mask covers the required area, and finally the mask

is resampled to full-size.

The MaskedSpatialObjectToImageFilter has two additional parameters:

MaskResampleFactor: this parameter controls the size of the low-resolution mask. The default value is 4.0.

Using this default value, for the example of a 512×512×512 output image, the mask will be generated at the

smaller size of 128×128×128 (which takes orders of magnitude less time than the full-size).

MaskDilationSize: this parameter controls the size of the morphological structuring element used to expand the

mask image. This dilation ensures that the production of the mask at the lower resolution does not miss included

regions. The default value is 2, however this parameter ultimately depends of the MaskResampleFactor.

2.2 Usage

Source code for this section can be found in Testing/itkMaskedSpatialObjectToImageFilterTests.cxx. Using

the new filter is almost identical to SpatialObjectToImageFilter. Firstly we must declare the filter type:

68 typedef itk::GroupSpatialObject <Dimension> GroupType;

69 typedef itk:: MaskedSpatialObjectToImageFilter <GroupType , ImageType >

70 SpatialObjectToImageFilterType;

We now read a GroupType SpatialObject:

75 SpatialReaderType ::Pointer readerSO = SpatialReaderType ::New();

76 readerSO ->SetFileName (InputSpatialObjectFilename );

77 readerSO ->Update();

create the filter, plug-in the input SpatialObject, and setup the various parameters:

80 SpatialObjectToImageFilterType::Pointer filterConvert =

81 SpatialObjectToImageFilterType::New();

82 filterConvert ->SetInput(readerSO ->GetGroup ()); //Set Input

83 SpatialObjectToImageFilterType::SizeType size; //Set Size

84 size [0] = Size0;

85 size [1] = Size1;

86 size [2] = Size2;

87 filterConvert ->SetSize(size );

88 SpatialObjectToImageFilterType:: SpacingType spacing; //Set Spacing

89 spacing[0] = Spacing0;

90 spacing[1] = Spacing1;

91 spacing[2] = Spacing2;

92 filterConvert ->SetSpacing (spacing);

93 filterConvert ->SetUseObjectValue (false); //Setup Parameters

94 filterConvert ->SetInsideValue (itk::NumericTraits <PixelType >::max());

95 filterConvert ->SetOutsideValue (itk::NumericTraits <PixelType >::min());

96 filterConvert ->SetMaskResampleFactor (MaskResampleFactor );

97 filterConvert ->SetMaskDilationSize (MaskDilationSize );

98 filterConvert ->Update();



Using a Mask to Decrease Computation Time for SpatialObject to Image Conversions 3

3 Results

To demonstrate the achieved speed increases I have put together two ‘toy’ examples and two real examples. The real

examples are TubeSpatialObject representations of the coronary arteries extracted from multi-slice spiral computed

tomography angiography (MS-CTA) images. These example files are included with the source code for this article in the

Images folder. Maximum intensity projections (MIP) of the example images are shown in Figure 1, and the dimensions

and spacings are listed in Images/Readme.txt.

(a) Toy1 (b) Toy2 (c) Real1 (d) Real2

Figure 1: Maximum intensity projection (MIP) representations of the example images.

Each of the four input SpatialObjects were converted to an Image using both the original and masked methods.

These conversions were repeated five times and the mean taken as the result. Unfortunately due to the large times

associated with the conversion, the two real datasets were converted to approximate half-size output images (ie. 256×

256× 256). The file Testing/CMakeLists.txt contains the script used to generate the results. The computer

specifications on which these tests were run are as follows: Intel Pentium 4, 2.8GHz dual processors, 1GB RAM, on

Windows XP, with ITK-2.8.1, compiled using Microsoft Visual Studio .NET 7.1. Figure 2 depicts the resulting mean

computational times using both approaches. It can be clearly seen that the new mask-based method is significantly

faster for large, sparse SpatialObjects (ie. Toy2, Real1 and Real2). Even for smaller, less sparse objects (ie. Toy1)

the new method is comparable.

0 1 2 3 4

Original

Mask-based

Toy1

Toy2

0 5 10 15 20

Computational time (minutes)

Real1

Real2

Figure 2: Experimental results of computational time for some ‘toy’ and real datasets.



Using a Mask to Decrease Computation Time for SpatialObject to Image Conversions 4

4 Conclusions

This paper presented an approach for decreasing the computation time for converting an SpatialObject to an Image.

The speed increases are realised by only computing the SpatialObject value at points within a mask. The mask is

generated at a lower resolution in significantly less time than full-size. This approach assumes that the overhead for

the low-resolution mask generation is less than converting the SpatialObject to the full size output image (which is

the case for many applications including vascular models). The speed-ups were demonstrated using a number of toy

and real examples. While only TubeSpatialObject examples were used, this approach is applicable to any desired

SpatialObject representation.


	1 Introduction
	2 Implementation
	2.1 Design
	2.2 Usage

	3 Results
	4 Conclusions

