
Well-Composed Image Filters for Repairing 2-D
and 3-D Binary Images

Nicholas J. Tustison1, Marcelo Siqueira2, and James C. Gee1

August 30, 2006
1Penn Image Computing and Science Laboratory

University of Pennsylvania
and

2Departamento de Computação e Estatı́stica
Universidade Federal de Mato Grosso do Sul

Abstract

We consider 2-D and 3-D digital binary images characterized by their well-composedness.
Well-composed images exhibit important topological and geometrical properties not shared
by their ill-composed counterparts. These properties have important implications for various
algorithms used by the ITK community such as thinning algorithms and Marching Cubes. We
introduce two image filters which repair images that are ill-composed such that the output
images are well-composed.

Keywords: binary images, digital topology, well-composedness

1 Introduction

Latecki et al. defined well-composed sets for the imaging community in [1]. For n = {2,3}, an n-D
binary digital image is said to be well-composed if and only if the set of points in the pixel boundaries
shared by the foreground and background points of the image is a (n−1)-D manifold. These digital
images have notable salient properties such as adherence to the Jordan curve theorem (2-D) and
the existence of a single connectedness relationship between points of the image [1]. Such images
also simplify the well-known Marching Cubes algorithm [5, 6] (see Figure 1).

The well-composed property can be understood by illustrating the critical configurations which, if
present, render an image ill-composed. These critical configurations for both the 2-D and 3-D case
are illustrated in Figure 2. 2-D critical configurations (Figure 2(a)) exist whenever there are two
neighboring background or foreground pixels that are 8-connected but not 4-connected. The 3-
D case has two such critical configurations (which include reflections and 90◦ rotations) that are

2

(a)

(b)

Figure 1: Output of the marching cubes algorithm using ill-composed versus well-composed im-
ages. Unlike well-composed images, ill-composed images are susceptible to ambiguous cases for
surface division using the marching cubes algorithm. Illustrated is (a) the superior-axial view and
(b) the inferior-axial view of the brain.

3

a b

c

d

z

x

y

C1

C2

(a) (b)

Figure 2: Ill-composed images are characterized by the presence of critical configurations. A simple
critical configuration for 2-D images is illustrated in (a). Black and white dots represent background
and foreground pixels, respectively. Two types of critical configurations are present in 3D images.
These two types are shown in (b) in red and are labeled as C1 and C2.

illustrated in Figure 2(b). Note that the implicit voxels in the 2×2×2 neighborhood surrounding the
critical configurations in Figure 2(b) are background pixels.

If sufficiently high resolution is employed for 2-D digitization the image of an object will be guaran-
teed to have the same topology as the object itself [3]. However, given the unlikelihood of satisfying
this condition for all digitization processes, some images exhibit topological ambiguities. These
topological ambiguities can be corrected by changing certain background pixels to foreground pix-
els, or vice-versa. Our implementations converts problematic background pixels to foreground pix-
els. While there is no guarantee concerning the topological equivalence between the original object
and its corresponding well-composed image, if the resulting well-composed image is “similar” to the
ill-composed one, a repairing algorithm can be very useful in the context of several image-based
applications.

This submission includes two image filters (one 2-D and one 3-D) for repairing digital images which
are ill-composed. The deterministic 2-D algorithm that we include guarantees that the minimum
number of changes occurs during the repairing process [2]. While the randomized 3-D algorithm
has a larger upper bound for the minimum number of changes that are made, in practice the number
of changes made is usually relatively small [5].

2 Algorithmic Implementation

The 2-D algorithm is taken from [2] whereas the 3-D algorithm is adapted from [5]. Both are derived
from the InPlaceImageFilter class considering the repairing nature of the algorithm. Typical

4

usage is given by the following code snippet:

62 typedef itk::BinaryWellComposed2DImageFilter <ImageType > FilterType;
63 FilterType::Pointer filter = FilterType::New();
64 filter ->SetInput(reader ->GetOutput());
65 filter ->DebugOn();
66 filter ->SetBackgroundValue(static_cast<PixelType >(0));
67 filter ->SetForegroundValue(static_cast<PixelType >(1));
68 filter ->SetFullInvariance(true);

As mentioned in [2], p. 67, “This method is invariant up to 90◦ rotations and reflections. If full
invariance does not matter, we can repair a given picture to obtain a well-composed picture by
adding fewer points. This can be achieved by considering only configurations given above and their
reflections at a vertical axis (this is equivalent to considering only south-neighborhoods).” To accom-
modate the case where full invariance is not required, a simple function call setting the appropriate
boolean variable is called, e.g.

68 filter ->SetFullInvariance(true);

Aside from the full invariance option, the API for the 3D filter is identical.

3 Results

3.1 2-D

2-D results of our algorithm are illustrated in Figure 3. We generated a random binary image of
size 11× 11 using the RandomImageSource class. We padded the resulting random image with
a border width of five pixels for visual clarity (Figure 3(a)). The relevant code snippet is given as
follows (taken from Source/BinaryWellComposed2DImageFilter.cxx):

16 itk::RandomImageSource <ImageType >::Pointer random
17 = itk::RandomImageSource <ImageType >::New();
18 float spacing[ImageDimension];
19 unsigned long size[ImageDimension];
20 float origin[ImageDimension];
21 for (unsigned int i = 0; i < ImageDimension; i++)
22 {
23 spacing[i] = 1;
24 size[i] = 17;
25 origin[i] = 0;
26 }
27 random ->SetMax(2);
28 random ->SetMin(0);
29 random ->SetOrigin(origin);
30 random ->SetSpacing(spacing);
31 random ->SetSize(size);
32 random ->Update();
33
34 typedef itk::ConstantPadImageFilter <ImageType , ImageType > PadderType;
35 PadderType::Pointer padder = PadderType::New();
36 padder ->SetInput(random ->GetOutput());
37 padder ->SetConstant(0);

3.2 3-D 5

(a) (b) (c)

Figure 3: Results from our 2-D filter. An ill-composed random image is given in (a). After repairing
the image with the algorithm, the image is now well-composed. The gray pixels in (c) are those
pixels that were changed from background in the original image to foreground in the well-composed
image.

38 unsigned long lowerfactors[ImageDimension];
39 unsigned long upperfactors[ImageDimension];
40 for (unsigned int i = 0; i < ImageDimension; i++)
41 {
42 lowerfactors[i] = 5;
43 upperfactors[i] = 5;
44 }
45 padder ->SetPadLowerBound(lowerfactors);
46 padder ->SetPadUpperBound(upperfactors);
47 padder ->UpdateLargestPossibleRegion ();
48
49 typedef itk::BinaryWellComposed2DImageFilter <ImageType > FilterType;
50 FilterType::Pointer filter = FilterType::New();
51 filter ->SetInput(padder ->GetOutput());
52 filter ->SetBackgroundValue(static_cast<PixelType >(0));
53 filter ->SetForegroundValue(static_cast<PixelType >(1));
54 filter ->Update();

Notice that in the resulting well-composed image given in Figure 3(b) there are no 8-connected
neighboring foreground or background pixels. The image in Figure 3(c) provides a clearer perspec-
tive of the changes that were made to produce the well-composed image. The pixels in gray are
those pixels that were changed from background to foreground values.

3.2 3-D

We demonstrate the results of our 3-D algorithm using a segmented image of the brain with white
matter voxels corresponding to foreground values. Three perpendicular views of the repaired im-
ages are given in Figure 4. Pixels in gray correspond to those image voxels that were changed from
background to foreground values. Below each of the three perpendicular views are the magnified
regions corresponding to the regions outlined in red. The repaired image was produced by the
following code snippet (taken from Source/BinaryWellComposed3DImageFilter.cxx):

References 6

Coronal Axial Sagittal

Figure 4: Results from our 3-D filter. An ill-composed 3-D segmentation image of white matter is
repaired. We illustrate the repairs made by rendering the changed voxels (from the background
value to the foreground value) in gray.

17 typedef itk::BinaryWellComposed3DImageFilter <ImageType > FilterType;
18 FilterType::Pointer filter = FilterType::New();
19 filter ->SetInput(reader ->GetOutput());
20 filter ->SetBackgroundValue(static_cast<PixelType >(0));
21 filter ->SetForegroundValue(static_cast<PixelType >(1));
22 filter ->Update();

References

[1] L. Latecki, U. Eckhardt, and A. Rosenfeld, “Well-Composed Sets”, Computer Vision and Image
Understanding, 61(1):70-83, 1995. 1

[2] L. J. Latecki, Discrete Representation of Spatial Objects in Computer Vision, Kluwer Academic
Publishers, 1998, pp. 66-67. 1, 2, 2

References 7

[3] A. Gross and L. J. Latecki, “Digitizations preserving topological and differential geometric prop-
erties”, Computer Vision and Image Understanding, 62(3):370-381, 1995. 1

[4] P. Stelldinger, L. J. Latecki, and M. Siqueira, ”Topological Equivalence between a 3D Object and
the Reconstruction of its Digital Image”, IEEE Transactions on Pattern Analysis and Machine
Intelligence (accepted for publication).

[5] M. Siqueira, L. J. Latecki, and J. Gallier, “Making 3D Binary Digital Images Well-Composed”,
Proc. of the IS&T/SPIE Conference on Vision Geometry XIII, SPIE Vol. 5675, 150-163, 2005.
1, 1, 2

[6] M. Siqueira, L. J. Latecki, and J. Gallier, “Making 3D Binary Digital Images Well-Composed”,
Technical Report MS-CIS-04-22, Department of Computer and Information Science, University
of Pennsylvania, Philadelphia, PA, USA, 2004. 1

