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Abstract

There is nowadays an increasing need in interaction betwisenete surfaces (2-manifolds) and
images. More specifically, segmentation and registratfardimensional images are taking advantage
of a priori geometrical information, most often provideddiscrete 2-manifolds.

Most of the publicly available libraries are oriented eitt@vard mesh processing or image process-
ing. Through a careful study we will show that none of thobedliies are complete enough to fullfill
image, surface and joint image-surface interaction.

We propose to implement in ITK library a powerful 2-manifaldta structure. The choice of ITK
was driven by the fact that it provides the best base framealong with a strong n-dimensional image
kernel. Based on a Quad-Edge data structure, it has beeificgctailored not only to represent
orientable 2-manifolds (surfaces of real objects) but aksse further processing.

We illustrate the integration of the design into ITK as avetbject, enhancing existing algorithms.
We also illustrate the power of the new design for furthefestg processing.
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1 Introduction

As said before, there should be an easy interaction in between discretigrféldes and image processing.
For instance segmentation and registration algorithm could use discredsenfations of 3D surfaces as
a-priori geometrical information to improve the quality of their result. Fieldsppfiaation are numerous
and include, to cite a few, medical image processigdomputer vision 7] and multimedia processing].

In these cases, discrete surfaces are used to represent the geafrtietryurface of an existing solid object.
Surface of solid objects are always orientable and are always locattetimorphic to a disk. We can thus
reduce the notion of discrete surfaces to the notion of discrete orientaidaZolds. Orientation is of acute

importance here as in most of the application involving deformation of a ®yrflae normal of the surface

is part of the deformation kernel and should be uniquely defined. Tharfifoldness is supposed in most of
the mesh processing algorithms, unfortunately it is not always enforcttebmesh data structure, relying
on the end user the handling of degenerated cases.

Discrete surface processing, taken as a tool for image processiw) specific interactions with images.
Typically, a vertex of the discrete surface should be aware of the natigigbvoxels of the image within

which the surface is embedded. This suppose a specific design with a colayeorfor surfaces and

meshes. In the next section we will review the principal publicly availableridgsa\We focus on the surface
processing, image processing, and surface-image interaction feattnese libraries.

1.1 Review of existing publicly available packages.

Major freely available packages have been listed in table

We can observe that the packages are oriented toward either imagesangoar mesh processing with the
exception of ITK which has specifically been designed with image and meshdgtita in mind.

The C-GAL library?!, a reference for mesh processing, does not unfortunately implemekirahof image
data structure. Therefore, nothing is done to handle image - mesh intesactiiher mesh processing

1computational Geometry Algorithm Libraryl §|
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Image processing Surface processing Image-surface processing
VTK x5k % *
ITK %k % * * ok ¥
C-GAL * % koK

Table 1: This table list the major publicly available libraries that propose imagepsing, mesh processing,
and/or joint image and mesh processing. We use a four-star rating systadici@te the quality of each
package for image processing, surface processing, and joint imafgees processing. C-GAL, as being
the reference for surface processing, deserves four starssifidu#t it does not provide image processing
features, it does not get any star for image processing and joint imafpees processing. We clearly see
that VTK is well-balanced between image and surface processing, buk# & a suitable image-surface
processing. ITK provides a good image-surface framework, but doeinclude any surface processing
algorithms. It only provides a common data-structure to handle those objects.

libraries like OpenMesh, GTS, ... could be listed in the table as well. As they f#rSrom the same
limitations of C-GAL, without being as good, they have been eluded here.

The VTK library 2, is dedicated to visualization. It integrates not only image and mesh data stsictu
but also numerous filters for these structures. A specific data strué&algXata) is provided for surfaces,
another for 3D-meshes (UnstructuredGrid). Eventhough a PolyDaild be seen as a subset of an Un-
structuredGrid, the design of VTK in the actual version (5.0) define tretwa different objects, and thus
the filters must be implemented for both of them. Although it seems a well balancad/idrawbacks are
twofold. First the PolyData structure does not enforce orientation neitlogiire the mesh to be restricted
to a 2-manifold. This is understandable from a visualization point of viewitis is not acceptable from
a processing point of view. Second, the interaction between images ahédsra® quite delicate, because
the image and mesh data structures do not share the geometric layer. Thobduding of the mesh in the
image and the localization of voxels surrounding a vertex of the mesh is lef tenith user.

Finally ITK 3 is a library dedicated to medical image processing. The algorithms provisgetecased
for a broader range of applications. A discrete n-dimensional discreté oega structure (itk::Mesh) is
provided. Also based or2()], itk::Mesh suffers from the same issues as the data structure in VTK,a.g. f
representation of surfaces, it does not enforce the discrete mestatodsientable 2-manifold. In addition
to which, very few mesh processing filters are provided, except soméesimesh representation filters.
ITK propose numerous image processing algorithms and some implicit symfacessing algorithms. In
contrast with VTK, the design of the data structures allow direct interacebmden images and meshes.

We can clearly see that there is no package that would fulfill our needs geipracessing, mesh processing
and image-mesh joint processing. According to our study, the best waphieva our requirement would
be to implement an orientable discrete 2-manifold data structure in ITK.

1.2 Discrete orientable 2-manifolds data structures
General overview of structures

There are three main kinds of data structure that could handle orientabletdi2-manifolds, namely
Winged-Edge (WE), Half-Edge (HE), and Quad-Edge (QE) datatstreic

2\isualization ToolKit R0
SInsight ToolKit
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Winged-Edge (WE) Half-Edge (HE)| Quad-Edge (QE) Quad-Edge

orientable

Modeling pace orientable 2-manifold 2-manifold orientable
2-manifold

Operations Euler operators Splice operator

Duality at compile time at runtime

(explicit with adapter) (rot operator)
Holes in facets yes no
Basic Transversal Case Direct Direct
distinction access access
Min size per edge 4 ptr 4 ptr 2 ptr + 2 bits | 2 ptr + 2 bits
Max size per edge 8 ptr 10 ptr 8 ptr + 12bits | 8 ptr + 8 bits

Table 2: This table is an updated and enhanced version of the table edapdsg].

In [18], the author compare the three data structures. The aisl@ more complete version of the table
provided in this paper. WE is not really interesting because of its basiv&resad capability which depends
on a case distinction. Both HE and QE have direct access to their neigitotbruad-Edge data structure
is also very space efficient, especially in its orientable flavor. Finally QE,istils orientable flavor, has
only one base operator Splice (two if Rot() is included ) upon which all atiethods that modify the mesh
are based. This greatly simplify the code maintenance.

In [18] the author reject QE claiming that the symmetry of the original desigh has to be destroyed
during the implementation. He says this has to be done because face typartendype will be different,
even the more different as one want to add informations like color or notdehlso claims that the base
operator Splice() would have to be written twice. The latter argument is atly r@n issue, but rather a
matter of one template parameter to make the splice operator handle both prindaleaygbes. Only one
piece of code remains to be maintained for Splice().

According to this study, HE and QE are both interesting, with a little advantageEa(orientable) which
is more space efficient, and which would require less code maintenaniceefgrity. The choice between
HE and QE can only be made depending on the applications. In the nexinseetialefine the classes of
applications of interest. We then investigate which structure among HE andoQIé tae best for them.

The surface processing point of view

We have two kinds of surface processing applications in mind, geometcg$smg and topology process-
ing. We will consider arbitrary modification of the connectivity as geometog@ssing.

Surface mesh processing includes for example smooth?&) (decimation (L1, 17]), computing discrete
differential geometry invariants like curvaturd,B], subdivision (R3]), multi resolution ([L9]), parameteri-
zation ([L9]), remeshing ({, 2]), and many more. A more elaborate survey of mesh processing cane fo
in [3]. This paper present only mesh processing algorithms, but we believartage processing using
mesh could take advantage of it. Several medical applications alreadyersiet processind 8, 14, 10].

Topology processing is also of interest. The result of isosurfaceatixtnealgorithms usually contains many
extra numerous components that need to be removed before furthesgirayr. Many other algorithms can
only process one component at a time and on top of that require to coumtifyidend/or remove compo-

nents. Finally, about the interest of topology in extraction of isosurfailoesimages, image noise can result



in topological inconsistencies that should be remo&t] 12]. We could define three kinds of topological
algorithms: those which count things (counting components, borderssgEnler characteristic, ...), topo-
logical modifications (extracting and/or removing components, filling holesinguthe surface open, ...)
and computation of basis and other domains (homotopy basis, homologyfhadismental domain, uni-
versal covering space). Stillwell, in its booR]] introduces basis of discrete computational topology that
are of great potential in surface processing.

For all the above applications, the key functionality is local neighborhoodsace.g. from a given vertex
access the adjacent edges and/or faces. But one also wishesifeaitteaccess (local access with a superior
edge based distance) e.g. neighbor vertices of a given vertex atletigece of 2 or neighbor faces of a
given face at edge distance of 3. With a HE data structure we need to distirthe vertex neighbor local
access algorithm from its face counterpart. This is to be opposed to thea@Etducture for which we
can design and maintain a single generic front algorithm for vertex localsaqbased on primal edges) or
for face neighbor access (based on dual edges). If we move up texhéevel, and implement Dijkstra’s
shortest path algorithm on top of a QE data structure we can indiffererglyt esther on primal or dual
connectivity i.e. finding shortest path on vertices or on faces.

There are many others advantages for applications of having the qwakeatation for free. Some op-
timal algorithms require primal-dual approaches (delaunay-voronoi). Senyesuccessful segmentation
algorithms and surface modelization are based on simplex meshgsSimplex meshes being the dual of
triangulated meshes, the QE data structure provides native triangularsimmpllementation. This is in
sharp contrast with ITK’s implementation of simplex meshes, no transformaltienié required and thus
there is no data redundancy and no extra transformation computatiohalltesdifference in design and
implementation of a simplex mesh solution in ITK with and without the help of our datatete will be
provided in sectiorB. Finally, it provides an algorithmic extension to algorithms only defined on tukaAg
tions, to simplex mesh (e.g. multi resolution, subdivision, ...).

Conclusion

Three data structures can handle discrete orientable 2-manifolds: WBNHEE. We directly rejected WE
because of its poor traversal capacities. We saw that although HE waehence structure, QE has much
to offer. QE is more space efficient and easier to maintain than HE. QE psowsidobust base layer and
constant complexity local accesses and modifications. Additionally, QE atlaego implement generic
algorithms such as a neighborhood extraction algorithm that works fokiadyof neighborhood (vertices,
edges, faces). Finally, in many cases it is of much interest to have theahrakentation of a discrete
surface directly integrated in the structure. We will choose a QE data stewtuntegrate it in ITK. There
are many ways to integrate a structure in a library. The next section wikkprélse necessary technical
background on both QE and ITK. It will also present our integration ghipiny and illustrate the result.

2 Quad-Edge structure integration in ITK

2.1 Quad-Edge in details

The Quad-Edge data structure is presented in detalldh We will only emphasis here the key points that
will be needed for integration. One physical edge will be called Full E&gg hereafter.

For each FE, there will be 4 QE in the structure, as illustrated in figutiee 4 QEs of a given FE are linked
by theRot() operator. This operator is cyclic, thus defininBa Ring.
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Figure 1: lllustration of itkQE::Mesh Rot Ring. Each physical edge (Herekull Edge: FE) is represented
by four oriented edges. We thus can see each of those edges asaoiee giithe FE, giving another ways
of remembering the name QE. This notation would be consistent with the Full(Eqbdpysical edge gives 1
edge in the structure) and Half Edge (1 physical edge gives 2 edgesstrifcture) namings. Unfortunately,
the name has been chosen to be Quad-Edge. Eaagha@éesses the next QE within the representation of
a physical edge through tHeot() operator. Assuming thadis a primal edge, an odd number of calls to
Rot() yields a dual edge, whereas an even number of calls to the same operl®ayprimal edge. Calling
Rot() 4 times brings you back to where you started. Ro) structure is thus cyclic and is call&ubt Ring.
Another interesting property is that calliftpt() twice in a row gives you the opposite edge (same direction,
opposite orientation).

All the QEs are also linked to the next QE on the surface, with respect totatien, by theONext()
operator as illustrated on figug This operator is also cyclic, defining @Next Ring. It should be noted
that although thd&Rot Ring always contains 4 QE, the number of QEs in a gi@Mext Ring is function of
the connectivity of the discrete surface.

All traversal features can be composed from these two operatorsnéier details, the reader can refer to
[16]. All topological changes are based on ®Batice() operator, itself based on the two previous operators.
See figures for an illustration, and sectiod.2 for an example.

To eachONext Ring can be attached data, to which each QE in the ring will refer tOrgs It can be,
for example, a reference to the geometric layer by mean of vertex or faaédo in the corresponding
container. Itis illustrated in figuré

This different operators and object are sufficient to implement the QEsdiateture. The next section
will detail the itk::Mesh data structure. Then a following section will then showimplementation of a
QE-Mesh in ITK.

2.2 itk::Mesh in details

The itk::Mesh data structure is described 2Q][ It was initially designed for visualization and thus suffer
from several drawbacks. First it does not enforce a surface gozderientable manifold as we would need
for processing. But there is also a very high computational cost forragification of the structure of the
mesh, we are going to detail here.

Most of the local accesses in the itk::Mesh is made through two links tables tlaamaneighborhood
information about each vertex and face. Those tables are build (andwmdtely maintained) through a
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Figure 2: lllustration of itkQE::MesltOnext Ring. Each QE can access its next edge around its origin
through theOnext() operator. By construction, the QE are cyclically linked®yext(), defining theOnext

Ring. We can attach to eadBnext Ring some additional data namé&arg. This is used to link the QE
topological layer we illustrated in figure and in this one, and the geometrical layer we will illustrate in
following figures. At this level of the structure, it does not matter if the QEiimal or dual, i.e. if the data
attached to th®next Ring is related to a vertex or to a face. Also note that, in contrast wittRttdRing,

the number of edges in ti@next Ring is not constant and depends on the connectivity of the mesh. In this
example, the centré@next Ring is made of three QEs.

Splice(a,b)

Splice(a,bg

Figure 3: lllustration of itkQE::Mesh::Splice() operator. T8gaice() operator is the only operator that
modifies the connectivity of the mes. It is usually definetrading a vertex for aface. In this illustration,

on the left, thea andb QEs share the santrg but their dual don't. In other words, noticing theaandb

are primal QE, they have a common origin vertex but do not share the ¢eft & call toSplice(a,b) will
result in the inverse situatiora andb sharing the left face but having different origin vertices. We traded
a 1 point, 2 faces for a 2 points one faces situation. Interestingly en@tjbe() is its own inverse. Two
consecutive calls t§olice(a,b) will leave the mesh unchanged.
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Edge Dual Data
<t

”"'~._‘Onex‘

Point

Primal

Data

Figure 4: lllustration of itkQE::Mesh Geometric Layer. Figullesnd?2 limited themselves to the topologi-
cal operations, as defined ihg]. To be local, on top of this topological layer, we must plug the geometry.
This is done through the definition of the origi@rg) of the Onext Rings. This drawing illustrates how the

4 QEs corresponding to the same FE access the geometry. On this drawéag s&e that primal QEs have
vertex information attached to thednext Rings, whereas dual QEs (represented with dashed lines) have
face informations. The link between topological layer and geometrical iayeade both ways, thought not
symmetrically. Each QE has an entry to @sg (either vertex or face). Eadbrg has access to only one
QE in the correspondin®next Ring. Getting all the edges referencing this particulag is then just an

iteration around th®next Ring away.

Data

EdgeEntry
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itk QE::ItkLine

ithE::ItkLine/\,
o (QuadEdgeGeom) O[TkQEPoint] itkQE::Polygon
QuadEdgeGeom

Figure 5: lllustration of the interface between QE layer and ITK layer.

itk::Mesh::BuildCellLink() method. It is necessary to be sure that these linkdaie up to date before
calling several methods of itk::Mesh to keep the integrity of the itk::Mesh structigace after any modi-
fication a call to BuildLink() must be done. For each call, the links are deldted several transversal must
be done on all the structure to (re)build the link tables again. The complexayoofal modification is thus
at least linear with respect to the size of the mesh. This is in sharp oppositiothe QE data structure
for which any local change will have only local impact, in constant time. Thaf scute importance for
algorithms that iteratively build or modify a surface like delaunay triangulatiggomt clouds, decimation,

2.3 Integration

Our aim is to implement the QE structure as a native ITK object, inheriting from idstiM The end user
must be able to replace any itk::Mesh (provided that it represents asjbiaa itk QE::Mesh in an existing
code. Not only can the code work without any other change, but thebasefits of speed enhancements.
A second advantage of this approach is the possibility to use ITK at its ftéhgial. The pipeline design
remains available, along with other parallelization features and multi resoluéiorefvorks, to cite a few.

This has a great impact on the implementation. itk::Mesh benefit from a glolbahtesface design. In
order to keep the genericity of the design, and the access to global cibitgrwe need to provide new cell
and cell interface classes for the basic QE items. We also need to maintain grayirdgitk::Mesh based
code at the itkQE::Mesh level all the methods that should not be called anyikeBRuildLinks().

The figure9 is an overview of the global design. We can see on the left the pure tapaldevel of QE
data structure. This layer being purely topological no distinction is made batwemal and dual QEs.
Next column on the right represents the geometrical layer. Here apipee®sg and Data informations

that were introduced in figuré. These two fields are being differentiated depending on the type of the
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QE (primal or dual). Finally,the last column on the right shows the integratidgheoQEs in ITK through
new classes: itkQE::PolygonCell, itkQE::LineCell, itk QE::VertexCell. Normahasrilustrate link, arrows
with an empty triangle on target represent inheritance relations.

2.4 Our contribution: a neighborhood iterator

Our main contribution to the work ofLp] is the definition of a specialeighborhood iterator. This iterator
extracts neighborhood, with the respect to a metric defined on the cortyagtaph of the discrete surface.

If a simple metric is used (unweighted graph) then it will extract neighbatbatepending only on the
connectivity. If euclidean distance (defined on edges) is used, thah éxvact neighborhood depending
on the geodesic distance to the seed. We saw in setithat accessing and/or extracting neighborhoods
was a basic in most of the discrete surface processing algorithms. Thigaton will be of tremendous
impact on further filters implementations.

Thanks to the symmetrical design of the QE structure, neighborhood cdefined on the primal connec-
tivity or on the dual connectivity. If, for example, we take a triangular mes&hcan with the same algorithm
get the neighboring vertices of a given vertex, or the neighboringfata given triangle.

One direct application of this iterator is extracting shortest paths. Inadgld, extracting neighborhood we
keep track of followed paths, this would just be the implementation of a Dijksthaistest path algorithm.
Seen from the primal point of view, the dual of this shortest path algorithangeodesic region growing
algorithm. If, for example, we take a triangular mesh, the algorithm run on pdamectivity outputs a
shortest path (and/or a list of visited vertices), and the algorithm run alrcduanectivity, tagging the visited
faces, can output a region/patch.

This functionality was implemented as an iterator to ease further processiegterator can be defined at
any moment in the code, and the end user has full control over the pioge$Ve also implement it as a
class. It gives a finer control over the processing (with adaptataeudgrity), but the iterator gives a more
elegant syntax.

2.5 Conclusion on integration

Our main concern during the integration was to fully comply with ITK design.dtiteto redefining the cell
interface layer to handle underlying QE data structure. The QE data sty&du orientable 2 manifold)
along with the splice method were all implemented underneath. One of our ediatnibo the original 16]
design is a neighborhood iterator as needed by most if not all discrééesmrocessing algorithms. In the
next section we will first validate the integration in ITK, then we will test and itlte the induced gains:
speed, code syntax, code volume, duality, ...

3 \Validation and examples

3.1 Validation

The validation process is twofold. First we tested the integration of the stelictliTK, we then tested the
speed enhancement resulting from the new design allowing local as@ssenodifications.

ITK provides a test suite. In order to test the integration, we ran the tigstuming itkQE::Mesh wherever
itk::Mesh was used. The impact on the code is minimal, being almost just a mattglading itk::Mesh
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b.Lnext()

S
e.Swap( ))

a.Lnext()

Figure 6: Swapping the edge e.

by itkQE::Mesh wherever the first appeared. All tests ran smoothly.

We tested the speed enhancement in the following way. Taking the same meible same computer
(mobile P3 with 256Mo RAM, running WinXP) with all the codes compiled the samg @MAKE 2.0,
ITK 2.0.1, ITKApplication 2.0.1, MSVC 7.1 .NET 2003), we removed a faearfrthe mesh and forced
the integrity of the mesh. With the itk::Mesh design, this means calling the BuildCel)umn&thod, while
with the itkQE::Mesh, this is just removing a face, the integrity of the surfacegbgilaranteed at itkQE
level. Thus, the complexity of removing a face is linear with itk::Mesh and consgtdh itkQE::Mesh.
For example, with a 100000+ triangles model, it took 2.28 seconds to itk::Mek0.8600249 seconds for
itkQE::Mesh.

3.2 Example of Splice power: swapping an edge

In order to provide some evidence of the simplicity of usage of the Splice topefat us consider the
classical higher-order topological operator that swaps an edge (sisatied by figures). The following
code snippet is the direct translation within itkQE of the original design of thepSoperator presented in
[16] (refer to chapter 6, page 104):

tenplate< ... > bool QuadEdgeGeonx ... >:.:Swap( )

{
Self* e = this;
Self* a = e->Cet Qprev( );
Self* b = e->CGetSyn( )->Cprev( );

/'l Disconnect e froma and b:

e->Splice( a);

e->Cet Synm( )->Splice( b );

/1 Reconnect e with a.Lnext() and b.Lnext():
e->Splice( a->CGetlnext( ) );

e->CGet Syn( )->Splice( b->Getlnext( ) );
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3.3 Example of simplicity of generic programming

We implemented a classical front based traversal algorithm that startafgiven reference edge and flows
across the edges in a Dijkstra fashion. This traversal of the mesh isrgentlg offered to the user in the
form of an iterator as illustrated by the following code snippet.

t ypedef
FrontIterator< MeshTypeArg,
MeshTypeAr g: : QEType > Frontlterator;
Frontlterator it;
for( it = mesh->Begi nFront( edgeSeed );
it !'= nesh->EndFront( );
it++)

Pointldentifier org = it.Value( )->GetOg( );
Il Do something smart with the vertex

}

The very design of the QE data structure guaranties that each step of#tieitdias a constant time com-
plexity. Although by default this front traversal uses unweighted edfesFrontlterator can be initialized
with weights over edges (e.g. the ambient euclidean distance).

We can now take advantage of the native support for duality of the QEsttatzture and combine it with
the generic algorithm implementation of the Frontlterator. The following coabgehprovides an example
of a dual version of the Dijkstra algorithm i.e. a Dijkstra algorithm walk on thal édges, that can be seen
as a front propagation over the faces of the primal mesh.

t ypedef
Frontlterator< MeshTypeArg,
MeshTypeAr g: : QEDual > FrontDual Iterator;
FrontDual | terator it;
for( it = mesh->Begi nDual Front( );
it !'= nmesh->EndDual Front( );
it++)

Faceldentifier org = it.Value( )->GetOg( );
/1 Do sonething smart with the face

}

Note that this is achieved by simply changing the types used for the Fromhtarstantiation (and of course
the derived types). The figur@sand8 illustrate the direct application of this Dijkstra based iterator to the
computation of the shortest path between two arbitrary vertices of triangugatio

3.4 Example of duality importance: simplex mesh implementation

Users most often deal with discrete surface as triangular meshes, ¢hditeansual output of isosurface
extraction algorithms, and also a standard for visualization. But simplex mésive also proved to be
very efficient discrete surface representation for segmentation.estitegly, simplex meshes are dual to
triangular meshes.
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Figure 7: Shortest path between the seed forehead vertex and aargrbjiper-lip vertex: the vertices
explored by the front are displayed in red.
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Figure 8: Shortest path between two arbitrary vertices of a genus timfeees:. the vertices explored by the
front are displayed in red.
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ITK actually integrates an active surface segmentation algorithm baseaohples meshes. Composed of 9
classes, this is the biggest application based on itk::Mesh in the toolkit. The impbdioarof this classes
is particularly interesting when comparing itk::Mesh and itk QE::Mesh.

Let’s first compare the data structures. itkQE::Mesh enforces orientatbbenefits from local accesses
to neighborhood. The simplex solution define a itk::SimplexMesh which inhedta ftk::Mesh as the
main representation of simplex mesh. As itk::Mesh has no traversal capacy,indormation is gath-
ered in the itk::SimplexMesh class as an array of neighbors, which has tonsestently updated when
modifying the connectivity. As connectivity changes are becoming veficdlif, a specific filter class,
itk::SimplexMeshAdaptTopology, has been created. Also, the orientatiobemag enforced in itk::Mesh,
the itk::TriangleMeshToSimplexMesh filter has to traverse the structure twice, to create the dual cell,
then to enforce orientation. Indeed, orientation of cells of itk::SimplexMeslpipased consistent in all the
filters

A second comparison could be made on duality. itkQE::Mesh handle both primdalieal representation
of the mesh, while itk::Mesh does not. Hence, specific transformation filters musiade to transform
a triangular mesh into a simplex mesh and vice-versa, namely itk::SimplexMesaifigieéMeshFilter and
itk: TriangularMeshToSimplexMeshFilter.

As a conclusion, at least 4 classes out of 9 are not needed to implemsantbesolution using itkQE::Mesh
data structure as a base. The 5 classes left are the classes computineritad amd external forces whose
computation is specific to simplex mesh. They would need to be implemented atytesguld be smaller.
The overall solution would also be faster as illustrated previously.

4 Conclusion and future work

We have implemented in ITK a Quad-Edge data structure to represent btee@tananifolds (borders of
3D solid objects). Any application handling orientable 2-manifolds will benefigreat enhancements in
speed, robustness, genericity, maintenance cost, for lesser codeovdin some algorithms using objects
dual to each others (voronoi - delaunay, triangular mesh - simplex mashjaw be implement in a very
elegant and efficient way.

This has a potential great impact on nowadays image processing. InDeledage processing intensively
uses explicit discrete surfaces to include a priori geometrical or topalogimrmation in the image pro-
cessing algorithms. Unfortunately, the usage of explicit discrete sgri@es quite raw. Reasons were
twofold: first most of the work on discrete surface processing was donomputer graphic and visualiza-
tion field that did not had to deal with image, and second because the avaigtbiat discrete surfaces
data structure in image processing libraries were not adapted to prage¥¥ith our implementation of
a QE data structure in ITK, we believe that the gap does not exist anymnmilethat all surface process-
ing algorithms developed in computer graphics and visualization fields camlinegtly be used for image
processing.

We would like next to further enhance the data structure with Euler opefetimed on top of Splice method.
That would get us one step closer to C-GAL HE data structure featuitbeut/of course the same numerical
quality, as no exact numerical kernel nor exact geometrical tests dugléncin ITK. At the application
level, we would like in a close future to add more geometry and topology filtensuld provide ITK with
filters it is lacking right now. We would begin by the most useful filters alyeaxsting in VTK, to avoid
time/memory consuming and pipeline-breaking transitions between ITK and \6laaays. We would
still need to switch to VTK for visualization, but not for processing anymore
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Figure 9: itkQE Global design. This drawing is an overview of the globalgie On the left the topo-
logical layer defines QEs and the two associated IRétsand Onext. This layer being purely topological
no distinction is made between primal and dual QEs. Next column on the rigtgsents the geometri-
cal layer. Here appears tl@rg and Data informations that were introduced in figude These two fields
are being differentiated depending on the type of the QE (primal or dugdally; the last column on the
right shows the integration of the QEs in ITK through new classes: itkQE:gealgell, itkQE::LineCell,
itk QE::VertexCell. Normal arrows illustrate link, arrows with an empty triangle ogetarepresent inheri-
tance relations.
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Baselterator [ =000 ooa
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| TVRef : typename 4
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| TDDat a: typenare ¢
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Figure 10: UML Diagram of itkQE::Mesh and its interaction with ITK.
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