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4École Nationale Suṕerieure, Lyon. France.

Abstract

There is nowadays an increasing need in interaction betweendiscrete surfaces (2-manifolds) and
images. More specifically, segmentation and registration of n-dimensional images are taking advantage
of a priori geometrical information, most often provided asdiscrete 2-manifolds.

Most of the publicly available libraries are oriented either toward mesh processing or image process-
ing. Through a careful study we will show that none of those libraries are complete enough to fullfill
image, surface and joint image-surface interaction.

We propose to implement in ITK library a powerful 2-manifolddata structure. The choice of ITK
was driven by the fact that it provides the best base framework along with a strong n-dimensional image
kernel. Based on a Quad-Edge data structure, it has been specifically tailored not only to represent
orientable 2-manifolds (surfaces of real objects) but alsoease further processing.

We illustrate the integration of the design into ITK as a native object, enhancing existing algorithms.
We also illustrate the power of the new design for further surface processing.
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1 Introduction

As said before, there should be an easy interaction in between discrete 3Dsurfaces and image processing.
For instance segmentation and registration algorithm could use discrete representations of 3D surfaces as
a-priori geometrical information to improve the quality of their result. Fields of application are numerous
and include, to cite a few, medical image processing [6], computer vision [7] and multimedia processing [5].

In these cases, discrete surfaces are used to represent the geometryof the surface of an existing solid object.
Surface of solid objects are always orientable and are always locally homeomorphic to a disk. We can thus
reduce the notion of discrete surfaces to the notion of discrete orientable 2-manifolds. Orientation is of acute
importance here as in most of the application involving deformation of a surface, the normal of the surface
is part of the deformation kernel and should be uniquely defined. The 2-manifoldness is supposed in most of
the mesh processing algorithms, unfortunately it is not always enforced by the mesh data structure, relying
on the end user the handling of degenerated cases.

Discrete surface processing, taken as a tool for image processing, need specific interactions with images.
Typically, a vertex of the discrete surface should be aware of the neighboring voxels of the image within
which the surface is embedded. This suppose a specific design with a commonlayer for surfaces and
meshes. In the next section we will review the principal publicly available libraries. We focus on the surface
processing, image processing, and surface-image interaction featuresof those libraries.

1.1 Review of existing publicly available packages.

Major freely available packages have been listed in table1.

We can observe that the packages are oriented toward either image processing or mesh processing with the
exception of ITK which has specifically been designed with image and mesh interaction in mind.

The C-GAL library1, a reference for mesh processing, does not unfortunately implement any kind of image
data structure. Therefore, nothing is done to handle image - mesh interactions. Other mesh processing

1Computational Geometry Algorithm Library, [18]
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Image processing Surface processing Image-surface processing
VTK ∗∗ ∗∗ ∗

ITK ∗∗∗ ∗ ∗∗∗

C-GAL ∗∗∗∗

Table 1: This table list the major publicly available libraries that propose image processing, mesh processing,
and/or joint image and mesh processing. We use a four-star rating system toindicate the quality of each
package for image processing, surface processing, and joint image-surface processing. C-GAL, as being
the reference for surface processing, deserves four stars. Butsince it does not provide image processing
features, it does not get any star for image processing and joint image-surface processing. We clearly see
that VTK is well-balanced between image and surface processing, but it lacks of a suitable image-surface
processing. ITK provides a good image-surface framework, but does not include any surface processing
algorithms. It only provides a common data-structure to handle those objects.

libraries like OpenMesh, GTS, ... could be listed in the table as well. As they all suffer from the same
limitations of C-GAL, without being as good, they have been eluded here.

The VTK library 2, is dedicated to visualization. It integrates not only image and mesh data structures
but also numerous filters for these structures. A specific data structure (PolyData) is provided for surfaces,
another for 3D-meshes (UnstructuredGrid). Eventhough a PolyData could be seen as a subset of an Un-
structuredGrid, the design of VTK in the actual version (5.0) define them as two different objects, and thus
the filters must be implemented for both of them. Although it seems a well balanced library, drawbacks are
twofold. First the PolyData structure does not enforce orientation neitherrequire the mesh to be restricted
to a 2-manifold. This is understandable from a visualization point of view, but this is not acceptable from
a processing point of view. Second, the interaction between images and meshes are quite delicate, because
the image and mesh data structures do not share the geometric layer. Thus theembedding of the mesh in the
image and the localization of voxels surrounding a vertex of the mesh is left to the end user.

Finally ITK 3 is a library dedicated to medical image processing. The algorithms provided can be used
for a broader range of applications. A discrete n-dimensional discrete mesh data structure (itk::Mesh) is
provided. Also based on [20], itk::Mesh suffers from the same issues as the data structure in VTK, e.g. for
representation of surfaces, it does not enforce the discrete mesh to bean orientable 2-manifold. In addition
to which, very few mesh processing filters are provided, except some simplex mesh representation filters.
ITK propose numerous image processing algorithms and some implicit surfaceprocessing algorithms. In
contrast with VTK, the design of the data structures allow direct interaction between images and meshes.

We can clearly see that there is no package that would fulfill our needs in image processing, mesh processing
and image-mesh joint processing. According to our study, the best way to achieve our requirement would
be to implement an orientable discrete 2-manifold data structure in ITK.

1.2 Discrete orientable 2-manifolds data structures

General overview of structures

There are three main kinds of data structure that could handle orientable discrete 2-manifolds, namely
Winged-Edge (WE), Half-Edge (HE), and Quad-Edge (QE) data structure.

2Visualization ToolKit [20]
3Insight ToolKit
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Winged-Edge (WE) Half-Edge (HE) Quad-Edge (QE) Quad-Edge
orientable

Modeling pace orientable 2-manifold 2-manifold orientable
2-manifold

Operations Euler operators Splice operator
Duality at compile time at runtime

(explicit with adapter) (rot operator)
Holes in facets yes no
Basic Transversal Case Direct Direct

distinction access access
Min size per edge 4 ptr 4 ptr 2 ptr + 2 bits 2 ptr + 2 bits
Max size per edge 8 ptr 10 ptr 8 ptr + 12bits 8 ptr + 8 bits

Table 2: This table is an updated and enhanced version of the table proposed in [18].

In [18], the author compare the three data structures. The table2 is a more complete version of the table
provided in this paper. WE is not really interesting because of its basic transversal capability which depends
on a case distinction. Both HE and QE have direct access to their neighborhood. Quad-Edge data structure
is also very space efficient, especially in its orientable flavor. Finally QE, stillin its orientable flavor, has
only one base operator Splice (two if Rot() is included ) upon which all othermethods that modify the mesh
are based. This greatly simplify the code maintenance.

In [18] the author reject QE claiming that the symmetry of the original design [16] has to be destroyed
during the implementation. He says this has to be done because face type and vertex type will be different,
even the more different as one want to add informations like color or normal.He also claims that the base
operator Splice() would have to be written twice. The latter argument is not really an issue, but rather a
matter of one template parameter to make the splice operator handle both primal anddual types. Only one
piece of code remains to be maintained for Splice().

According to this study, HE and QE are both interesting, with a little advantage for QE (orientable) which
is more space efficient, and which would require less code maintenance forintegrity. The choice between
HE and QE can only be made depending on the applications. In the next section, we define the classes of
applications of interest. We then investigate which structure among HE and QE would be best for them.

The surface processing point of view

We have two kinds of surface processing applications in mind, geometry processing and topology process-
ing. We will consider arbitrary modification of the connectivity as geometry processing.

Surface mesh processing includes for example smoothing ([22]), decimation ([11, 17]), computing discrete
differential geometry invariants like curvature ([4, 8], subdivision ([23]), multi resolution ([19]), parameteri-
zation ([15]), remeshing ([1, 2]), and many more. A more elaborate survey of mesh processing can be found
in [3]. This paper present only mesh processing algorithms, but we believe that image processing using
mesh could take advantage of it. Several medical applications already include such processing [13, 14, 10].

Topology processing is also of interest. The result of isosurface extraction algorithms usually contains many
extra numerous components that need to be removed before further processing. Many other algorithms can
only process one component at a time and on top of that require to count, identify and/or remove compo-
nents. Finally, about the interest of topology in extraction of isosurfacesfrom images, image noise can result
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in topological inconsistencies that should be removed [24, 12]. We could define three kinds of topological
algorithms: those which count things (counting components, borders, genus, Euler characteristic, ...), topo-
logical modifications (extracting and/or removing components, filling holes, cutting the surface open, ...)
and computation of basis and other domains (homotopy basis, homology basis,fundamental domain, uni-
versal covering space). Stillwell, in its book [21] introduces basis of discrete computational topology that
are of great potential in surface processing.

For all the above applications, the key functionality is local neighborhood access e.g. from a given vertex
access the adjacent edges and/or faces. But one also wishes furtherreach access (local access with a superior
edge based distance) e.g. neighbor vertices of a given vertex at edgedistance of 2 or neighbor faces of a
given face at edge distance of 3. With a HE data structure we need to distinguish the vertex neighbor local
access algorithm from its face counterpart. This is to be opposed to the QE data structure for which we
can design and maintain a single generic front algorithm for vertex local access (based on primal edges) or
for face neighbor access (based on dual edges). If we move up to thenext level, and implement Dijkstra’s
shortest path algorithm on top of a QE data structure we can indifferently use it either on primal or dual
connectivity i.e. finding shortest path on vertices or on faces.

There are many others advantages for applications of having the dual representation for free. Some op-
timal algorithms require primal-dual approaches (delaunay-voronoi). Somevery successful segmentation
algorithms and surface modelization are based on simplex meshes [5, 6] Simplex meshes being the dual of
triangulated meshes, the QE data structure provides native triangular-simplex implementation. This is in
sharp contrast with ITK’s implementation of simplex meshes, no transformation filter is required and thus
there is no data redundancy and no extra transformation computational cost. The difference in design and
implementation of a simplex mesh solution in ITK with and without the help of our data structure will be
provided in section3. Finally, it provides an algorithmic extension to algorithms only defined on triangula-
tions, to simplex mesh (e.g. multi resolution, subdivision, ...).

Conclusion

Three data structures can handle discrete orientable 2-manifolds: WE, HE, and QE. We directly rejected WE
because of its poor traversal capacities. We saw that although HE was thereference structure, QE has much
to offer. QE is more space efficient and easier to maintain than HE. QE provides a robust base layer and
constant complexity local accesses and modifications. Additionally, QE allowsone to implement generic
algorithms such as a neighborhood extraction algorithm that works for anykind of neighborhood (vertices,
edges, faces). Finally, in many cases it is of much interest to have the dualrepresentation of a discrete
surface directly integrated in the structure. We will choose a QE data structure an integrate it in ITK. There
are many ways to integrate a structure in a library. The next section will present the necessary technical
background on both QE and ITK. It will also present our integration philosophy and illustrate the result.

2 Quad-Edge structure integration in ITK

2.1 Quad-Edge in details

The Quad-Edge data structure is presented in detail in [16]. We will only emphasis here the key points that
will be needed for integration. One physical edge will be called Full Edge (FE) hereafter.

For each FE, there will be 4 QE in the structure, as illustrated in figure1. the 4 QEs of a given FE are linked
by theRot() operator. This operator is cyclic, thus defining aRot Ring.
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Figure 1: Illustration of itkQE::Mesh Rot Ring. Each physical edge (hereafter Full Edge: FE) is represented
by four oriented edges. We thus can see each of those edges as one quarter of the FE, giving another ways
of remembering the name QE. This notation would be consistent with the Full Edge(1 physical edge gives 1
edge in the structure) and Half Edge (1 physical edge gives 2 edges in the structure) namings. Unfortunately,
the name has been chosen to be Quad-Edge. Each QEe accesses the next QE within the representation of
a physical edge through theRot() operator. Assuming thate is a primal edge, an odd number of calls to
Rot() yields a dual edge, whereas an even number of calls to the same operator yields a primal edge. Calling
Rot() 4 times brings you back to where you started. TheRot() structure is thus cyclic and is calledRot Ring.
Another interesting property is that callingRot() twice in a row gives you the opposite edge (same direction,
opposite orientation).

All the QEs are also linked to the next QE on the surface, with respect to orientation, by theONext()
operator as illustrated on figure2. This operator is also cyclic, defining anONext Ring. It should be noted
that although theRot Ring always contains 4 QE, the number of QEs in a givenONext Ring is function of
the connectivity of the discrete surface.

All traversal features can be composed from these two operators. Formore details, the reader can refer to
[16]. All topological changes are based on theSplice() operator, itself based on the two previous operators.
See figure3 for an illustration, and section3.2for an example.

To eachONext Ring can be attached data, to which each QE in the ring will refer to asOrg. It can be,
for example, a reference to the geometric layer by mean of vertex or face location in the corresponding
container. It is illustrated in figure4

This different operators and object are sufficient to implement the QE datastructure. The next section
will detail the itk::Mesh data structure. Then a following section will then show our implementation of a
QE-Mesh in ITK.

2.2 itk::Mesh in details

The itk::Mesh data structure is described in [20]. It was initially designed for visualization and thus suffer
from several drawbacks. First it does not enforce a surface to bea 2 orientable manifold as we would need
for processing. But there is also a very high computational cost for anymodification of the structure of the
mesh, we are going to detail here.

Most of the local accesses in the itk::Mesh is made through two links tables that maintain neighborhood
information about each vertex and face. Those tables are build (and unfortunately maintained) through a
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Figure 2: Illustration of itkQE::MeshOnext Ring. Each QE can access its next edge around its origin
through theOnext() operator. By construction, the QE are cyclically linked byOnext(), defining theOnext
Ring. We can attach to eachOnext Ring some additional data namedOrg. This is used to link the QE
topological layer we illustrated in figure1 and in this one, and the geometrical layer we will illustrate in
following figures. At this level of the structure, it does not matter if the QE is primal or dual, i.e. if the data
attached to theOnext Ring is related to a vertex or to a face. Also note that, in contrast with theRot Ring,
the number of edges in theOnext Ring is not constant and depends on the connectivity of the mesh. In this
example, the centralOnext Ring is made of three QEs.

Figure 3: Illustration of itkQE::Mesh::Splice() operator. TheSplice() operator is the only operator that
modifies the connectivity of the mes. It is usually defined astrading a vertex for a face. In this illustration,
on the left, thea andb QEs share the sameOrg but their dual don’t. In other words, noticing thata andb
are primal QE, they have a common origin vertex but do not share the left face. A call toSplice(a,b) will
result in the inverse situation:a andb sharing the left face but having different origin vertices. We traded
a 1 point, 2 faces for a 2 points one faces situation. Interestingly enough,Splice() is its own inverse. Two
consecutive calls toSplice(a,b) will leave the mesh unchanged.
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Figure 4: Illustration of itkQE::Mesh Geometric Layer. Figures1 and2 limited themselves to the topologi-
cal operations, as defined in [16]. To be local, on top of this topological layer, we must plug the geometry.
This is done through the definition of the origin (Org) of theOnext Rings. This drawing illustrates how the
4 QEs corresponding to the same FE access the geometry. On this drawing wecan see that primal QEs have
vertex information attached to theirOnext Rings, whereas dual QEs (represented with dashed lines) have
face informations. The link between topological layer and geometrical layeris made both ways, thought not
symmetrically. Each QE has an entry to itsOrg (either vertex or face). EachOrg has access to only one
QE in the correspondingOnext Ring. Getting all the edges referencing this particularOrg is then just an
iteration around theOnext Ring away.
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Figure 5: Illustration of the interface between QE layer and ITK layer.

itk::Mesh::BuildCellLink() method. It is necessary to be sure that these link tables are up to date before
calling several methods of itk::Mesh to keep the integrity of the itk::Mesh structure. Hence after any modi-
fication a call to BuildLink() must be done. For each call, the links are deleted, then several transversal must
be done on all the structure to (re)build the link tables again. The complexity ofa local modification is thus
at least linear with respect to the size of the mesh. This is in sharp opposition with the QE data structure
for which any local change will have only local impact, in constant time. This isof acute importance for
algorithms that iteratively build or modify a surface like delaunay triangulation of point clouds, decimation,
... .

2.3 Integration

Our aim is to implement the QE structure as a native ITK object, inheriting from itk::Mesh. The end user
must be able to replace any itk::Mesh (provided that it represents a surface) by a itkQE::Mesh in an existing
code. Not only can the code work without any other change, but the user benefits of speed enhancements.
A second advantage of this approach is the possibility to use ITK at its full potential. The pipeline design
remains available, along with other parallelization features and multi resolution frameworks, to cite a few.

This has a great impact on the implementation. itk::Mesh benefit from a global cell interface design. In
order to keep the genericity of the design, and the access to global cell iterators, we need to provide new cell
and cell interface classes for the basic QE items. We also need to maintain the integrity of itk::Mesh based
code at the itkQE::Mesh level all the methods that should not be called anymorelike BuildLinks().

The figure9 is an overview of the global design. We can see on the left the pure topological level of QE
data structure. This layer being purely topological no distinction is made between primal and dual QEs.
Next column on the right represents the geometrical layer. Here appearsthe Org andData informations
that were introduced in figure4. These two fields are being differentiated depending on the type of the
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QE (primal or dual). Finally,the last column on the right shows the integration ofthe QEs in ITK through
new classes: itkQE::PolygonCell, itkQE::LineCell, itkQE::VertexCell. Normal arrows illustrate link, arrows
with an empty triangle on target represent inheritance relations.

2.4 Our contribution: a neighborhood iterator

Our main contribution to the work of [16] is the definition of a specialneighborhood iterator. This iterator
extracts neighborhood, with the respect to a metric defined on the connectivity graph of the discrete surface.
If a simple metric is used (unweighted graph) then it will extract neighborhoods depending only on the
connectivity. If euclidean distance (defined on edges) is used, then it will extract neighborhood depending
on the geodesic distance to the seed. We saw in section1.2 that accessing and/or extracting neighborhoods
was a basic in most of the discrete surface processing algorithms. This contribution will be of tremendous
impact on further filters implementations.

Thanks to the symmetrical design of the QE structure, neighborhood can bedefined on the primal connec-
tivity or on the dual connectivity. If, for example, we take a triangular mesh, we can with the same algorithm
get the neighboring vertices of a given vertex, or the neighboring faces of a given triangle.

One direct application of this iterator is extracting shortest paths. Indeed,while extracting neighborhood we
keep track of followed paths, this would just be the implementation of a Dijkstra’sshortest path algorithm.
Seen from the primal point of view, the dual of this shortest path algorithm isa geodesic region growing
algorithm. If, for example, we take a triangular mesh, the algorithm run on primal connectivity outputs a
shortest path (and/or a list of visited vertices), and the algorithm run on dual connectivity, tagging the visited
faces, can output a region/patch.

This functionality was implemented as an iterator to ease further processing. The iterator can be defined at
any moment in the code, and the end user has full control over the processing. We also implement it as a
class. It gives a finer control over the processing (with adaptative granularity), but the iterator gives a more
elegant syntax.

2.5 Conclusion on integration

Our main concern during the integration was to fully comply with ITK design. It leads to redefining the cell
interface layer to handle underlying QE data structure. The QE data structure (for orientable 2 manifold)
along with the splice method were all implemented underneath. One of our contribution to the original [16]
design is a neighborhood iterator as needed by most if not all discrete surface processing algorithms. In the
next section we will first validate the integration in ITK, then we will test and illustrate the induced gains:
speed, code syntax, code volume, duality, ...

3 Validation and examples

3.1 Validation

The validation process is twofold. First we tested the integration of the structure in ITK, we then tested the
speed enhancement resulting from the new design allowing local accesses and modifications.

ITK provides a test suite. In order to test the integration, we ran the test suite using itkQE::Mesh wherever
itk::Mesh was used. The impact on the code is minimal, being almost just a matter of replacing itk::Mesh
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Figure 6: Swapping the edge e.

by itkQE::Mesh wherever the first appeared. All tests ran smoothly.

We tested the speed enhancement in the following way. Taking the same mesh, on the same computer
(mobile P3 with 256Mo RAM, running WinXP) with all the codes compiled the same way (CMAKE 2.0,
ITK 2.0.1, ITKApplication 2.0.1, MSVC 7.1 .NET 2003), we removed a face from the mesh and forced
the integrity of the mesh. With the itk::Mesh design, this means calling the BuildCellLink() method, while
with the itkQE::Mesh, this is just removing a face, the integrity of the surface being guaranteed at itkQE
level. Thus, the complexity of removing a face is linear with itk::Mesh and constant with itkQE::Mesh.
For example, with a 100000+ triangles model, it took 2.28 seconds to itk::Mesh and 0.0000249 seconds for
itkQE::Mesh.

3.2 Example of Splice power: swapping an edge

In order to provide some evidence of the simplicity of usage of the Splice operator, let us consider the
classical higher-order topological operator that swaps an edge (as illustrated by figure6). The following
code snippet is the direct translation within itkQE of the original design of the Swap operator presented in
[16] (refer to chapter 6, page 104):

template< ... > bool QuadEdgeGeom< ... >::Swap( )
{

Self* e = this;
Self* a = e->GetOprev( );
Self* b = e->GetSym( )->Oprev( );
// Disconnect e from a and b:
e->Splice( a );
e->GetSym( )->Splice( b );
// Reconnect e with a.Lnext() and b.Lnext():
e->Splice( a->GetLnext( ) );
e->GetSym( )->Splice( b->GetLnext( ) );

}
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3.3 Example of simplicity of generic programming

We implemented a classical front based traversal algorithm that starts froma given reference edge and flows
across the edges in a Dijkstra fashion. This traversal of the mesh is conveniently offered to the user in the
form of an iterator as illustrated by the following code snippet.

typedef
FrontIterator< MeshTypeArg,

MeshTypeArg::QEType > FrontIterator;
FrontIterator it;
for( it = mesh->BeginFront( edgeSeed );

it != mesh->EndFront( );
it++ )

{
PointIdentifier org = it.Value( )->GetOrg( );
... // Do something smart with the vertex

}

The very design of the QE data structure guaranties that each step of the iteration has a constant time com-
plexity. Although by default this front traversal uses unweighted edges, the FrontIterator can be initialized
with weights over edges (e.g. the ambient euclidean distance).

We can now take advantage of the native support for duality of the QE datastructure and combine it with
the generic algorithm implementation of the FrontIterator. The following code snippet provides an example
of a dual version of the Dijkstra algorithm i.e. a Dijkstra algorithm walk on the dual edges, that can be seen
as a front propagation over the faces of the primal mesh.

...
typedef

FrontIterator< MeshTypeArg,
MeshTypeArg::QEDual > FrontDualIterator;

FrontDualIterator it;
for( it = mesh->BeginDualFront( );

it != mesh->EndDualFront( );
it++ )

{
FaceIdentifier org = it.Value( )->GetOrg( );
... // Do something smart with the face

}

Note that this is achieved by simply changing the types used for the FrontIterator instantiation (and of course
the derived types). The figures7 and8 illustrate the direct application of this Dijkstra based iterator to the
computation of the shortest path between two arbitrary vertices of triangulations.

3.4 Example of duality importance: simplex mesh implementation

Users most often deal with discrete surface as triangular meshes, that are the usual output of isosurface
extraction algorithms, and also a standard for visualization. But simplex meshes have also proved to be
very efficient discrete surface representation for segmentation. Interestingly, simplex meshes are dual to
triangular meshes.
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Figure 7: Shortest path between the seed forehead vertex and an arbitrary upper-lip vertex: the vertices
explored by the front are displayed in red.
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Figure 8: Shortest path between two arbitrary vertices of a genus three surface: the vertices explored by the
front are displayed in red.
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ITK actually integrates an active surface segmentation algorithm based on simplex meshes. Composed of 9
classes, this is the biggest application based on itk::Mesh in the toolkit. The implementation of this classes
is particularly interesting when comparing itk::Mesh and itkQE::Mesh.

Let’s first compare the data structures. itkQE::Mesh enforces orientation and benefits from local accesses
to neighborhood. The simplex solution define a itk::SimplexMesh which inherits from itk::Mesh as the
main representation of simplex mesh. As itk::Mesh has no traversal capacity, local information is gath-
ered in the itk::SimplexMesh class as an array of neighbors, which has to be consistently updated when
modifying the connectivity. As connectivity changes are becoming very difficult, a specific filter class,
itk::SimplexMeshAdaptTopology, has been created. Also, the orientation notbeing enforced in itk::Mesh,
the itk::TriangleMeshToSimplexMesh filter has to traverse the structure twice, once to create the dual cell,
then to enforce orientation. Indeed, orientation of cells of itk::SimplexMesh is supposed consistent in all the
filters

A second comparison could be made on duality. itkQE::Mesh handle both primal and dual representation
of the mesh, while itk::Mesh does not. Hence, specific transformation filters must be made to transform
a triangular mesh into a simplex mesh and vice-versa, namely itk::SimplexMeshToTriangleMeshFilter and
itk:TriangularMeshToSimplexMeshFilter.

As a conclusion, at least 4 classes out of 9 are not needed to implement thesame solution using itkQE::Mesh
data structure as a base. The 5 classes left are the classes computing the internal and external forces whose
computation is specific to simplex mesh. They would need to be implemented anyway,but would be smaller.
The overall solution would also be faster as illustrated previously.

4 Conclusion and future work

We have implemented in ITK a Quad-Edge data structure to represent orientable 2-manifolds (borders of
3D solid objects). Any application handling orientable 2-manifolds will benefitsof great enhancements in
speed, robustness, genericity, maintenance cost, for lesser code. Moreover, some algorithms using objects
dual to each others (voronoi - delaunay, triangular mesh - simplex mesh) can now be implement in a very
elegant and efficient way.

This has a potential great impact on nowadays image processing. IndeednD Image processing intensively
uses explicit discrete surfaces to include a priori geometrical or topological information in the image pro-
cessing algorithms. Unfortunately, the usage of explicit discrete surfaces was quite raw. Reasons were
twofold: first most of the work on discrete surface processing was done in computer graphic and visualiza-
tion field that did not had to deal with image, and second because the availableexplicit discrete surfaces
data structure in image processing libraries were not adapted to processing. With our implementation of
a QE data structure in ITK, we believe that the gap does not exist anymore,and that all surface process-
ing algorithms developed in computer graphics and visualization fields can nowdirectly be used for image
processing.

We would like next to further enhance the data structure with Euler operatordefined on top of Splice method.
That would get us one step closer to C-GAL HE data structure features, without of course the same numerical
quality, as no exact numerical kernel nor exact geometrical tests are included in ITK. At the application
level, we would like in a close future to add more geometry and topology filters. It would provide ITK with
filters it is lacking right now. We would begin by the most useful filters already existing in VTK, to avoid
time/memory consuming and pipeline-breaking transitions between ITK and VTK nowadays. We would
still need to switch to VTK for visualization, but not for processing anymore.
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Figure 10: UML Diagram of itkQE::Mesh and its interaction with ITK.
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