Orthogonal Bisection of an Image

Release 0.01
Robert Tamburo

October 19, 2006

University of Pittsburgh
Department of Psychiatry

Abstract

This document describes a filter calledkOrthogonalBisectImageFilter, which bisects an input

image and copies each divided region into two separate output images. Pixel values are copied while
maintaining their original pixel location. The output images are of the same size, dimension, and pixel
type as the input image. Pixels that have not been copied from the input image are set to a user-specified
value. This filter is restricted to bisection along a cardinal axis, i.e., in a direction orthogonal to a
bisecting slice (line for 2D images or plane for 3D images). Submitted with this document is the source
code for the filter and source code for demonstrating filter usage via an image input as an argument. Also
included is source code for testing the functionality of the filter.

Contents

1 Filter Description and Implementation 1
2 Filter Usage 2
3 Example and Validation Test 3
4 Software Requirements 4

1 Filter Description and Implementation

A basic filter called the tkOrthogonalBisectImageFilter has been developed for the Insight Toolkit.

The operation of this filter on a 3D image is illustrated below in HigThis filter bisects the input image

and copies each divided regioR;(andRy) into two separate output images. Pixel values are copied while
maintaining their original pixel location. The output images are of the same size, dimension, and pixel type
as the input image. Pixels in the output images that have not been copied from the input image can be ini-
tialized to a user-specified value (the default value is 0). This filter is restricted to bisection along a cardinal
axis of the input image, i.e., in a direction orthogonal to a bisecting slice. The bisecting slice is determined



—t
R-I 1”” 5 R-I
,¢’ R2 ’¢' R
- > +x =
b, b,
d. Inputimage b. outputimage 1 C. OutputImage 2

Figure 1:Operation of the filter on a 3D input image. In this example, a slice in the yzplane bisects the image in the
direction of vector v (X-axis). The region denoted by R; in the input image is copied to output image 1 as denoted as
the gray region, which includes those pixels in the slice at bj. The blue region in output image 1 is the pixel values
specified by the user. Similarly, the gray valued pixels in Ry are copied to output image 2 and the red region denotes
the user-defined pixel values.

by itkImageSlicelIteratorWithIndex and defined as a line for 2D images and a plane for 3D images.
Bisection occurs in a direction orthogonal to the bisecting slice. The location of the bisecting slice is deter-
mined by specifying the bisect indelg (n Fig. 1) of the slice iterator. Note that the pixels at the bisection
plane are included in output image 1. If the index is not specified, it defaults to the middle of the image
along the direction of bisection. Image regions can also be extracted witht ki@t ract TmageFilter
anditkCropImageFilter, but the output of these filters take on the size of the new region.

2 Filter Usage

Usage of this filter is now described. The reader is refetnethogonalBisect ImageFilterTest.cxx
or OrthogonalBisectImageFilterExample.cxx for a working demonstration. The filter is instantiated
much like other filters found in the Insight Toolkit, i.e.,

Typedef OrthogonalBisectImageFilter<ImageType> FilterType;

FilterType::Pointer filter = FilterType::New();

The input image is set by passing &tk : : Image smart pointer to the filter viget Input (). The bisect
direction is set by passing atd: :string of the direction orthogonal to the bisect line or plane with
SetOrthogonalDirection(), €.9.,SetOrthogonalDirection (std::string("x")). If a string other
thanx, y, orzis used an exception is thrown. The index of the bisect line or plane is set with the function
SetBisectIndex (). The pixel values for the first and second output images can be set with the functions
SetOutputlFillIntensity() andSetOutput2FillIntensity (), respectively. The default pixel values

are 0. Once these filter settings have been determined, the filter can be executed with the staadarq

call. The first output image can be retrieved wihtOutput (0), and the second image can be retrieved
with GetOutput (1).



Figure 2:A). 3D image obtained from the BrainWeb database. This image is bisected by the yzplane in the direction
of the x-axis. B). The first output image and the C). second output image.

3 Example and Validation Test

A working example of this filter is included iorthogonalBisectImageFilterExample.cxx. Thisis a
user-interactive mode, which requires the user to specify parameters as arguments. The arguments are as
follows: 1). The path and name of the input image, 2). The desired name of the first output image, 3). The
desired name of the second output image, 4). The pixel value for filling in the first output image, 5). The
pixel value for filling in the second output image, 6). The direction of bisection, and 7) optionally, the bisect
index. If a bisectindex is not specified, it will be set to half the size of the image in the direction of bisection.
The file extension must be included when specifying the input and output images. Usage of this example
with the included brain.img is shown below:

OrthogonalBisectImageFilterExample brain.img outputl.img output2.img 0 255 x 123

This bisectsorain. img at slice gzplane) index 123 along theaxis and filloutputl.img with O valued

pixels and fill output2.img with 255 valued pixels. The output of the filter using these parameters is shown
in Fig. 2 using an image obtained from the BrainWeb database (http://www.bic.mni.mcgill.ca/brainweb/).
Visualization is done with an independent VTK/FLTK application.

Figure 3:A). The 3D test image, which contains two spheres. This image is bisected by the yzplane in the direction
of the x-axis. B). The first output image and the C). second output image.



Also included is OrthogonalBisectimageFilterTest.cxx, which is meant to validate filter operation. A para-
metric image of size 100 100x 100 is created containing 2 spheres. One sphere is cente(@@ 30, 45)

with a radius of 28 and an intensity of 255. The second sphere is centef@d &, 80) with a radius of

15 and an intensity of 128. The image is bisected with a slice at index 60 alongatkis. The filter is
validated by iterating over the output images and verifying that the pixel values are correct as compared to
the input image. The images are shown in BgThe generated input image and output images are saved to
disk as Analyze images; the input image is nametthTest Image . img and the output images are named
synthOutputl.img andsynthOutput?2.img.

4 Software Requirements
This filter was written with the following software installed:

1. Insight Toolkit 2.8.1.
2. CMake 2.4 patch 3.

This filter was tested with the included main.cxx on a MacBook pro with gcc 4.0.1 with O errors and 0
warnings.



Orthogonal Bisection of an Image

Release 0.01
Robert Tamburo

October 26, 2006

University of Pittsburgh
Department of Psychiatry

Abstract

This document describes a filter called itkOrthogonalBisectImageFilter, which bisects an input
image and copies each divided region into two separate output images. Pixel values are copied while
maintaining their original pixel location. The output images are of the same size, dimension, and pixel
type as the input image. Pixels that have not been copied from the input image are set to a user-specified
value. This filter is restricted to bisection along a cardinal axis, i.e., in a direction orthogonal to a
bisecting slice (line for 2D images or plane for 3D images). Submitted with this document is the source
code for the filter and source code for demonstrating filter usage via an image input as an argument. Also
included is source code for testing the functionality of the filter.

Contents

1 Filter Description and Implementation 1
2 Filter Usage 2
3 Example and Validation Test 3
4 Software Requirements 4

1 Filter Description and Implementation

A basic filter called the itkOrthogonalBisectImageFilter has been developed for the Insight Toolkit.
The operation of this filter on a 3D image is illustrated below in Fig. 1. This filter bisects the input image
and copies each divided region (R; and R») into two separate output images. Pixel values are copied while
maintaining their original pixel location. The output images are of the same size, dimension, and pixel type
as the input image. Pixels in the output images that have not been copied from the input image can be ini-
tialized to a user-specified value (the default value is 0). This filter is restricted to bisection along a cardinal
axis of the input image, i.e., in a direction orthogonal to a bisecting slice. The bisecting slice is determined



—t
R-I j»”i R-I
,¢’ R2 ’z' R
- > +x =
b, b,
d. Inputimage b. outputimage 1 C. OutputImage 2

Figure 1: Operation of the filter on a 3D input image. In this example, a slice in the yz-plane bisects the image in the
direction of vector v (x-axis). The region denoted by R; in the input image is copied to output image 1 as denoted as
the gray region, which includes those pixels in the slice at b;. The blue region in output image 1 is the pixel values
specified by the user. Similarly, the gray valued pixels in R, are copied to output image 2 and the red region denotes
the user-defined pixel values.

by itkImageSlicelteratorWithIndex and defined as a line for 2D images and a plane for 3D images.
Bisection occurs in a direction orthogonal to the bisecting slice. The location of the bisecting slice is deter-
mined by specifying the bisect index (b; in Fig. 1) of the slice iterator. Note that the pixels at the bisection
plane are included in output image 1. If the index is not specified, it defaults to the middle of the image
along the direction of bisection. Image regions can also be extracted with the itkExtractImageFilter
and itkCropImageFilter, but the output of these filters take on the size of the new region.

2 Filter Usage

Usage of this filter is now described. The reader is referred OrthogonalBisectImageFilterTest.cxx
or OrthogonalBisectImageFilterExample.cxx for a working demonstration. The filter is instantiated
much like other filters found in the Insight Toolkit, i.e.,

Typedef OrthogonalBisectImageFilter<ImageType> FilterType;

FilterType::Pointer filter = FilterType::New();

The input image is set by passing an itk::Image smart pointer to the filter via SetInput (). The bisect
direction is set by passing an std::string of the direction orthogonal to the bisect line or plane with
SetOrthogonalDirection(), e.g., SetOrthogonalDirection (std::string("x")). If a string other
than x, y, or z is used an exception is thrown. The index of the bisect line or plane is set with the function
SetBisectIndex (). The pixel values for the first and second output images can be set with the functions
SetOutputlFillIntensity () and SetOutput2FillIntensity (), respectively. The default pixel values
are 0. Once these filter settings have been determined, the filter can be executed with the standard Update ()
call. The first output image can be retrieved with GetOutput (0), and the second image can be retrieved
with GetOutput (1).



Figure 2: A). 3D image obtained from the BrainWeb database. This image is bisected by the yz-plane in the direction
of the x-axis. B). The first output image and the C). second output image.

3 Example and Validation Test

A working example of this filter is included in OrthogonalBisectImageFilterExample.cxx. This is a
user-interactive mode, which requires the user to specify parameters as arguments. The arguments are as
follows: 1). The path and name of the input image, 2). The desired name of the first output image, 3). The
desired name of the second output image, 4). The pixel value for filling in the first output image, 5). The
pixel value for filling in the second output image, 6). The direction of bisection, and 7) optionally, the bisect
index. If a bisect index is not specified, it will be set to half the size of the image in the direction of bisection.
The file extension must be included when specifying the input and output images. Usage of this example
with the included brain.nii is shown below:

OrthogonalBisectImageFilterExample brain.nii outputl.nii output2.nii 0 255 x 123

This bisects brain.nii at slice (yz-plane) index 123 along the x-axis and fill outputl.nii with O valued
pixels and fill output2.nii with 255 valued pixels. The output of the filter using these parameters is shown
in Fig. 2 using an image obtained from the BrainWeb database (http://www.bic.mni.mcgill.ca/brainweb/).
Visualization is done with an independent VTK/FLTK application.

Figure 3: A). The 3D test image, which contains two spheres. This image is bisected by the yz-plane in the direction
of the x-axis. B). The first output image and the C). second output image.



Also included is OrthogonalBisectImageFilterTest.cxx, which is meant to validate filter operation. A para-
metric image of size 100 x 100 x 100 is created containing 2 spheres. One sphere is centered at (30, 30,45)
with a radius of 28 and an intensity of 255. The second sphere is centered at (80, 80,80) with a radius of
15 and an intensity of 128. The image is bisected with a slice at index 60 along the x-axis. The filter is
validated by iterating over the output images and verifying that the pixel values are correct as compared to
the input image. The images are shown in Fig. 3. The generated input image and output images are saved to
disk as Analyze images; the input image is named synthTest Image.nii and the output images are named
synthOutputl.nii and synthOutput2.nii.

4 Software Requirements
This filter was written with the following software installed:

1. Insight Toolkit 2.8.1.

2. CMake 2.4 patch 3.

This filter was tested with the included main.cxx on a MacBook pro with gcc 4.0.1 with O errors and O
warnings.



