Gridding Graphic Graticules

Nicholas J. Tustison, Brian B. Avants, and James C. Gee

January 22, 2007

Penn Image Computing and Science Laboratory
University of Pennsylvania

Abstract

Certain classes of images find disparate use amongst members of the ITK community for such
purposes as visualization, simulation, testing, etc. Currently there exists two derived classes
from the ImageSource class used for generating specific images for various applications,
viz. RandomImageSource and GaussianImageSource. We propose to add to this set with
the class GridImageSource which, obviously enough, produces a grid image. Such images
are useful for visualizing deformation when used in conjunction with the WarpImageFilter,
simulating magnetic resonance tagging images, or creating optical illusions with which to
amaze your friends.

Keywords: grid, tagging

1 Introduction

We propose a grid-producing image class for inclusion within the ITK library. This class can be used
to generate n-dimensional grid images.

2 GridlmageSource

To produce the grid image, n mutually orthogonal one-dimensional pixel arrays are created where
n is the image dimension. Based on the parameters set for each dimension, the values for the
elements for the pixel arrays are calculated based on a summation of translated kernel functions
(e.g. Gaussian). These arrays are then used to calculate the pixel values for the entire image.

2.1 Options

Once the user sets the parameters for the output image (i.e. size, origin, and spacing), the param-
eters for the grid can be set with the standard Get /Set APl and are given as follows:

2.2 Usage 2

m_GridSpacing — specifies the physical spacing between the grid lines/planes/hyperplanes.

m_GridOffset — specifies the physical offset of the grid from the image origin. This value
is delimited by m_GridSpacing.

m_WhichDimensions — specifies which dimension is gridded (further clarification is given in
the examples below).

m_Scale — the multiplicative value for the image intensity values.

m_KernelFunction — determines the grid intensity profile.

e m_Sigma — parameter for the variable m_KernelFunction.

This class also has multi-thread capabilities.

2.2 Usage

We illustrate usage with the following example which creates the well-known Hermann grid optical
illusion [1].

int itkGridImageSourceTest0O (int argc, char *argv([])
{
typedef double PixelType;
const unsigned int ImageDimension = 2;
typedef itk::Image<PixelType, ImageDimension> ImageType;

// Instantiate the filter
typedef itk::GridImageSource<ImageType> GridSourceType;
GridSourceType::Pointer gridImage = GridSourceType::New();

double scale = 255.0;
ImageType::SizeType size;
ImageType::PointType origin;
ImageType::SpacingType spacing;
GridSourceType::ArrayType gridSpacing;
GridSourceType::ArrayType gridOffset;
GridSourceType::ArrayType sigma;
GridSourceType::BoolArrayType which;

// Specify image parameters
origin.Fill(0.0);
size.Fill(128);
spacing.Fill(1.0);

// Specify grid parameters
gridSpacing.Fill(8.0);
gridOffset.Fill(0.0);
sigma.Fill(3);
which.Fill (true);

// Specify Oth order B-spline function (Box function)
typedef itk::BSplineKernelFunction<0> KernelType;
KernelType::Pointer kernel = KernelType::New();

// Set parameters
gridImage->SetKernelFunction(kernel);
gridImage->SetSpacing (spacing);

42
43
44
45
46
47
48
49
50

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

2.2 Usage

Figure 1: (a) Simple 128 x 128 Hermann optical illusion grid created using a 0/ order B-spline
kernel function. (b) 128 x 128 grid created with a 3’ order B-spline kernel function and twice the

grid spacing in both dimensions.

gridImage->SetOrigin(origin);
gridImage->SetSize(size);
gridImage->SetGridSpacing (gridSpacing);
gridImage->SetGridOffset (gridOffset);
gridImage->SetWhichDimensions (which);
gridImage->SetSigma (sigma);
gridImage->SetScale(scale);

try
{
gridImage->Update ();
}
catch (itk::ExceptionObject & err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}

typedef itk::ImageFileWriter<ImageType> WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName (argv[1l]);

writer->SetInput (gridImage->GetOutput ());
writer->Update ();

return EXIT_SUCCESS;

The resulting image is given in Figure 1(a). In order to simulate the box function, we utilized a 0"
order B-spline kernel function demonstrated in lines 36-40 above. Changing the kernel function to
a higher order B-spline produces the image given in Figure 1(b)

163
164

220
221
222
223
224
225

References 4

Figure 2: 2-D image slices produced by specifying a grid pattern in only two of the three image
dimensions. The default Gaussian kernel function was used.

If the user desires to generate grid hyperplanes in only a subset of the total image dimensions,
the variable m_WhichDimensions allows such control over the produced pattern illustrated by the
following typical usage:

which.Fill (true);
which[ImageDimension-1] = false;

where ImageDimension = 3. This produces the image slices shown in Figure 2.

Finally, grid parameters can be specified for the different dimensions to produce unorthodox grid
patterns such as that found in Figure 3. The specified parameters are as follows

// Specify grid parameters
gridOffset.Fill(0.0);
gridSpacing[0] =
gridSpacing[l] =
sigma[0] = 1.0;
sigma[l] = 5.0;

2.0;
6.0;

References

[1] Wikipedia contributors, “Grid illusion,” Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/w/index.php?title=Grid_illusion&oldid=85841165 (accessed January
22, 2007). 2.2

References S)

Figure 3: Unorthodox 2-D grid pattern created by varying certain parameters between dimensions.
The default Gaussian kernel function was used.

