A Homogeneous Transformation Class for the

ITK

Release 1.00
Rupert Brooks and Tal Arbel

March 2, 2007

McGill Centre for Intelligent Machines
McGill University, Montreal, Canada

rupert.brooks @mcgill.ca, arbel @cim.mcgill.ca

Homogeneous transformations are widely used in computer vision and graphics. They commonly arise
when considering the transformation of an image of a planar object under arbitrary camera motion, or the
transformation of two images of the same scene due to camera motion holding the optical center fixed.
In this paper we describe the addition of a class of homogeneous transforms for the Insight Toolkit.

Contents

1 Introduction 1
1.1 Homogeneous Coordinates ittt 2
1.2 Homogeneous transformation e 2

2 Proposed Class and Implementation 3
2.1 Parameterization e e e e e e 3
2.2 Transformation of points e e 3
23 CompoSItiON oLt e e e e e e e e 3
24 Jacobian Matrix L e 4

3 Testing 5

4 Conclusion 5

1 Introduction

This paper describes a class which performs homogeneous transformations (which are also called projective
transformations) in the ITK framework. These are widely used in computer vision and graphics where

1.1 Homogeneous Coordinates 2

perspective transformations are common due to the use of perspective cameras. These transformations are
less common but still occasionally used in medical imaging. Briefly, a homogenous transformation of a point
is performed by expressing the point in homogeneous coordinates and performing a matrix transformation
of that point. These transformations form a group, of which the affine, similarity, Euclidean and translation
transforms are subgroups. They are described briefly below, detailed description may be found in [3], [4],
or [2].

1.1 Homogeneous Coordinates

The homogeneous coordinates of an n-dimensional point are an n + 1 dimensional vector of the following
form [Ap A], where A is a scale factor, and p is the (n-dimensional) coordinate of the point. There are
many equivalent homogeneous coordinates for a single point depending on the scale factor, . We can obtain
a valid homogeneous point from an n-dimensional coordinate simply by appending a final 1. Conversely,
we can obtain the n-dimensional coordinate from the homogeneous coordinates simply by dividing by the
last element.

If the scale factor A is zero, then this is considered to be a point at infinity which can also be thought of as
a direction. This is equivalent to a vector as defined for the itk::MatrixOffsetTransform and derived
classes.

1.2 Homogeneous transformation

A homogeneous transformation is performed by left multiplying homogeneous coordinates by a square ma-
trix of dimension n+ 1. If the matrix is restricted to be invertible, then this set of transformations forms
a group, of which the affine transformations are a subgroup. Although not strictly necessary, it is often
convenient to define a center about which the transformation acts. This center is implemented by pretrans-
forming the coordinates so that the center is located at the origin, applying the transformation, and then
posttransforming the result by the inverse of the initial, centering transformation.

Specifically, if we parameterize the elements of the matrix using {a,b,c,...} as shown below, then the
transformation of a point (for the 2D case) will be

AXour 1 0 C, a b e 1 0 —C, Xin
Mo | =101 C |-|cd f|l-101 —=C || Yin (1
A 0 0 1 g h 1 00 1 1
thus the new coordinates of a point are given by:
a(xjy —Cx) +b(yin—Cy) +e
X, = +C 2
c(xin—Cx) +d(yin—Cy) + f
= +C 3)
You g(xin_cx)+h(yin_cy)+1 *

where [G G } are the coordinates of the center point. Note that these equations are non-linear in general.
If the elements in the bottom row of the matrix, g and & are equal to zero, then this transformation reduces
to the familiar affine transformation.

2 Proposed Class and Implementation

The class proposed, itk::HomogeneousTransform, implements the Homogeneous transformation of n-
dimensional points as described above. Internally, the class stores a n+ 1 X n+ 1 matrix representing the
transformation, and the center about which the transformation acts (an n-dimensional point).

2.1 Parameterization

The transformation is parameterized using one parameter for each element of the matrix, except for the
bottom left entry, which is assumed to be one. These are arranged so that the first n X n entries correspond
to the affine matrix part of the transformation, the following n entries correspond to the translation, and the
final n entries are the perspective, or elation part of the transformation.

This parameterization is fairly widely used (e.g. [1]) and intuitively understandable, but is flawed in that
it cannot represent all possible valid homogeneous transformations. As an example, consider that there
are invertible matrices, which have a zero element in the lower left corner. These are valid homogeneous
transforms, but cannot be represented in this scheme.

This parameterization was used despite this problem, as these transformations occur rarely in practice. They
correspond to moving a perspective camera through the object being viewed and out the other side. Further-
more, complete parameterizations suffer from other difficulties. They either are not minimal, that is they
have more parameters than the inherent dimensionality of the space, or they require matrix exponentiation,
making them computationally difficult to evaluate.

2.2 Transformation of points

Transformation of points is implemented in the obvious way, using the following algorithm:

Algorithm 1 Transformation of points

Extend input point to homogeneous point by appending 1

Subtract the center coordinates from input point.

Multiply the result by the transformation matrix.

Add the center coordinates to the transformed point.

Convert the output point to a non-homogeneous point by dividing by the final component.

Back transformation is performed similarly, except that the inverse transformation matrix is used.

Transformation of vectors is not supported. A vector, or direction, in projective space may be considered as
a point on the plane at infinity. Homogeneous transformations have the ability to move the plane at infinity.
While this remains meaningful while working in homogeneous coordinates, the results do not really make
sense when converted back to non-homogenous coordinates.

2.3 Composition

Composition of transformations which have the same center is easily done by multiplying their matrices.
To support composition when the centers of the transformations are different, two supporting methods were

2.4 Jacobian Matrix 4

implemented. The DeCenter () method returns the matrix for an equivalent transform centered at the origin.
Conversely, the ReCenter () method, returns an equivalent transformation centered on a new center point.

It is important to differentiate the ReCenter () method from the SetCenter () method. The SetCenter ()
method simply sets the position of the center point. After ReCenter (), points will be transformed iden-
tically, but the transformation matrix will be different. After SetCenter () however, the transformation
matrix is identical, but points will be transformed differently (because the center point is different).

Given the DeCenter () and ReCenter () methods, composition is easy. Both transformations are decen-
tered, multiplied together, and then recentered on the appropriate center point. Composition with the
itk::MatrixOffsetTransform and derived classes is supported by first computing an equivalent homoge-
neous transform to the itk::MatrixOffsetTransformand then composing with that in the above manner.

2.4 Jacobian Matrix

The Jacobian matrix of the transformation has a reasonably simple form in terms of the input and output
homogeneous points. Let &; refer to the input coordinates after the center is subtracted, indexed by i,

Xi = Xin; — Ci 4)

and let £; be the raw homogeneously transformed coordinates, along with the output scale factor A. Specifi-
cally,

X1 X1
D =H|)
Xn Xn
A 1
and, -
i
Xout; = Il + Ci (6)

Then, given the ordering of the parameters used here, the Jacobian matrix can be divided into three parts:

NI P
](X,‘n) = a_ = E (7)
¢ | F
The block D is the block diagonal matrix of derivatives with respect to the affine part of the matrix.
3 if(j—ln<i<=jn
bij { 0 otherwise ®)

where i ranges from 1 to n? and j from 1 to n.

The block E is the n X n matrix of derivatives with respect to the translation components.

1 e .
1 ifi=j
Eij { 0 otherwise ©)

Finally the block F is the n x n matrix of derivatives with respect to the projective components.

~ A

XiXj

(10)

(a) FatMRISlice Original (b) FatMRISlice Warped (c) Difference after registration

Figure 1: Example registration of a 2D image slice

3 Testing

In keeping with the ITK standard, all methods of the class are tested by the testing program
itkHomogeneousTransformTest.cxx. All tests are performed for both the 2 and 3 dimensional cases.
Each case has been hand calculated independently to verify the output of the class.

Furthermore, as this class is intended to be used in the registration framework, we present the re-
sults of an example registration program, HomogeneousRegistration.cxx based on the ITK example
ImageRegistration3.cxx in Figure 1. This example uses the FatMRISlice.png image from the ITK ex-
ample data. The image has been warped by a small homogeneous transform, which is successfully resolved
by the registration process. It should be noted, however, that scaling is important for this transform. The
final two parameters of the transform should be given particularly large scales.

4 Conclusion

This paper presented the class itk::HomogeneousTransform which performs homogeneous, or projec-
tive, transformations of n-D coordinates. The transformation is designed to fit into the ITK registration
framework; in particular, the Jacobian matrix is available, so it can be used by gradient based optimizers. A
testing program which tests all methods of the class has been provided.

References
[1] Simon Baker and Iain Matthews. Lucas-Kanade 20 years on: A unified framework. International
Journal of Computer Vision, 56(3):221-255, 2004. 2.1

[2] Jules Bloomenthal and Jon Rokne. Homogeneous coordinates. The Visual Computer, 11(1):15-26,
1994. 1

[3] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2nd edition, 2003. 1

[4] Marc Pollefeys. Visual 3d modeling from images. Online course notes, 2002. Available from
http://www.cs.unc.edu/~marc/teaching.html. 1

