Seamless VTK-ITK pipeline connection for
Image data handling

Release 1.00
Andinet Enquobahrie and Luis Ibanez

March 27, 2007

Kitware Inc.
andinet.enqu@kitware.com,luis.ibanez@kitware.com

Abstract

Often times, developers face the need to connect ITK and VipKlipes to handle image data. For
this purpose, image data importer and exporter classesbemreimplemented both in ITK and VTK.
However, as evident from frequent questions in the ITK andK\WBers and developers mailing list,
usage of these classes is not straight forward. Furtherriteelifficulty gets more challenging with the
need to handle different pixel types. For these reasondfemwas made to write Image 10 classes that
encapsulate all the intricacies and provide users with asge API. This article describes these Image
10 classes and present an example to demonstrate how toassedlasses.

Contents

1 Introduction 1

2 Classdescriptions 2
2.1 vtkKWImage e e e e 2
2.2 vtkKWImagelO. 2

3 Example 2

1 Introduction

Application developers often need to connect VTK and ITK piplelines feirtimage analysis and visual-
ization needs. Both ITK and VTK toolkits provide importer and exporter filferghis purpose. However,
their usage is not straight forward. Furthermore, users of ITK tootkitodten challenged by the need to
instantiate image reader classes without knowing first the pixel type of theeidwtg.

2 Class descriptions

To solve the above issues, two classes were implemented: vikKWimage &\ wikagelO.

2.1 vtkKWImage

This class is a container class of an image object. The class associategtzal Ifit€ image and a VTK
importer in such a way that the image data is available in both ITK and VTK imagdatatat.

2.2 vtkKWImagelO

This class reads the image data using ITK object factory pattern and siorastkKWIimage image object.
The image reading process is broken down to three steps. In the firsthegixel type is determined. Next,
an appropriate ITK image reader is instantiated using the determined pixelRi@ly, the image data is
read and stored into a vtkKWImage container object. From the vikKWImagticer object, both the ITK
and VTK image data can be easily accessed.

3 Example

This program is a modified version of the example application in InsightApplicaitibhe program demon-
strates how easily vtkKWImage and vtkKWImagelO classes can be usedd@itoanage and render it
using VTK filters without the need to instantiate importer, and exporter filtatsatimout the need to know
the pixel type to instantiate the appropriate image reader.

#include "itkCommand. h"
#include "itkl mage. h"
#i ncl ude "vtkl mageData. h"

#i ncl ude "vt kKW magel O. h"
#i ncl ude "vt kKW mage. h"

#incl ude "vtkl mageActor. h"

#include "vtkRenderer.h"

#include "vt kRender W ndow. h"

#i ncl ude "vtkRender Wndowl nt eractor. h"
#include "vtklnteractorStyl el mage. h"

int main(int argc, char * argv [])

{

if(argc < 2)
{
std::cerr << "M ssing paranmeters" << std::endl;
std::cerr << "Usage: " << argv[0] << " inputlmageFilename " << std::endl;
return 1;

}

vt kKW magel O * reader = vt kKW nagel O : New() ;

reader->Set Fi | eName(argv[1]);

try
{

reader - >Readl mage();

}
catch(itk::Exceptionoject & excp)

{
std::cerr << excp << std::endl;
return EXIT_FAI LURE;

}

vt KKW mage * kwl mage = reader - >Har vest Readl mage() ;
vtkl mageData * vtklmage = kwl mage- >Cet VTKI mage() ;
vt kI mageAct or* actor = vtklmageActor:: New();
actor->SetInput(vtklmage);

viklnteractorStylelmage * interactorStyle = vtklnteractorStylel mage:: New();

Il Create a renderer, render window, and render w ndow interactor to
Il display the results.

vtkRenderer* renderer = vtkRenderer::New();

vt kRender W ndow* renWn = vt kRender W ndow. : New() ;

vt kRender W ndow nt eractor* iren = vtkRender Wndowl nteractor:: New();

renW n- >Set Si ze(500, 500);

renW n- >AddRender er (renderer);

i ren->Set Render W ndow(r enWn) ;
iren->SetlnteractorStyle(interactorStyle);

Il Add the vtklnmageActor to the renderer for display.
render er - >AddAct or (actor);
render er - >Set Backgr ound(0. 4392, 0.5020, 0.5647);

/1 Bring up the render w ndow and begin interaction.
renW n- >Render () ;
iren->Start();

Il Rel ease all VTK conponents
actor->Del ete();
interactorStyle->Delete();
renWn->Del ete();
renderer->Del ete();

iren->Del ete();

References 4

return 0;

}

References

[1] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,
http://www.itk.org/ItkSoftwareGuide.pdf, 2003.

[2] W. Schroeder, K. Martin, and B. Lorensenhe Visualization Toolkit, An Object Oriented Approach to
3D Graphics. Kitware Inc, 1998.

	Introduction
	Class descriptions
	vtkKWImage
	vtkKWImageIO

	Example

