
Seamless VTK-ITK pipeline connection for
image data handling

Release 1.00

Andinet Enquobahrie and Luis Ibanez

March 27, 2007

Kitware Inc.
andinet.enqu@kitware.com,luis.ibanez@kitware.com

Abstract

Often times, developers face the need to connect ITK and VTK pipelines to handle image data. For
this purpose, image data importer and exporter classes havebeen implemented both in ITK and VTK.
However, as evident from frequent questions in the ITK and VTK users and developers mailing list,
usage of these classes is not straight forward. Furthermore, the difficulty gets more challenging with the
need to handle different pixel types. For these reasons, an effort was made to write Image IO classes that
encapsulate all the intricacies and provide users with easyto use API. This article describes these Image
IO classes and present an example to demonstrate how to use these classes.

Contents

1 Introduction 1

2 Class descriptions 2
2.1 vtkKWImage . 2
2.2 vtkKWImageIO. 2

3 Example 2

1 Introduction

Application developers often need to connect VTK and ITK piplelines for their image analysis and visual-
ization needs. Both ITK and VTK toolkits provide importer and exporter filtersfor this purpose. However,
their usage is not straight forward. Furthermore, users of ITK toolkit are often challenged by the need to
instantiate image reader classes without knowing first the pixel type of the image data.

2

2 Class descriptions

To solve the above issues, two classes were implemented: vtkKWImage and vtkKWImageIO.

2.1 vtkKWImage

This class is a container class of an image object. The class associates an internal ITK image and a VTK
importer in such a way that the image data is available in both ITK and VTK image dataformat.

2.2 vtkKWImageIO

This class reads the image data using ITK object factory pattern and storesit in a vtkKWImage image object.
The image reading process is broken down to three steps. In the first step, the pixel type is determined. Next,
an appropriate ITK image reader is instantiated using the determined pixel type. Finally, the image data is
read and stored into a vtkKWImage container object. From the vtkKWImage container object, both the ITK
and VTK image data can be easily accessed.

3 Example

This program is a modified version of the example application in InsightApplications. The program demon-
strates how easily vtkKWImage and vtkKWImageIO classes can be used to load an image and render it
using VTK filters without the need to instantiate importer, and exporter filters and without the need to know
the pixel type to instantiate the appropriate image reader.

#include "itkCommand.h"
#include "itkImage.h"
#include "vtkImageData.h"

#include "vtkKWImageIO.h"
#include "vtkKWImage.h"

#include "vtkImageActor.h"
#include "vtkRenderer.h"
#include "vtkRenderWindow.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkInteractorStyleImage.h"

int main(int argc, char * argv [])
{

if(argc < 2)
{
std::cerr << "Missing parameters" << std::endl;
std::cerr << "Usage: " << argv[0] << " inputImageFilename " << std::endl;
return 1;

3

}

vtkKWImageIO * reader = vtkKWImageIO::New();

reader->SetFileName(argv[1]);

try
{
reader->ReadImage();
}

catch(itk::ExceptionObject & excp)
{
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}

vtkKWImage * kwImage = reader->HarvestReadImage();
vtkImageData * vtkImage = kwImage->GetVTKImage();
vtkImageActor* actor = vtkImageActor::New();
actor->SetInput(vtkImage);

vtkInteractorStyleImage * interactorStyle = vtkInteractorStyleImage::New();

// Create a renderer, render window, and render window interactor to
// display the results.
vtkRenderer* renderer = vtkRenderer::New();
vtkRenderWindow* renWin = vtkRenderWindow::New();
vtkRenderWindowInteractor* iren = vtkRenderWindowInteractor::New();

renWin->SetSize(500, 500);
renWin->AddRenderer(renderer);
iren->SetRenderWindow(renWin);
iren->SetInteractorStyle(interactorStyle);

// Add the vtkImageActor to the renderer for display.
renderer->AddActor(actor);
renderer->SetBackground(0.4392, 0.5020, 0.5647);

// Bring up the render window and begin interaction.
renWin->Render();
iren->Start();

// Release all VTK components
actor->Delete();
interactorStyle->Delete();
renWin->Delete();
renderer->Delete();
iren->Delete();

References 4

return 0;
}

References

[1] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,
http://www.itk.org/ItkSoftwareGuide.pdf, 2003.

[2] W. Schroeder, K. Martin, and B. Lorensen.The Visualization Toolkit, An Object Oriented Approach to
3D Graphics. Kitware Inc, 1998.

	Introduction
	Class descriptions
	vtkKWImage
	vtkKWImageIO

	Example

