
Go-Go Gabor Gadgetry

Nicholas J. Tustison and James C. Gee

April 20, 2007

Penn Image Computing and Science Laboratory
University of Pennsylvania

Abstract

Although Gabor filtering is quite prevalent in the computer vision community for such tasks as
texture segmentation and motion analysis, such capabilities are conspicuously absent from the
Insight Toolkit. The contribution described in this paper attempts to remedy this deficiency by
introducing two new classes: itkGaborKernelFunction and itkGaborImageSource.
Keywords: filtering, Gabor, image source, kernel

1 Introduction

We propose two Gabor filter classes for inclusion within the ITK library. The
itkGaborKernelFunction class calculates the standard 1-D complex Gabor kernel given
by

h(x) = e−x2/2σ2
e j(2π f x+φ) (1)

= e−x2/2σ2
cos(2π f x+φ)+ je−x2/2σ2

sin(2π f x+φ) (2)

which is essentially a complex sinusoid enveloped by a Gaussian function. This kernel simply adds
to the existing library of kernel functions (e.g. B-spline, Gaussian).

The second class we introduce takes advantage of the previously mentioned kernel function to
formulate theitkGaborImageSource class. This class produces an N-D Gabor image where the
sense of directionality intrinsic to the Gabor filter is aligned with the x-axis (alternate alignments
can be achieved through the various Transform classes). The complex sinusoid in the x direction is
enveloped within an N-D Gaussian. This is described mathematically as

h(x1,x2, . . . ,xN) = e j(2π f x1+φ)e−∑
N
i=1 x2

i /2σ2
i (3)

2

2 Class Overview

2.1 Gabor Kernel

The kernel function simply calculates Equation (1). The parameters that are required are as follows:

• σ, the standard deviation of the Gaussian. The variable name is m_Sigma.

• f , the modulation frequency of the complex sinusoid. The variable name is m_Frequency.

• φ, the phase offset. The variable name is m_PhaseOffset.

Note that access to these variables is provided via the conventional ITK Get/Set mechanisms.
In addition, the user must select which part (i.e. real or imaginary) is actually calculated. This is
selected by setting the boolean variable m_CalculateImaginaryPart.

2.2 Gabor Image Source

There was much borrowing from the itkGaussianImageSource class while creating the itkGaborIm-
ageSource class. This seems natural given the similarities between an N-D Gaussian image and
the way we have defined an N-D Gabor image in Equation (3). The common variables governing
the Gaussian include:

• m_Sigma — an N-D array of standard deviation values, and

• m_Mean — an N-D array of mean values.

The standard image specifications are also provided.

• m_Size — size of output image.

• m_Spacing — spacing of output image.

• m_Origin — origin of output image.

Finally, all the variables used to specify the Gabor kernel outlined in the previous section are re-
quired for specifying the Gabor image.

3 Usage

In the test code included with this submission (itkGaborImageSourceTest), we calculate a 2-D
and a 3-D Gabor image. Instantiating and executing the 2-D example is given by the following code
snippet.

3

11 typedef itk::GaborImageSource <ImageType > GaborSourceType;
12 GaborSourceType::Pointer gaborImage = GaborSourceType::New();
13
14 GaborSourceType::ArrayType sigma;
15 sigma[0] = 2.0;
16 sigma[1] = 5.0;
17
18 ImageType::SpacingType spacing;
19 spacing.Fill(0.25);
20 ImageType::SizeType size;
21 size.Fill(64*4);
22
23 gaborImage ->SetSpacing(spacing);
24 gaborImage ->SetSize(size);
25
26 gaborImage ->SetSigma(sigma);
27 gaborImage ->SetFrequency(0.1);
28 gaborImage ->SetCalculateImaginaryPart(false);
29
30 try
31 {
32 gaborImage ->Update();
33 }
34 catch (itk::ExceptionObject & err)
35 {
36 std::cout << "ExceptionObject caught !" << std::endl;
37 std::cout << err << std::endl;
38 return EXIT_FAILURE;
39 }

This result is given in Figure 1(a). Both the 3-D code snippet and corresponding results (Figure
1(b)) are given below.

56 // Instantiate the filter
57 typedef itk::GaborImageSource <ImageType > GaborSourceType;
58 GaborSourceType::Pointer gaborImage = GaborSourceType::New();
59
60 GaborSourceType::ArrayType sigma;
61 sigma[0] = 2.0;
62 sigma[1] = 10.0;
63 sigma[2] = 10.0;
64
65 ImageType::SpacingType spacing;
66 spacing.Fill(0.5);
67 ImageType::SizeType size;
68 size.Fill(64*2);
69
70 gaborImage ->SetSpacing(spacing);
71 gaborImage ->SetSize(size);
72
73 gaborImage ->SetSigma(sigma);
74 gaborImage ->SetFrequency(0.1);
75 gaborImage ->SetCalculateImaginaryPart(true);
76
77 try
78 {
79 gaborImage ->Update();
80 }
81 catch (itk::ExceptionObject & err)
82 {
83 std::cout << "ExceptionObject caught !" << std::endl;
84 std::cout << err << std::endl;
85 return EXIT_FAILURE;
86 }

4

(a) (b)

Figure 1: (a) 2-D Gabor image and (b) a 2-D slice from the 3-D Gabor image.

