
Multidimensional Arrays and the nArray
Package

Ofri Sadowsky, Daniel Li, Anton Deguet, Peter Kazanzides

July 1, 2007

Department of Computer Science, Johns Hopkins University
email:ofri@cs.jhu.edu

Abstract

At the Johns Hopkins University’s Engineering Research Center for Computer-Integrated Surgi-
cal Systems and Technology (ERC-CISST) laboratory, we have designed and developed a platform-
independent C++ software package, called the nArray library, that provides a unified framework for
efficiently working with multidimensional data sets. In this paper, we present and discuss the core ele-
ments of the library, including its intuitive and uniform API, efficient arithmetic engine algorithm, and
efficient sub-volume algorithm. We then compare the performance of the nArray library with that of
an existing multidimensional array toolkit, ITK. We conclude that the nArray library is more efficient
than ITK in many situations, especially in operations on sub-arrays, and that the two packages have
comparable performance in many other scenarios.

1 Introduction

Multidimensional data sets are becoming increasingly prevalent in today’s world, especially in the fields of
computer-integrated surgery and image processing. A canonical example in image processing is a collection
of three-dimensional CT scans over time that defines a four-dimensional data set. A three-dimensional
image whose pixels each have a vector quantity, such as color or direction, also defines a four-dimensional
data set. Such multidimensional data sets grow in size extremely quickly, and so it is important to have a
software package that efficiently handles them.

At the Johns Hopkins University’s Engineering Research Center for Computer-Integrated Surgical Systems
and Technology (ERC-CISST) laboratory, we have designed and developed a platform-independent C++
software package, called the nArray (pronounced “EN-array”) library, that provides a unified framework for
efficiently working with multidimensional data sets. In addition to standard features such as STL-compatible
iterators to traverse the data sets, the nArray library also provides immutable classes for safe data handling,
efficient referencing of sub-volumes of data, layout manipulations, and an extensible generic computational
engine.

In this article, we explore the unique layout of the nArray library, focusing specifically on the computational
engine and the efficient sub-volume algorithm. We then compare the efficiency of the nArray package with
an existing toolkit with multidimensional array support, the National Library of Medicine’s Insight Toolkit
(ITK) [1]. Through this paper, we will see how the efficiency of the nArray package proves to be an effective
tool for managing multidimensional data sets.

1.1 Motivation 2

1.1 Motivation

The conventional C notation for a multidimensional array looks similar to the following:

unsigned int *** uintVolume; /* this is a "three-dimensional" array */

Elaborate allocation and deallocation methods are required to properly manage such a memory layout. Ul-
timately, the actual data typically is allocated as a single, continuous memory block, i.e., a “flat” structure.
Smaller arrays of pointers are then used to dereference portions, or “slices,” of the block. It is clear from
the notation that the higher the dimensionality of the dataset, the more complicated the “bookkeeping” of
its layout becomes. A main goal in designing the nArray package was to simplify this process for the user
by providing a templated uniform interface. For example, the same three-dimensional array created with an
nArray container looks like:

/* here the array’s type and dimension are template parameters */
vctDynamicNArray<unsigned int, 3> uintVolume;

nArray containers of all dimensions have a common interface, i.e., methods and operations. This makes the
learning curve shorter, gives scalability, and helps with the debugging. To support this generic usage, we
have developed and implemented a set of algorithms to address the issues involved with bookkeeping. Some
of these algorithms will be outlined in this paper later.

1.2 Inspiration

APIs and software tools that deal with multidimensional data sets have been around for a while. MATLAB R©

has many advantages in “rapid prototyping” of algorithms, e.g. in signal processing and in the running of
interactive processes, but its poor handling of data structures, flow control, and memory allocation control
makes it unsuitable for real-time application development. Other interpreted languages, such as Python,
offer a similar functionality for similar performance costs. ITK has gained popularity in recent years in the
medical image processing community. It is designed as a data flow oriented toolkit, where components are
linked in a processing pipeline and final outputs are produced at the end of the pipeline chain. Our feeling
is that this programming model is less intuitive to many C/C++ programmers and that it does not provide
enough low-level access for optimizing one’s code.

The nArray package was built as an extension to our prior development of the cisstVector library of
vectors and matrices written in C++ [2]. Some of the functionality of nArrays involves the use of vectors
from this library. The cisstVector library was inspired by existing toolkits in C++, such as VNL [3] and
the Standard Template Library, in many of its aspects. We have tried to implement the good concepts in
these libraries and improve those that seemed to need improvement.

A discussion of generic programming cannot be complete without mentioning the work of Todd Veldhuizen,
the “father” of template metaprogramming [4]. The cisstVector library relies on metaprogramming struc-
tures, though different from Veldhuizen’s Blitz++ library [5].

Finally, the development of the nArray computational engines, presented briefly in this paper, was an exten-
sion of an idea contributed by Robert Jacques, currently at the Johns Hopkins University. Jacques suggested
an improvement to our matrix computation engines, which we later extended to nArrays.

3

Figure 1: The nArray class inheritance hierarchy.

2 Library Elements

2.1 nArray class hierarchy

The nArray package interfaces with a given data set through one of three nArray containers. These three
API-level containers are organized via the five-class inheritance hierarchy shown in Figure 1. Shared meth-
ods are defined in the base classes and are inherited by the three child classes, which correspond to the
three API-level containers. This inheritance hierarchy maintains a uniform interface across the three nArray
containers.

The two base classes vctDynamicConstNArrayBase and vctDynamicNArrayBase contain the bulk of
the API methods. The first includes only immutable methods, while the second extends it with mutable
methods. These two classes are only accessible for the end-user through the following specializations.
The classes vctDynamicConstNArrayRef and vctDynamicNArrayRef are overlay objects, which can be
used to access externally allocated memory layouts as if they were multidimensional arrays. For example,
vctDynamicConstNArrayRef is an immutable overlay, providing read-only structured access to a memory
block identified by a const elementType * (i.e., an address). Finally, the class vctDynamicNArray is
an allocating object, and it allocates and releases a storage memory block.

2.2 nArray API sampler

The cisstVector library, of which the nArray package is an extension, was designed with the Abstract
Data Type programming paradigm in mind. This means that the objects in the library are data containers
and operations between them are methods of their classes. The “ideal” ADT paradigm would use arithmetic
operators to resemble a mathematical notation in the programming language wherever possible. To this end,
the nArray containers use named methods for all of its operations, while in applicable cases, overloaded
operators that use the named methods as subroutines are additionally defined.

Table 1 shows a few examples of the functional cisstVector API. When an equivalent C++ expression is
available, it is listed in the third column. If cisstVector provides an overloaded operator, it is indicated
in the fourth column. The fifth column indicates which operands are immutable, that is, not modifiable
by the operation. Usually, if an operand is immutable, it appears in the method’s signature as a template
vctDynamicConstNArrayBase. This allows any of the nArray classes to be passed as the actual method

2.3 Layout manipulation 4

Operation
Description

CISST Code Equivalent C++ Nota-
tion

Overloaded
Operator

Immut-
able
Array
Operands

Addition (two c1.SumOf(c2, c3); c1 = c2 + c3; Yes c2,c3
containers or c1.SumOf(c2, s); c1 = c2 + s; Yes
a container
and a scalar)

c1.Add(c2); c1 += c2; Yes c2

c1.Add(s); c1 += s; Yes
Elementwise
multiplication

c1.ElementwiseProductOf(
c2, c3);

c1[i] =
c2[i]*c3[i];

No c2,c3

c1.ElementwiseMultiply(c2); c1[i] *= c2[i]; No c2
Division by c1.RatioOf(c2, s); c1 = c2 / s; Yes c2
scalar c.Divide(s); c1 /= s; Yes
Sum of ele-
ments

s = c.SumOfElements(); N/A No c

Largest ele-
ment

s = c.MaxElement(); N/A No c

Table 1: A sample of the operations in the nArray package.

parameter. In the table, c stands for a generic container, which in the cisstVector library can be a (fixed-
size or dynamic) vector, a matrix, or an nArray; s stands for scalars of the same type as that of the array
elements, e.g. double. Different operands, when they are involved, are distinguished by number. The table
shows only a small selection of operations; the complete list is in the library’s documentation.

2.3 Layout manipulation

A central feature of the nArray containers is their ability to reference other nArrays using different layouts,
or subsections of an existing nArray . This is achieved by configuring an overlay nArray to span the desired
region of an existing nArray container. Overlaying allows the user to operate on array elements in-place,
without copying them out and in.

A new layout may have the same dimension as its parent container, focusing on a smaller region; or it may
have a lower dimension. We call the region focusing a window and the dimensionality reduction a slice.
Combining windows and slices allows the user to specify any subsection of any dimension of an existing
nArray container. Another useful configuration is changing the order in which nArray elements are accessed;
this is called permuting the order of element access, and is similar to MATLAB’s permute function, without
the memory allocation and copy overhead.1

Let us demonstrate these ideas through an example. Suppose we want to select a small region of interest in a
sagittal cross-section of a CT volume. Since a CT volume is by default created by stacking transverse cross-
sections, we first perform a permutation on the volume to orient the order of access of elements correctly.
Next, we perform a slice operation on the permuted volume to obtain a two-dimensional container that holds
the desired sagittal slice. Finally, to focus on a particular region of the sagittal slice, we perform a window
operation on the slice. This is illustrated in Figure 2 and in the code listing in Table 2.

Breaking up the overlay concept into these three distinct operations has two direct benefits: it creates easier-

1The nArray library API uses the term Subarray for what we define in this paper as the window operation. Throughout the text
of this paper, we will stick to the window terminology, although the code samples we include continue to refer to it as a Subarray.

2.4 Strides 5

Figure 2: An illustration of nArray’s layout operations: permute, slice, window. (a) Initial stack of transverse
images. Sagittal cross-sections are shown with blue lines; the region of interest is shown with blue dashes.
(b) Sagittal cross sections. The slice of interest is shown with thick lines; the region of interest is shown
with blue dashes. (c) Slice of interest. The region of interest is shown with thick lines. (d) Region of interest.

to-debug code, and it gives one flexibility in how one creates new layouts.

2.4 Strides

The windowed overlay and dimension permutation are achieved through a careful definition of strides, which
indicate the increment in memory address between adjacent array elements in each stride’s corresponding
dimension; each stride can be either a positive or negative integer. Every nArray object includes a vector of
stride values whose length is equal to the number of dimensions. In a simple, flat layout, the fastest changing
dimension has a stride of 1, and the stride of any higher dimension is equal to the number of elements in
all the lower-dimension slices. In a window overlay, however, a stride in one dimension can be larger than
the number of elements in a lower dimension, which means that more than one memory cell is “skipped” in
order to move from one slice to the next. When permutations are applied, the order of the strides changes
arbitrarily. An example of overlay strides is shown in Figure 3.

3 Algorithms

3.1 nArray engines

The nArray engines are a set of classes and functions optimized to efficiently traverse the elements of nArray
containers. The engines operate on both memory-allocating and overlaying containers, and the interface to
call the engines on either type of container is identical, so the differences between operating on the two
types of containers are transparent to the user. Also, the engines handle both contiguous and non-contiguous
memory blocks.

Almost always the containers used with the engines play the part of operands of an operation (such as the
addition of two arrays, with the sum stored into a third). Each engine is designed to support a specific
combination of operands, such as unary, binary, or store-back operations (e.g. the Abs, + and += operators),
as well as various operand types (e.g. arrays, scalars, etc.).

Expression structure in the engines is abstracted and encapsulated. Any operation defined in the nArray API
only requires the user to select the appropriate expression structure and provide the relevant operators. For
example, computing the maximum element, the sum of elements, and the sum of squares of an nArray all
make use of the same engine because they all have the same expression structure: compute a scalar function
from all the elements of one nArray . The three operations differ only in the operations to be performed on
or between the elements. For example, in sum of elements and maximum, there is no operation on individual

3.1 nArray engines 6

Figure 3: An example of strides in a three-dimensional array. The purple block of sizes of 3× 5× 4 cells
(the order of dimensions is Z,Y,X) is the “parent container”. The red block, with 2×4×3 cells, is a window
overlay of the parent container. In both blocks, the memory strides between adjacent elements are (20, 4, 1)
in corresponding dimension order.

3.2 Engine algorithm 7

// Create original CT volume. The sizes are specified
// in the Z-Y-X order. nsize_type is a "fixed-size" vector.
NArrayType::nsize_type originalSize(240, 512, 512);
NArrayType originalCTVolume(originalSize);

// load volume with CT data
/* ... */

// Create a permuted overlay of the original CT.
// Dimension 0 of the permuted array corresponds to dimension
// 2 of the original volume, that is, the X dimension, or sagittal
// cross sections.
NArrayType::nsize_type orderOfDimensions(2, 0, 1);
NArrayType::PermutationRefType sagittalOrientation;
sagittalOrientation.PermutationOf(originalCTVolume, orderOfDimensions);

// Select slice of interest in dimension 0.
NArrayType::size_type dimension = 0;
NArrayType::size_type index = 172;
NArrayType::SliceRefType sliceOfInterest;
sliceOfInterest.SliceOf(sagittalOrientation, dimension, index);

// Select region of interest.
NArrayType::SliceRefType::nsize_type regionSize(192, 192);
NArrayType::SliceRefType::nsize_type regionStart(10, 50);
NArrayType::SliceRefType::SubarrayRefType regionOfInterest;
regionOfInterest.SubarrayOf(sliceOfInterest, regionStart, regionSize);

Table 2: Code example of defining layout manipulation overlays.

elements, but in sum of squares, the square of each element is computed; in sum of elements and sum of
squares, there is also an addition operation between elements, and in maximum there is a max operation
between elements. Beyond these differences, the structure of all three operations is identical, and this
similarity is expressed in the engines. In practice, the operations (add, max ...) are passed to the engines as
template parameters whereas the signature of the engine function is identical for all operations. In this way,
the engines make the containers very straightforward to use and encourage the creation of easy-to-debug
code.

The engines have several features that contribute to the overall efficiency and scalability of the package while
hiding the details of the traversal algorithm from the caller function. They can be viewed as an abstraction
of a multi-level nested loop.

3.2 Engine algorithm

The nArray engine uses a pointer, which we call the “current” pointer, to traverse an nArray container, much
like an STL iterator, which traverses a container from beginning to end in sequential order. However, since
the engine must operate on both memory-allocating and overlay nArray containers, the algorithm is not as
simple as having the pointer run through the container’s memory block from start to finish. Instead, when
the pointer reaches the end of a dimension of the container, the engine must know by how many address
spaces to increment the pointer in order to reach the next element in that dimension.

3.2 Engine algorithm 8

In designing the engine algorithm, we had to address three main issues. First, we could not use a nesting
structure to loop through a container because there is an arbitrary number of dimensions in that container.
We resolved this by using a vector of the same size as the number of dimensions of the container to store
“target” pointers, which mark the end of each dimension. When the current pointer reaches a target pointer,
the engine “wraps” the current pointer around this dimension by incrementing the pointer by the appropriate
number of address spaces. The wrap-around test is performed in a recursive fashion, traversing down the
list of targets until the appropriate one is found. This replaces the conventional nested loop code structure.

The second issue was how to efficiently wrap around the current pointer when it reaches a target pointer.
This is resolved by having the engine precalculate the dimension offsets (the “stride to the next dimension”,
or STND, values) using the stride values.

Finally, the engines also have to update the target pointers accordingly when the wrap-around occurs. This
is shown in the IncrementPointers method below. IncrementPointers is the equivalent of the “loop
header”, and it is called to move the current pointer to the next element. Notice that IncrementPointers
returns the number of dimensions that have been exhausted and wrapped-around. We take advantage of this
result to wrap-around the “current pointer” for other operand containers that may be involved. This topic,
however, is not covered in this paper.

The result is an efficient and versatile engine algorithm that is capable of running on both memory-allocating
and reference nArray containers. The source code for the algorithm is provided below. It is written in C-style
notation.

// The PreProcess function computes the wrap-around strides (STND)
// and the target pointers before the engine loop is begun
void PreProcess(const unsigned int numDimensions,
const unsigned int arraySizes[], const int arrayStrides[],
const _elementPointer basePtr, int arraySTND[],
_elementPointer arrayTargets[])

{
unsigned int i;

for (i = 0; i < numDimensions; ++i)
{
unsigned int span = arraySizes[i] * arrayStrides[i];
/* calculate initial placement of target pointers */
arrayTargets[i] = basePtr + span;
/* calculate STND */
arraySTND[i] = (i != 0) ? arrayStrides[i-1] - span : 0;
}

}

// The function IncrementPointers checks which dimensions are
// exhausted, performs a wrap-around of the current pointer,
// and recomputes new targets if they need to be updated. It
// returns the number of dimensions that were exhausted.
unsigned int IncrementPointers(const unsigned int numDimensions,
_elementPointer targets[], _elementPointer & currentPointer,
const int strides[], const int stnd[])
{
unsigned int i = numDimensions - 1;
unsigned int wrapCounter = 0;
currentPointer += strides[numDimensions - 1];

3.3 Iterators 9

while (currentPointer == targets[i]) { // the i-th dimension is exhausted
currentPointer += stnd[i];
++wrapCounter;
--i;
if (wrapCounter == numDimensions) // exhausted all elements
return wrapCounter;

}

// if no dimensions were exhausted, we can return immediately
if (wrapCounter == 0)
return wrapCounter;

// now, update the targets forward from the current pointer
++i;
do {
targets[i] = currentPointer + (strides[i-1] - stnd[i]);
++i;

} while (i < numDimensions);

return wrapCounter;
}

As an example, consider the nArray container in Figure 3. The red overlaying window container has size
2×4×3 and stride values (20, 4, 1). The values the engine would calculate for this container are:

Sizes 2 4 3
Strides 20 4 1
STND 0 4 1
Target offsets 40 16 3

3.3 Iterators

Iterators are a widely-used method of traversing all the elements of a container, utilizing an object to keep
tabs on the location. We created the nArray iterators to conform with the Standard Template Library’s
specification for a random access iterator.

The nArray iterators are designed to handle complicated layouts such as dimension permutations and non-
contiguous memory blocks. While a mechanism similar to the nArray engines could be encapsulated as
an object, we believe this might be overkill for iterators. Instead, an nArray iterator keeps a “meta-index”
internally, which indicates the sequential position of an element in the container. The iterator converts the
meta-index to a “position index”, which is a tuple of zero-based coordinates, similar to our intuitive notion
of a multidimensional index. The position index then is converted again to an address offset from the array’s
base pointer by computing its dot product with the strides of the nArray .

To explain this mechanism, let us first write down a recursive function, presented below, which takes as
input the array of sizes (i.e., numbers of elements in each dimension) of the nArray , the array of strides in
the respective dimensions, and a meta-index, and returns an offset from the base pointer and a small array
of indices. For simplicity of presentation, the function is written in C-style notation.

(0) unsigned int MetaIndexToOffsetAndMultiIndex(const unsigned int numDimensions,
const unsigned int arraySizes[], const int arrayStrides[],

3.3 Iterators 10

const unsigned int metaIndex, unsigned int multiIndex[])
{

(1) if (numDimensions == 0)
(2) return 0;
(3) const unsigned int d = numDimensions-1;
(4) multiIndex[d] = metaIndex % arraySizes[d];
(5) const unsigned int dContribution = strides[d] * multiIndex[d];
(6) return dContribution +

MetaIndexToOffsetAndMultiIndex(numDimensions-1,
arraySizes, arrayStrides, metaIndex / arraySizes[d], multiIndex);

}

As an example, let us follow the operation of this function on a three-dimensional flat container of size
3×5×4 (see Figure 3) with corresponding strides of (20, 4, 1). We start with a meta-index metaIndex=23.
Unknown values are written as question marks. The number preceding each line refers to the corresponding
line number in the code above. For simplicity, we do not replicate the array parameters through the nesting
of the recursion.

(0) numDimensions = 3, arraySizes = [3, 5, 4], arrayStrides = [20, 4, 1],
metaIndex = 23, multiIndex = [?, ?, ?]

(3) d = 2
(4) multiIndex = [?, ?, 23%5] = [?, ?, 3]
(5) dContribution = arrayStrides[d] * multiIndex[d] = 1 * 3 = 3

(0) numDimensions = 2, metaIndex = 23/5 = 4
(3) d = 1
(4) multiIndex = [?, 4%4, 3] = [?, 0, 3]
(5) dContribution = arrayStrides[d] * multiIndex[d] = 4 * 0 = 0

(0) numDimensions = 1, metaIndex = 4/4 = 1
(3) d = 0
(4) multiIndex = [1%3, 0, 3] = [1, 0, 3]
(5) dContribution = arrayStrides[d] * multiIndex[d] = 20 * 1 = 20

(0) numDimensions = 0, metaIndex = 1 / 3 = 0
(2) return 0

(6) return dContribution + 0 = 20
(6) return dContribution + 20 = 20

(6) return dContribution + 20 = 23

Since the layout in this example is flat, the final offset is equal to 23, which is the original meta-index.
However, applying this mechanism to a configuration with different strides still computes a correct offset,
which may be different from the meta-index. The final values in multiIndex are (1, 0, 3), which are the
zero-based “coordinates” of the element whose meta-index is 23 in an ordinary indexing mode.

It is worth noting that a memory vs. runtime tradeoff is expected when comparing the engines and the
iterators, with the engines being the more runtime-efficient. In principle, either mechanism could replace
the other, but in practice, the engines are better optimized for runtime than a replication of iterators is, even
if a similar wrap-around mechanism were implemented for the iterators; this is because the wrap-around
decision inside an engine needs only to be made once, while individual iterators must decide on the wrap-
around independently. Therefore, most of the operations that need to be performed on an nArray should be
done via the engines and not the iterators.

11

4 Performance Benchmarks

4.1 Performance discussion

As a general rule, more regular data layouts can be processed with faster algorithms. With regards to
multidimensional arrays, a flat layout can be processed faster than another layout, such as a non-contiguous
block or a layout manipulation overlay, for the same data size. This is because the overhead of keeping tabs
on the pointer position is easier in the flat case.

When we compare the performance of nArray operations via expression engines with other software pack-
ages, we have to take care to compare features on level terms. If, for example, a certain library supports
only flat layouts and has a fast algorithm for evaluating expressions on them, then it should be compared
with the performance of the CISST package on flat containers, i.e., vectors. On the other hand, if a library
supports certain layout manipulators, such as regions of interest, then we can compare them with the engine
methods in the nArray package. In addition, we can compare the nArray engines with the expression engines
for lower-dimension containers in the CISST package, namely, dynamic vectors. This comparison should
provide an estimate of the bookkeeping overhead involved with traversing the nArray .

Considering this overhead, the efficiency of using overlay arrays can depend on the frequency of their use.
Evaluating a single expression involving a layout manipulation can be faster using the overlay structure
than if the manipulated data layout needs first to be copied to a second container before the expression is
evaluated. However, if many expressions involving the same immutable dataset are considered, it is usually
more efficient to copy the elements once into a flat container and evaluate all the expressions using the new
block. An important advantage of the nArray overlays is that they provide flexibility to the user in choosing
the preferred processing method.

Likewise, if we want to compare the performance of overlays with a library that only supports copy-and-
evaluate implementations, the timing of one expression involving an overlay should be compared with the
timing of copying and evaluating the expression, combined, and not just with the time of evaluating. If new
memory allocation is needed before the copy, then the timing for memory allocation must be counted as
well.

4.2 Benchmark specifications

We performed two kinds of benchmark runs. The first consisted of extracting a manipulated layout from a
parent container and copying its elements into another container. Considering the different software archi-
tectures, this simple operation was chosen to highlight the performance of the array traversal algorithm in
different configurations. Notice that only two data containers were involved: the parent and the destination,
and no arithmetic operations were performed on the data elements.

We compared the CISST nArray package with ITK’s Image class. Using both libraries, we created the
following test cases: a four-dimensional array; a smaller region of interest (“window”) which is also four-
dimensional; a three-dimensional slice of the larger array; and an axis permutation, having the same number
of elements as the parent container but in a different access order. In the nArray package, each layout was
created as an overlay on the parent container. We called the Assign() method to read elements from an
overlay array and write them to a memory-owning array. In ITK, each operation was represented as a “filter”
object, which stores a copy of the outcome. The evaluation of the expression was triggered by calling the
method Update() on the filter.

The second kind of benchmark involved container arithmetic, namely, adding two four-dimensional arrays

4.3 Performance evaluation 12

into a third four-dimensional array. Here, the two input operands were “windows” or subregions of two
larger parent containers. The output container was allocated independently. The purpose of this benchmark
was to compare the nArray’s overlay approach with the more traditional copy-out approach in ITK. There are
two ways to compute the sum of two nArrays, as can be seen in Table 1: (a) apply the method SumOf to a third
nArray object (the result operand); or (b) use an overloaded operator +. We compared both methods to
demonstrate the performance cost of using an overloaded operator. In ITK, we created an AddImageFilter
object to compute and store the sum; its inputs were the outputs of two RegionOfInterestImageFilter
objects, which in turn copied the contents of the regions to an internal storage.

The source files for the benchmarking programs are as follows.

Benchmark nArray ITK
Subarrays Subarray_nArray_Benchmark.cpp Subarray_ITK_Benchmark.cpp
Array sum ImageAdd_nArray_Benchmark.cpp ImageAdd_ITK_Benchmark.cpp

4.3 Performance evaluation

In the C++ programs listed above, the operations of interest were surrounded by calls to a “stopwatch” object
with Start() and Stop() methods to measure the evaluation time. The stopwatch uses the high-frequency
timer in either Windows or Linux. The output was rounded to a millisecond precision. Both the CISST
-based and the ITK-based programs were compiled and run on the following systems.

• Windows XP workstation: Two dual-core Intel Xeon CPU, 3.06 GHz, 2.00 GB RAM. Compiler:
Microsoft Visual Studio 7.1

• Linux server: Two dual-core Intel Xeon CPU 64 bit, 2.0 GHz, 6.0 GB RAM, 4 MB cache per CPU.
Ubuntu Linux distribution. Compiler: gcc 4.1.2

The compilation on both system was in “Release” mode, using compiler optimizations for speed. The
accumulated times for 30 repetitions of the test are summarized in Table 3; all times are in milliseconds.
The data sizes are as given in the source files listed above.

For the slice operation, the CISST implementation consistently performed 46% to 53% faster than ITK. In
the other tests, however, it was more difficult to obtain a consistent comparison. For the window operation,

Operation CISST time,
Windows

ITK time,
Windows

CISST time,
Linux

ITK time,
Linux

Window 8,814 14,860 4,093 3,538
Slice 250 465 122 261
Permute (3, 1, 2, 0) 202,342 183,173 73,125 99,123
Permute (3, 0, 2, 1) 193,742 95,403 58,738 18,767
Add 4D arrays 12,203 (a) 28,674

(b) 17,501
(c) 46,262

3,757 (a) 6,875
(b) 3,950
(c) 10,848

Operator + 19,044 N/A 8,790 N/A

Table 3: Benchmark times for the CISST nArray and ITK operations on Windows and Linux systems. The
times are in milliseconds for 30 repetitions of the operation.

4.3 Performance evaluation 13

CISST was about 41% faster on the Windows build but about 16% slower on Linux. The performance of
the permute operation was also inconsistent, depending strongly on the specific reordering of the elements
(possibly due to cache coherence or access-order optimizations); we present in the table two different per-
mutations to demonstrate this. For example, in the tests that we performed, ITK showed a ratio of about
5.3 in the computation time for different permutation access orders on the Linux system. The CISST im-
plementation also yielded significant time variations, making comparison between CISST and ITK difficult.
Similarly inconclusive results occurred in a few other tests of the permute operation, which are not shown
here.

Note, on the other hand, that the CISST nArray arithmetic engine was consistently faster than a similar
computation in ITK. If we account for the filter extraction time, CISST was 65% to 74% faster in computing
the addition of two arrays; if we do not account for the extraction time, CISST was consistently 5% to 30%
faster.

To obtain the time ITK took to add two arrays, we had to isolate the time the AddImageFilter operation
took to execute from the time the entire pipeline took to execute. In ITK, the timing for AddImageFilter
should normally include the time it takes to update the two RegionOfInterestImageFilter objects, which
were its input sources in our tests. However, we needed to isolate these in order to consider the time it takes
to add the outputs only. Therefore, we measured three different times with the AddImageFilter using the
following computations: (a) Update() the two region of interest filters (extraction); (b) add the regions
of interest once they were extracted; and (c) Update() the final sum image after the two input sets were
Modified(), triggering an implicit Update() of the region of interest filters. The times (a) and (b) do not
necessarily add up to the time (c), since all three times were measured as “atomic” operations. Note that
the parent container and region of interest sizes for the arithmetic operation benchmark are slightly different
from the ones we used for the overlay benchmarks.

The results show that for the isolated layout manipulations, it is hard to determine in advance what the
computation time will be. There are dependencies on the sizes of the containers (the results from these
tests are not included here) and on the order of element access. Nevertheless, CISST is not consistently
outperformed by ITK. For more complex operations, such as array arithmetic, the CISST overlay structures
can perform much faster than ITK’s filters, even when narrowed down to the actual evaluation of the result.
In addition, the overlays use memory more efficiently because they do not require storage space for the
overlays.

As we also show in the last example of Table 3, the CISST package provides overloaded arithmetic operators,
which to many users are more intuitive than methods or filters. The overloaded operators are generally less
efficient than named methods, however, because they require the creation of a temporary object to hold the
computational outcome which is assigned to the final container object after evaluation, while the named
method directly stores its output to the final container. This is a general weakness of the C++ language
which can be overcome using expression analysis structures (some examples are in the Blitz++ library [5]).
Even so, evaluating an overloaded operator on an nArray container is more efficient than the full cycle of
evaluation in ITK.

Through benchmarking these two toolkits, we have found that the algorithms implemented in CISST nArray
are comparable to, and in a wide variety of cases outperform, those of ITK. It is important to note, though,
that this is not an exhaustive benchmark comparison of the two toolkits. Nevertheless, the overlay concept
and the engine algorithms are powerful tools for improving the efficiency of managing multidimensional
data sets.

14

5 Final Words

Our goal in designing the CISST nArray package was to provide a cross-platform software library for mul-
tidimensional arrays that is computationally efficient, easy to learn, and easy to extend. The performance of
the traversal algorithms implemented in CISST is comparable to or better than another popular library used
in medical image processing, ITK. The use of overlay arrays reduces the computational overhead incurred
by ITK when subarray extraction is combined with other operations, such as array arithmetics.

Researchers at the ERC-CISST laboratory are already using the nArray library in medical image processing
and statistical analysis of multidimensional data.

Future development plans of the CISST nArray library include: a redesign of the expression engines to
optimize calculations involving containers with flat or partially-flat layouts; improving the interoperabil-
ity of nArray and lower-dimension containers, i.e., 1-D vectors and 2-D matrices; and implementing the
techniques developed for nArrays in those lower-dimension containers.

6 Acknowledgments

This work is supported by NSF ERC Grant 9731478.

References

[1] Ibanez, Schroeder, Ng, Cates: The ITK Software Guide. Kitware, Inc. ISBN 1-930934-15-7. 1

[2] The CISST Software Package. On the web: http://www.cisst.org/cisst. 1.2

[3] The VxL Libraries. On the web: http://vxl.sourceforge.net. 1.2

[4] Veldhuizen, T.: Using C++ template metaprograms. C++ Report 7 (1995)3643 Reprinted in C++ Gems,
ed. Stanley Lippman. 1.2

[5] The Blitz++ library. On the web: http://www.oonumerics.org/blitz/. 1.2, 4.3

