
Efficient implementation of kernel filtering

Richard Beare1 and Gaëtan Lehmann2

July 4, 2007
1Department of Medicine, Monash University, Australia.

2INRA, UMR 1198; ENVA; CNRS, FRE 2857, Biologie du Développement et Reproduction, Jouy en
Josas, F-78350, France

Abstract

Kernel based filtering is one of the fundamental tools of image analysis and processing. A number of
approaches have been developed over the years that allow efficient implementation of such filters even
when the kernel size is large. This article reviews some of these methods and introduces their ITK
implementations.

Contents

1 Introduction 2

2 Separability and recursive implementations 2

3 Mathematical morphology operations 2
3.1 Arbitrary structuring elements . 3
3.2 Decomposition of structuring elements . 3
3.3 Line structuring elements . 4

4 Rank filters 4

5 Mean and standard deviation filters 6

6 ITK implementation 8
6.1 Morphology filters – consolidatedMorphology . 8
6.2 Rank and mean filters – fastRankMean . 9
6.3 Rectangular convolution – boxConvolution . 9
6.4 Extended languages support . 10

7 Performance 10
7.1 Morpholgy . 10
7.2 Rank and Mean filters . 10
7.3 Box Convolution . 10
7.4 Timing notes . 10

2

8 Implementation Notes 13
8.1 Moving histograms . 13
8.2 16 bit data types . 13
8.3 Line Operations . 13
8.4 Refactoring . 13

9 Comments and Conclusions 14

10 Acknowledgments 14

1 Introduction

A kernel based filtering process replaces the pixel at the kernel origin with the result of a function of all
pixels defined by the kernel. Many useful filters, including edge detection and gradient filters, smoothing
filters and rank and morphology filters fall into this category. Direct implementations of such filters typically
involve visiting all pixels defined by the kernel in order to evaluate the filter function. Such an approach
is usually easy to implement – in ITK it is made simple by the neighborhood iterators – but leads to an
algorithm complexity proportional to the number of pixels in the kernel (or O(nd), where n is the kernel size
and d is the dimensionality). Such complexity tends to restrict application of such filters to small kernels.

A number of classical methods exist for reducing this complexity to more manageable, in some cases kernel
size independent, levels. ITK already exploits such techniques for Gaussian convolution operations. This
paper describes the classical techniques for optimized mathematical morphology filters, rank filters and
certain convolution filters. These filters make the use of large kernels, which can be very useful in many
applications, practical on conventional computing hardware.

2 Separability and recursive implementations

The two approaches most typically used to reduce complexity of kernel based filters are separability and
recursive computation, both of which are used in the ITK implementation of Gaussian convolution filters.
A separable filter implements a multidimensional kernel by cascading several one dimensional kernels,
therefore reducing complexity from O(nd) to O(nd). The second approach exploits redundancy that might
be present in the computations of kernel functions at neighboring locations, leading, in some cases, to a
complexity independent of n.

3 Mathematical morphology operations

Two optimized forms of the mathematical morphology operations of erosion, dilation, opening and closing
are presented here. The kernel is usually referred to as the structuring element in mathematical morphology.
The methods described here are applied to “flat” structuring elements, that is structuring elements without
weights. The first method can be applied to arbitrary structuring elements while the second can be applied
to line structuring elements.

3.1 Arbitrary structuring elements 3

3.1 Arbitrary structuring elements

The method described in [11] relies on the simple concept of an up-datable histogram, and is often described
as a “moving histogram” approach. A histogram is computed for a kernel located at the first voxel. The his-
togram at the neighboring voxel can then be computed by including newly included voxels and removing
newly excluded voxels. The list of included and excluded voxels corresponding to movement in any direc-
tion can be computed when the structuring element is created, and the direction with the smallest number of
changes should be selected as the direction for sweeping the kernel across the image. The erosion or dilation
at each location is computed by selecting the minimum or maximum from the histogram. This approach is
very efficient when 8 or 16 bit pixels are used because the histogram can be represented as an array and the
histogram updated by incrementing or decrementing the appropriate bins. Using place holders to track the
current maximum or minimum increases performance. More sophisticated histogram representations are
necessary for larger pixel types. Our implementation uses c++ maps, which is an extension to the original
paper.

This methodology reduces the complexity from O(nd) to O(nd−1), while keeping the structuring element
identical to the direct implementation.

3.2 Decomposition of structuring elements

Morphological erosions and dilations are separable – successive dilation by orthogonal lines is equivalent to
dilation by a rectangle with sides equal to the line lengths. This means that any hyper-rectangular structuring
element can be constructed using several orthogonal lines, typically parallel to the axes.

Approximations of more complex shapes, notably circles and ellipses can constructed using a number of
lines at evenly spaced angles [2]. It is difficult to create a structuring element with a precisely defined
radius using this method because line structuring elements from which the circle structuring element is
composed must have odd length and there are practical limits due to the realities of underlying digital grid
representation of images. In addition it is possible that the structuring elements may not be truly translation
invariant due to the representation of line (e.g. Bresenham) used in the decomposition. However, precisely
defined radii are rarely critical when a large structuring element is called for. An example of a structuring
element created using line structuring elements is shown in Figure 1. Composition of regular shapes, such
as hexagons and octagons is more accurate.

Figure 1: Approximate circular structuring element, radius 25, constructed using 8 lines.

It is also possible, in theory, to construct 3D structuring elements in similar ways. The construction of a
hyper-rectangle is trivial, however construction of spheres is more problematic. The code discussed later
provides preliminary implementations based on some platonic solids and various spherical approximations,
but further testing and development is needed.

3.3 Line structuring elements 4

3.3 Line structuring elements

The decompositions discussed above are important because an efficient, recursive, implementation of ero-
sion and dilations along lines exists. This method was introduced in [6, 12] and can compute an erosion or
dilation in 3 operations per pixel, independent of structuring element length. [5] recently reduced the cost to
1.5 pixels per pixel, but the procedure is more complicated and there are reports of no speedup in practice.

The original algorithms utilize forward and backward running maxima (for dilation) for the length of the
structuring element from a pixel of interest. The dilation can then be computed for a region the size of
the structuring element around the point of interest by comparing values on the running extrema that are
separated by the structuring element length. This is illustrated in Figure 2

0 L 2L

L
Maximum

Forward running maximaReverse running maxima

Figure 2: The van Herk, Gil, Werman method.

A method known as anchor morphology has been published recently [10] that offers improved performance
and the ability to perform a line opening directly (rather than using an erosion/dilation cascade). This method
has been implemented in the filters discussed later in the article, but performance issues are not yet clear.
The method employs histograms and therefore needs more complex data structures when applied to higher
precision data, potentially reducing any speed advantage.

4 Rank filters

Efficient implementations of median and rank filters can be carried out using exactly the same approach
as discussed for morphological operations with arbitrary structuring elements. The method was originally
proposed in [7]. The implementation discussed later supports arbitrary kernel shapes and pixel types as well
as any choice of rank.

Rank filters are not separable. However the performance benefits offered by separability make it worth pre-
tending they are. If median filtering is being used to provide robust noise filtering or background estimation
then a separable approximation is worth testing. This concept was originally proposed in [9]. In fact it
is also possible to apply the decomposition discussed in Section 3.2 to median filters to achieve a closer
approximation to circular kernels.

5

(a) Input (b) Dilation (c) Erosion

(d) Opening (e) Closing (f) White top-hat

Figure 3: Effect of a dilation (b), an erosion (c), an opening (d), a closing (e) and a white top hat (f) with a
ball structuring element.

6

5 Mean and standard deviation filters

A simplified version of the moving histogram approach can also be used to efficiently compute the mean
or standard deviation of an arbitrarily shaped kernel. The histogram used for morphology and rank filters
is a data structure that, once established for one pixel, can be easily updated to represent the kernel for a
neighboring pixel. The data structure required to perform the equivalent function for mean and variance
operations is much simpler – all that is necessary is the sum of pixel values under the kernel (or sum of
squared values for variance calculations), and the kernel size. The sum can be updated by adding the new
values and subtracting the old and the output computed by dividing by the kernel size.

A more efficient strategy was proposed in [3] for rectangular kernels. This approach first computes an
accumulator image in which each i, j is replaced by the sum of voxels “left” and “above” it. This accumulator
image may be computed recursively using local neighborhood values. The mean of rectangles of any size
may then be computed using accumulated values at the rectangle corners. Figures 4 and 5 illustrate the 2D
case and the update formulas are provided in Equations 1, 2, and 3.

bi, j = ∑
x≤i,y≤ j

ax,y (1)

= bi, j−1 +bi−1, j +ai, j −bi−1, j−1

where bi, j is the accumulator value at location i, j and ai, j is the input image intensity at i, j.

Si, j = bi+w/2, j+h/2 +bi−w/2, j−h/2 −bi−w/2, j+h/2 +bi+w/2, j−h/2 (2)

where Si, j is the sum of the pixel values in the neighborhood centered at i, j.

mi, j =
1

w.hSi, j (3)

where mi, j is the output of the mean filter at location i, j.

Using the same strategy, the standard deviation can be efficiently computed. It requires an accumulator
image of the squared pixels values, which can be efficiently computed at the same time as the original
accumulator image. The update formulas are provided in Equations 4, 5 and 6.

b2i, j = ∑
x≤i,y≤ j

a2
x,y (4)

= b2i, j−1 +b2i−1, j +a2
i, j −b2i−1, j−1

where b2i, j is the accumulator value at location i, j for the square image, and ai, j is the input image intensity
at i, j.

S2i, j = b2i+w/2, j+h/2 +b2i−w/2, j−h/2 −b2i−w/2, j+h/2 +b2i+w/2, j−h/2 (5)

where S2i, j is the sum of the squared pixel values in the neighborhood centered at i, j.

σi, j =

√

S2i, j −
S2

i, j
w.h

w.h−1
(6)

7

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

(0, 0) ii−1

j−1
j (i,j)

(i−1,j)

(i,j−1)

(i−1,j−1)

Figure 4: Recursive computation of the accumulator image - value at (i, j) computed using Equation 1. The
double hashed region is subtracted because it is included in both bi, j−1 and bi−1, j .

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

(i−w/2,j−h/2)
(i+w/2,j−h/2)

(i−w/2,j+h/2) (i+w/2,j+h/2)

(i,j)

(0,0)

Figure 5: Computation of mean using the accumulated image - value at (i, j) computed using Equation 3.

8

where σi, j is the output of the standard deviation filter at location i, j.

This approach to convolution has been used recently in face detection applications [13], where rectangular
filters of many different sizes and shapes were needed and could be computed from the same accumulation
image.

(a) Input (b) Mean (c) Sigma

Figure 6: A mean transform (b) and a standard deviation transform (c) with a kernel of radius 3.

6 ITK implementation

The filters discusses in this article are contained in 3 packages – consolidatedMorphology1 , fas-
tRankMean and boxConvolution. The most recent versions of these packages can be obtained from
http://voxel.jouy.inra.fr/darcsweb/2. All of the packages include multithreaded filters and include
many examples and tests. Unless indicated otherwise, all filters will behave basically the same way as other
kernel filters, requiring either a radius or a neighborhood to be specified.

6.1 Morphology filters – consolidatedMorphology

The morphology filters utilize a new class – FlatStructuringElement to describe, arbitary and decompos-
able structuring elements. It provides the following methods to create structuring elements with different
characteristics:

• Ball() generate a ball structuring element (a circle in 2D). It takes the radius of the structuring
element as parameter.

• Box() produces a box structuring element. It takes the radius of the structuring element as parameter.
1An earlier version of the consolidatedMorphology package has been submitted to the InsightJournal. However many improve-

ments and bug fixes have been included since then.
2 The most recent versions can be obtained using darcs [1] with the command darcs get http://voxel.jouy.inra.fr/

darcs/contrib-itk/package, where package must be replace by consolidatedMorphology, fastRankMean or boxConvolution.

http://voxel.jouy.inra.fr/darcsweb/

6.2 Rank and mean filters – fastRankMean 9

• Poly() produces an approximation to a circle or sphere using line structuring elements, taking the
desired radius and number of lines as parameters. In the 3D case an approximation of a sphere will
be attempted. Caution is advised because this is not well tested yet.

• FromImage() produces a structuring element from an image. The image is passed as parameter to the
method. A optional parameter can also be passed: the pixel value to be considered as the foreground
value in the image. This value defaults to NumericTraits< PixelType >::max(). This lets the
user visualize the structuring element.

The algorithm used by a filter is set by the SetAlgorithm method, with options of BASIC, HISTO, VHGW
and ANCHOR, for the traditional ITK implementation, the moving histogram algorithm, the van Herk, Gil,
Werman algorithm and the anchor algorithm respectively. The VHGW and ANCHOR algorithms can only
be used for Box and Poly structuring elements. VHGW is more thoroughly tested. The HISTO algorithm
produces the identical results to BASIC, and is always faster. It is the default and should be used if you need
precisely defined, non rectangular, structuring elements. If a Box structuring element is needed then VHGW
or ANCHOR should be used, as they offer the best performance and are exact in that case. Poly structuring
elements are approximations of circles that will offer improved performance with VHGW or ANCHOR
algorithms, but the user will need to consider whether the approximation is suitable for the application in
question.

The availability of line morphology operations means that new operations, such as “union of openings” can
be implemented easily.

6.2 Rank and mean filters – fastRankMean

The fastRankMean packge uses the sliding window method to implement rank and mean filters for arbitary
kernel shapes. It also uses line versions of these kernels to provide a “separable rank” filter – an fast ap-
proximation to a real rank filter as discussed in Section 4. There are also a number of filters that accept
a mask input and return the rank or mean value of the intersection of kernel and mask. These are experi-
mental and haven’t been thoroughly tested. The filters are itkRankImageFilter, itkMovingWindowMeanIm-
ageFilter, itkFastApproxRankImageFilter, itkFastApproxMaskRankImageFilter and itkMaskedRankImage-
Filter. itkRankImageFilter implements arbitary shaped kernels, itkFastApproxRankImageFilter implements
the separable approximation and itkMovingWindowMeanImageFilter implements an arbitary shaped kernel
mean.

6.3 Rectangular convolution – boxConvolution

The boxConvolution uses the accumulation method described in Section 5 to implement rectangular mean
and variance computations. The filters implement different boundary conditions to itkMeanImageFilter,
with the mean of the kernel inside the image being computed. The filters in this package are multithreaded
and deal with arbitrary dimensions. The current filters do not support the mode of operation used in face
recognition application in which an accumulation image is repeatedly “queried” for mean values of various
sized kernels. However introducing such a capability is relatively easy.

6.4 Extended languages support 10

6.4 Extended languages support

All the new filters provided are wrapped using WrapITK’s external projects [4] and have been successfully
tested with python.

7 Performance

All the execution times in this section are measured on a computer with four Intel R©Xeon R©CPU cores at
2.33GHz with 4MB cache, running CentOS 4.4 64 bits. Unless specified in the description, the tests are
forced to run on a single core.

7.1 Morpholgy

Execution times for the dilation, the opening, and the gradient transform are shown in Tables 1, 3 and 2,
and in Figure 7. The predicted linear complexity for the number of neighbors is observed for the basic
algorithm, as well as the constant complexity of the van Herk / Gil Werman and the anchor algorithm. The
linear complexity for the number of pixels added and removed per translation is observed for the moving
histogram algorithm, as expected.

A good threading support is observed for all the implementations, as shown in Table 4 and Figure 7.

7.2 Rank and Mean filters

Relative times for sliding window median and mean filters and separable median filters are shown in Tables
6 and 7 and in Figure 8. The predicted linear complexity is observed for the sliding window approaches
(complexity of direct approach is O(n2) in 2D, reduced to O(n) by using the sliding window. The separable
median exhibits a runtime independent of kernel size, as expected.

7.3 Box Convolution

The relative times for optimized and standard convolution are shown in Table 8 and Figure 9, and demon-
strate significantly improved performance for kernel radii greater than 1. The times support the theoretical
prediction that the complexity of the algorithm is independent of kernel size.

A good threading support is observed for all the implementations, as shown in Table 9 and Figure 9.

7.4 Timing notes

You may have noticed that the optimized filters of radius 1 seem to regularly perform slower than their
larger counterparts. We can think of no reason for this. The algorithms that have kernel size independent
complexity should not be slower for small kernels than large ones because the only difference occurs at
borders and when the sliding window is being created, and both situations favour small kernels. We can
only guess that there are caching issues involved.

7.4 Timing notes 11

 0

 0.05

 0.1

 0.15

 0.2

 0 500 1000 1500 2000

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Number of neighbors in the structuring element

Basic algorithm (dilation)
Moving histogram algorithm (dilation)

Anchor algorithm (dilation)
van Herk / Gil Werman algroithm (dilation)

Separable basic algorithm (dilation)
Separable moving histogram algorithm (dilation)

(a) Dilation

 0

 0.05

 0.1

 0.15

 0.2

 0 500 1000 1500 2000

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Number of neighbors in the structuring element

Basic algorithm (opening)
Moving histogram algorithm (opening)

Anchor algorithm (opening)
van Herk / Gil Werman algroithm (opening)

(b) Opening

 0

 0.05

 0.1

 0.15

 0.2

 0 500 1000 1500 2000

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Number of neighbors in the structuring element

Basic algorithm (gradient)
Moving histogram algorithm (gradient)

Anchor algorithm (gradient)
van Herk / Gil Werman algroithm (gradient)

(c) Gradient

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Number of threads

Basic algorithm (dilation)
Moving histogram algorithm (dilation)

Anchor algorithm (dilation)
van Herk / Gil Werman algorithm (dilation)

Basic algorithm gain
Moving histogram algorithm gain

Anchor algorithm gain
van Herk / Gil Werman algorithm gain

(d) Threads

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 5 10 15 20 25 30 35 40 45 50

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Number of neighbors in the structuring element

Basic algorithm (dilation)
Moving histogram algorithm (dilation)

(e) Number of neighbors

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Structuring element radius

Moving histogram algorithm with ball structuring element (dilation)
Anchor algorithm with polygon structuring element (dilation)

van Herk / Gil Werman algroithm with polygon structuring element (dilation)

(f) Polygon

Figure 7: Execution times with a box structuring element of increasing size for different algorithms of
dilation (a), opening (b) and gradient (c). Execution times with and increasing number fo threads (d). Exe-
cution times with an increasing number of neighbors in a box structuring of constant radius (e). Execution
times with a polygon structuring element. The polygon approximations use the default number of lines (a
maximum of 6 when radius is greater than 8 (f). Results are reported in Tables 1, 3, 2, 4 and 5.

7.4 Timing notes 12

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 500 1000 1500 2000

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Neighborhood size

Mean (direct algorithm)
Mean (moving window algorithm)

Mean (separable direct algorithm)
Mean (separable moving window algorithm)

(a) Mean

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 500 1000 1500 2000

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Neighborhood size

Median (direct algorithm)
Median (separable Huang algorithm)
Median (separable direct algorithm)

Median (Huang algorithm)

(b) Median

Figure 8: Execution times for several algorithms of mean filters (a) and median filters (b). Results are
reported in Tables 6 and 7.

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200 1400

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Neighborhood size

Mean (direct algorithm)
Mean (accumulation algorithm)

Standard deviation (direct algorithm)
Standard deviation (direct algorithm)

(a) Neighborhood size

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Number of threads

Mean (direct algorithm)
Mean (accumulation algorithm)

Standard deviation (direct algorithm)
Standard deviation (direct algorithm)

Mean (direct algorithm) gain
Mean (accumulation algorithm) gain

Standard deviation (direct algorithm) gain
Standard deviation (accumulation algorithm) gain

(b) Threads

Figure 9: Execution times for and increasing kernel size (a), and an increasing number of threads (b). Results
are reported in Tables 8 and 9

13

8 Implementation Notes

A lot of effort has been spent implementing and optimizing these filters while attempting to maintain good
ITK style. This section summarizes some observations and experiences:

8.1 Moving histograms

The most obvious way of implementing moving histograms involves neighborhood iterators. However the
resulting performance wasn’t good – it appears that neighborhood iterator complexity is proportional to
radius rather than the number of active neighbors. A method using lists of offsets combined with image
Get/SetPixel methods approach was used instead.

The original paper recommended moving the window in a zig-zag pattern, i.e horizontally across a the first
row, down a step to the second row and then back, but this involves accessing data in a reverse raster order
which can potentially reduce cache performance. An alternative has been implemented that always moves
the window in forward raster direction, at the cost of additional histogram copies, has been implemented
and exhibits improved performance for large images. Differences for small images weren’t detectable.

8.2 16 bit data types

Histograms for 16 bit data types can be implemented using arrays or maps. One would expect arrays to offer
a simpler and therefore faster implementation, but our results have been mixed. Presumably the performance
depends significantly on voxel statistics.

8.3 Line Operations

The van Herk/Gil and Werman and anchor methods operate on image transects, potentially at any angle. The
transect data needs to be extracted from the image and the processed transect written back, with successive
parallel transects being processed. Existing iterators don’t do this particularly efficiently, so image Get/Set-
Pixel operations are being used. This approach isn’t ideal either and needs to be worked on. In general there
is no need for boundary checks because the intersection between transect and image region is calculated, so
a potentially random access method without boundary checks would be ideal.

Building dimension independent code also adds complexity to this filter which can be avoided in dimension
specific implementations. The process of sweeping the transect across the image region is much more
complex (and therefore slower) when written in a dimension independent fashion.

The standard ITK threading approach isn’t ideal for this style of filtering either – a better option would be
splitting the image based on transects instead of blocks. Obviously this sort of change isn’t practical.

8.4 Refactoring

The three packages do share some components, and some refactoring is called for. This most widely used
components are histograms and sliding window infrastructure, which need to be consolidated.

All the kernel based filters in ITK would also benefit to hinerit a common super class which manage the
neighborhood size and/or the kernel, and which provide the infrastructure for the separable operations.

14

9 Comments and Conclusions

This article has provided background theory for and implementations of a number of important approaches
to kernel based filtering. These methods significantly reduce complexity and execution time, by some orders
of magnitude in many cases. These approaches are all well established in the literature but weren’t available
in ITK. Availability of filtering algorithms which are always fast, irrespective of the kernel size, can make
much simpler approaches to many problems practical.

10 Acknowledgments

We thank Dr Pierre Adenot and MIMA2 confocal facilities (http://mima2.jouy.inra.fr) for
providing the 3D test image. We are grateful to the INRA MIGALE bioinformatics platform
(http://migale.jouy.inra.fr) for providing the computational resources used for the timing tests.

References

[1] http://www.darcs.net. 2

[2] R. Adams. Radial decomposition of discs and spheres. CVGIP: Graphical models and image process-
ing, 55(5):325–332, September 1993. 3.2

[3] F.C. Crow. Summed-area tables for texture mapping. In SIGGRAPH ’84: Proceedings of the 11th
annual conference on Computer graphics and interactive techniques, pages 207–212, New York, NY,
USA, 1984. ACM Press. 5

[4] Zachary Pincus Gaëtan Lehmann and Benoit Regrain. Wrapitk - enhanced languages support for the
insight toolkit. Insight Journal, January - June 2006. 6.4

[5] J. Gil and R. Kimmel. Efficient dilation, erosion, opening and closing algorithms. In Mathematical
Morphology and its Applications to Image and Signal Processing, pages 301–310. Kluwer Acad. Pub,
2000. 3.3

[6] J. Gil and M. Werman. Computing 2-d min, median, and max filters. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(5):504–507, May 1993. 3.3

[7] T.S. Huang, G.Y. Yang, and G.Y. Tang. A fast two-dimensional median filtering algorithm. IEEE
Transactions on Acoustics, Speech and Signal Processing, 27:13–18, 1979. 4

[8] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,
http://www.itk.org/ItkSoftwareGuide.pdf, 2003.

[9] P.M. Narendra. A separable median filter for image noise smoothing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 3:20–29, 1981. 4

[10] M. Van Droogenbroeck and M. Buckley. Morphological erosions and openings: fast algorithms based
on anchors. Journal of Mathematical Imaging and Vision, Special Issue on Mathematical Morphology
after 40 Years, 22(2-3):121–142, May 2005. Algorithms in ANSI C code are available in libmorpho.
3.3

http://mima2.jouy.inra.fr
http://migale.jouy.inra.fr
http://www.darcs.net

References 15

[11] M. Van Droogenbroeck and H. Talbot. Fast computation of morphological operations with arbitrary
structuring elements. Pattern Recognition Letters, 17(14):1451–1460, 1996. 3.1

[12] M. van Herk. A fast algorithm for local minimum and maximum filters on rectangular and octagonal
kernels. Pattern Recognition Letters, 13(7):517–521, July 1992. 3.3

[13] P. Viola and M. Jones. Robust real-time face detection. International Journal of Computer Vision,
57(2):137–154, 2004. 5

Appendix

Radius Basic Separable Histogram Separable histogram Anchor van Herk / Gil Werman
1 0.00477 0.00491 0.013 0.012 0.0144 0.00725
2 0.0114 0.0101 0.0161 0.0119 0.0135 0.00743
3 0.024 0.0146 0.0193 0.0116 0.0129 0.00794
4 0.0444 0.0192 0.0231 0.0114 0.0126 0.00755
5 0.0714 0.0247 0.0261 0.0114 0.0121 0.0074
6 0.107 0.0299 0.0313 0.0116 0.0127 0.00771
7 0.153 0.034 0.0358 0.0113 0.0121 0.00859
8 0.211 0.0407 0.038 0.0112 0.0121 0.00773
9 0.281 0.0442 0.0434 0.0114 0.012 0.00779
10 0.365 0.0486 0.0446 0.0111 0.0118 0.00763
15 1.03 0.074 0.0604 0.0115 0.0116 0.00794
20 2.23 0.104 0.079 0.0113 0.0113 0.00762
25 4.11 0.129 0.0968 0.0114 0.0116 0.0079
30 6.82 0.154 0.111 0.0114 0.0115 0.00781
40 15.4 0.214 0.153 0.0116 0.0116 0.00785
50 29.3 0.285 0.19 0.0119 0.0117 0.00804

100 226 0.767 0.355 0.0129 0.0117 0.00809

Table 1: Execution times in seconds for dilation by boxes using several algorithm implementations applied
to the 256×256 cthead image.

References 16

Radius Basic Histogram Anchor van Herk / Gil Werman
1 0.0107 0.0124 0.0219 0.014
2 0.0235 0.0167 0.0201 0.0144
3 0.0488 0.0211 0.019 0.0154
4 0.0895 0.0247 0.0184 0.0148
5 0.143 0.0273 0.0176 0.0143
6 0.216 0.037 0.0184 0.0149
7 0.308 0.0372 0.0176 0.0167
8 0.423 0.0401 0.0172 0.015
9 0.563 0.0466 0.0171 0.0151
10 0.73 0.0455 0.0166 0.0148
15 2.07 0.0624 0.0165 0.0153
20 4.46 0.0885 0.0159 0.0148
25 8.22 0.104 0.0163 0.0153
30 13.6 0.118 0.0161 0.0151
40 30.9 0.153 0.0163 0.0153
50 58.6 0.196 0.0168 0.0156

100 452 0.339 0.0163 0.0157

Table 2: Execution times in seconds for morphological gradient transformation by boxes using several
algorithm implementations applied to the 256×256 cthead image.

Radius Basic Histogram Anchor van Herk / Gil Werman
1 0.0105 0.0208 0.0167 0.0146
2 0.0217 0.0283 0.0157 0.0148
3 0.0424 0.0352 0.0145 0.0154
4 0.0752 0.0444 0.0142 0.0159
5 0.117 0.049 0.0143 0.0159
6 0.172 0.0573 0.014 0.0162
7 0.24 0.0676 0.0139 0.0165
8 0.324 0.072 0.0141 0.0169
9 0.425 0.0804 0.0141 0.0175
10 0.546 0.093 0.0143 0.0176
15 1.5 0.14 0.0154 0.019
20 3.19 0.178 0.0155 0.0204
25 5.9 0.235 0.0164 0.0219
30 9.9 0.274 0.0175 0.0236
40 23 0.383 0.0193 0.0272
50 45.3 0.522 0.0213 0.0298

100 421 1.6 0.0346 0.0493

Table 3: Execution times in seconds for morphological opening by boxes using several algorithm imple-
mentations applied to the 256×256 cthead image.

References 17

Threads Basic Histogram Anchor van Herk / Gil Werman
1 3.37 2.34 1.23 1.02
2 1.69 1.64 0.73 0.615
3 1.14 1.15 0.46 0.367
4 0.871 0.866 0.39 0.312
5 1.06 1.03 0.505 0.437
6 1.01 0.949 0.489 0.422
7 0.963 0.866 0.493 0.422
8 0.918 0.849 0.506 0.453
9 0.947 0.897 0.548 0.491

10 0.92 0.874 0.568 0.506

Table 4: Execution times in seconds for morphological opening by boxes using several algorithm imple-
mentations applied to the 3200×2400 image.

Radius Histogram van Herk / Gil Werma Anchorn
1 0.354 0.379 0.532
2 0.486 0.329 0.455
3 0.62 0.338 0.411
4 0.74 0.763 0.995
5 0.862 0.757 0.95
6 1.03 0.759 0.968
7 1.17 0.77 0.936
8 1.31 0.768 0.894
9 1.52 1.11 1.28
10 1.67 1.08 1.31
15 2.42 1.09 1.25
20 3.13 1.16 1.29
25 3.84 1.14 1.26
30 4.64 1.17 1.3
40 5.95 1.19 1.23
50 7.6 1.22 1.41

100 19 1.36 1.34

Table 5: Execution times in seconds for morphological opening by boxes using several algorithm imple-
mentations applied to the 256×256 cthead image.

Radius Direct Moving window Separable direct Separable moving window
1 0.00355 0.00498 0.00487 0.00668
2 0.00642 0.00706 0.0054 0.00679
3 0.0127 0.00761 0.00861 0.00756
5 0.0259 0.00936 0.00803 0.00749

10 0.121 0.0162 0.0129 0.00765
15 0.35 0.0224 0.0206 0.00755
20 0.771 0.0252 0.0278 0.0076
40 5.59 0.059 0.0699 0.00871

Table 6: Execution times in seconds for mean filters using direct and sliding window implementations
applied to the 256×256 cthead image.

References 18

Radius Direct Huang Separable direct Separable huang
1 0.00642 0.00758 0.0071 0.0093
5 0.0448 0.0186 0.0153 0.00913

10 0.177 0.0265 0.0291 0.00895
15 0.445 0.0342 0.0362 0.00876
20 0.93 0.043 0.0444 0.00925
40 6.21 0.061 0.0899 0.00936

Table 7: Execution times in seconds for median filters using direct and sliding window implementations
applied to the 256× 256 cthead image. The separable median is an approximation and therefore doesn’t
produce the same result as the direct or sliding algorithms.

Size Direct Mean Box Mean Direct sigma Box sigma
1 0.557 0.916 0.858 1.45
2 1.15 0.924 1.64 1.56
3 2.08 0.932 2.74 1.56
4 3.47 0.92 4.34 1.55
5 5.13 0.935 6.34 1.55
6 7.06 1.08 8.53 1.62
7 9.42 1.08 11.3 1.63
8 12.2 0.922 14.5 1.63
9 15.3 0.924 18 1.63

10 18.9 0.925 22.1 1.63
15 43.3 0.929 50.2 1.64
20 80.1 0.936 91.8 1.64
25 131 0.939 149 1.64

Table 8: Execution times in seconds for mean and standard deviation using direct and box convolution
implementations applied to the 3200×2400 image.

Size Direct Mean Box Mean Direct sigma Box sigma
1 2.1 0.942 2.75 1.57
2 1.06 0.466 1.38 0.805
3 0.716 0.391 0.932 0.551
4 0.538 0.335 0.846 0.453
5 0.659 0.327 0.902 0.525
6 0.616 0.298 0.728 0.47
7 0.579 0.285 0.758 0.466
8 0.558 0.27 0.729 0.473
9 0.614 0.289 0.771 0.467

10 0.578 0.281 0.732 0.476

Table 9: Execution times in seconds for mean and standard deviation using direct and box convolution
implementations applied to the 3200×2400 image.

	Introduction
	Separability and recursive implementations
	Mathematical morphology operations
	Arbitrary structuring elements
	Decomposition of structuring elements
	Line structuring elements

	Rank filters
	Mean and standard deviation filters
	ITK implementation
	Morphology filters -- consolidatedMorphology
	Rank and mean filters -- fastRankMean
	Rectangular convolution -- boxConvolution
	Extended languages support

	Performance
	Morpholgy
	Rank and Mean filters
	Box Convolution
	Timing notes

	Implementation Notes
	Moving histograms
	16 bit data types
	Line Operations
	Refactoring

	Comments and Conclusions
	Acknowledgments

