Sharplmage: An Image Processing
Prototyping Environment

Release 1.0
Dan Mueller!

July 6, 2007

'Queensland University of Technology, Brisbane, Australia

Abstract

This paper describes an image processing prototyping environment called Sharplmage.
Sharplmage is a stand-alone Windows application geared towards the pre-processing and
creation of volume illustrations, although other generic tasks are inherently supported. The
user interacts with the environment using a command console, and can view images as a
series slices or through volume rendering. We describe the design and introduce functionality
using a number of examples. We have found the environment useful for prototyping a range of
image processing tasks and provide the source-code in the hope it will be useful for others.

Keywords: Sharplmage, ITK, prototyping, scripting

Contents

1 Introduction 2

2 Design 3
2.1 Framework e e e 3
2.2 Scripts . ..o e 4
2.3 Renderers e 4

3 Quick Start Guide 6
3.1 nstallation 6
3.2 Usage o e 6

4 Examples 8
4.1 OPEN e e e e 8
4.2 SAVE . . . 8

4.3 Change Properties e 8

Sharplmage: An Image Processing Prototyping Environment 2

4.4 Threshold e 9
4.5 Cast e e 9
4.6 Intensity Mapping L e e 10
4.7 Gradients e e e e 11
4.8 Mathematical Morphology L 12
4.9 NOISe e 13
410 Pixel Math e 13
411 Region growing L e e e 15
412 Active Contours L e e e e e e 15
413 Volume Rendering L 16
414 Extending Sharplmage 21
5 Conclusion 23

1 Introduction

The Insight Toolkit (ITK) [13] is an open-source software system designed primarily for medical
image segmentation and registration. The architecture and design of ITK — together with the
complied C++ implementation — provides for efficiency, speed, and flexibility.

However, prototyping image processing pipelines in native ITK can be a daunting task. As such a
number of systems generate wrappers around common functionality: Wrap/TK [8] uses CableSwig
to automatically generate wrappers for Python (Tcl and Java are also supported to a lesser degree
by this system); MATITK [5] allows some ITK algorithms to be called from MATLAB; and Managed-
ITK [9] uses a set of templates and CMake scripts to generate wrappers for .NET languages (such
as C# and IronPython).

A number of data-flow applications have been built using ITK, allowing users to build pipelines by
constructing block diagrams, for example SC/Run [2] and MeVisLab [1]. Various stand-alone “turn-
key” applications also exist, most of which support some form of extensibility, such as VolView [4]
and Slicer [3].

Sharplmage can be considered a stand-alone scripting application. It was originally designed to
facilitate pre-processing and prototyping of volume illustration techniques, however it also supports
generic image processing tasks. The environment can be customised by editing existing scripts,
creating and invoking new scripts at run-time, or by adding new window elements (forms). The
full source-code is provided in the hope it will be of use to others in the medical image processing
community.

Sharplmage: An Image Processing Prototyping Environment 3

2 Design

Sharplmage consists of two major components: scripts to perform processing, and renderers to
preview images. An application framework is provided to glue these components together.

2.1 Framework

The application framework acts a skeleton on which the scripts and renderers are hung. The frame-
work consists of three major components:

Main Window: The main window parents the renderers, script console, and other windows (see
Figure 1). It also has a status label and progress bar which scripts use to report on their
status.

Script Manager: The script manager is responsible for creating, initialising, running, and mon-
itoring scripts. It parses a command string (eg. CurvatureFlow TimeStep=0.15
Iterations=8), extracting the name and parameters. Given the script name, it searches
the scripting folder for possible matches, sets the parameters, and starts it running.

Dialogs: A number of dialog windows exist for various tasks including opening and saving images.
The most important dialog is the open image dialog which allows the user to specify an image
path, type, and dimensionality (see Figure 1). The dialog attempts to automatically detect the
correct pixel type and dimensions, but these may be overridden by the user to force the ITK
10 module to cast the image to the desired representation.

=loid 2|
m 3 = Look in: [3 TEST E Q2 -

pacing=(0.566, 0.566, 0. s;l Lower: 088.94

Lo L
Gize=[256, 256, 256] Spacing=[0.566, 0.589, 0. E;I Upper: 1098.94

&) Test_axeba mhd
€] Test_256x256x128.mhd

esk mhd:
ETest

_256x256x256b. mhd
&] Test_256x256x256c. mhd
& Test_256x256x512.mhd

@ Apply in place:
© Apply to new

e[i
328 T = =
asima por caseton AT File name: [Tes_z564258m258 mha =l Dpen |
Files of type 2 Image fes "o~ prg.” . ” brop, bt v _x | Cancel
CarvatuzsTlovTaagetilter. . bone

ramiem Fimished s 15/082007 L1i55. 44 H: Compleced n 00:33:000 =mmx Piel Type: [Float |

b EinaryThuresholdhsiabel 4 Piel Arnay: [Scater Piel =l
4] _"_I

2] Seript Console 4bx Blirae o I3 ﬂ
Ready e

(a) Main Window (b) Open Image Dialog

Figure 1: The Sharplmage application framework components, including the main window and open
image dialog.

Sharplmage: An Image Processing Prototyping Environment 4

2.2 Scripts

At the heart of Sharplmage is a set of IronPython scripts, most of which operate on images and
show their results in new renderers. Many of the existing scripts apply single ITK filters, however
more complex pipelines can also be constructed. As depicted in Figure 2, all scripts must derive
from the base Script class and consist of a number of properties and methods. A majority of
scripts inherit from ImageToImageScript and consist of the following:

Name: A string representing the name of the script.

Help: A string describing how to use the script.

Input: The input image.

Output: The resultant output image.

Run () : The entry-point used by the manager to invoke the script.
Initialise (): Performs the script initialisation tasks.
Finalise (): Performs the script finalisation tasks.

DoWork () : Creates a new thread and calls ThreadedDoWork ().

ThreadedDoWork () : Performs the main function of the script on a background thread.

The use of this script-based architecture is advantageous for a number of reasons: (1) existing
scripts can be edited at run-time, (2) new scripts can be easily added and executed immediately,
(3) functionality can be extended by inheriting from existing scripts, and (4) scripts can encapsulate
functionality allowing for reproducible experiments given only the input image and script parameters.

Script -
- ImageTolmageScript
+Name: String ThreadedScript CurvatureFlowScript
+Help: String +Thread: Thread *Renderer: siRenderer
- 4_ - <_+Input: itkimage <_+Time5tep: Double
+|Rl.1tr.](|). +I;u\r;v() K +Output: itkimage +lterations: UInt32
+ +
nitialise() owork() Tinitialise() +ThreadedDoWork()
+DoWork() +ThreadedDoWork() . .
’) +Finalise()
+Finalise()

Figure 2: A UML diagram depicting the inheritance hierarchy of Sharplmage scripts. In this figure
the CurvatureFlowScript is used as an example.

2.3 Renderers

There are currently two renderers available in Sharplmage: a slice renderer for previewing image
slices, and a volume renderer for direct volume rendering. Other renderers (such as those exposed
by VTK) could be added if desired.

Sharplmage: An Image Processing Prototyping Environment 5

The slice renderer (siGdiSliceRenderer) uses the Windows GDI+ library to preview a single
orthogonal slice though a 3-D image (or the only slice of a 2-D image). This renderer supports
the following scalar and vector images: unsigned char, signed short, float, double, RGB,
RGBA, Vector, Covariant Vector, and Vector Image. It currently uses 256 greyscales (8-bit)
for display and supports multiple transparent overlays (labels).

The volume renderer (siVolumeRenderer) uses OpenGL to display images using 3-D texture
mapping with fragment shaders (see [10, 7]). The user can rotate the volume using the left mouse
button, translate using the right mouse button, and scale (zoom in/out) using the mouse wheel. This
renderer supports scaling and biasing for multiple pixel representations including unsigned char,
signed short and float images.

The sivVolumeRenderer requires a graphics processing unit (GPU) supporting the following exten-
sions:

e GL_ARB_fragment_shader
e GL_ARB_shader_objects

GL_ARB_multitexture

GL_EXT_texture3D

GL_EXT_blend_minmax

Any good non-OEM graphics card should support these (such as the ATl Radeon 9800 release in
2003), but for optimal performance we suggest a more recent card (such as the NVIDIA GeForce
8800 GTX released in 2007).

[sharpImage [0.9.2] _(O] x| _1of x|
File Script Window Help 1
_ olume Res e] -lo All[Eabled]
[GDI viewer: Heart.mhd [100%] 9 [w][E=7] | 72 601 viewer: visiblewon =1k | cot view Yolume R 01fps; =loix|

Size=[300, 300, 300] Spacing=[0.483, 0.503, 0.483] Pixeﬂ Size=[127,162] Spamg:‘n 0,1.0] Pixe\Type:RGEﬂ

wer, =] E i
Size=[128, 256, 256] 5p a | g Levoy: all Color [A=15, R=255, G=224, B=192] ¢)

4

] Script Console qb X

e

] Script Console 4rx

Ready... [More ; Ready.. =] 5

(a) Slice Renderer (b) Volume Renderer

Figure 3: The Sharplmage renderers: siGdiSliceRenderer and siVolumeRenderer.

Sharplmage: An Image Processing Prototyping Environment 6

3 Quick Start Guide

3.1 Installation

We hope to create an installation package at some stage, but at the moment each component must
be installed manually:

1. Ensure the .NET Framework 2.0 is installed on your system. The .NET Framework Redis-
tributable Package dotnetfx.exe can be obtained from here.

2. Install the Microsoft Visual C++ 2005 Redistributable package (vcredist_x86.exe) avail-
able from here. The ManagedITK assemblies which are packaged with Sharplmage are
compiled with Visual Studio 8 SP1, so make sure you install the SP1 redistributable package.

3. Download the Sharplmage binary files (which include ManagedITK) from: http://www.insight-
journal.org.

4. Unzip the binary files to a suitable directory (eg. C: /Utils/SharpImage).

5. Run SharpImage.exe.

The source-code is available for both ManagedITK and Sharplmage, and can be compiled using
the Visual Studio 8.0.50727.762 (SP1) solution files.

3.2 Usage

This section provides the reader with the necessary knowledge to start using Sharplmage. We as-
sume you have followed the installation process in the previous section and have a copy of Sharplm-
age open. As a scripting environment, the user interacts by invoking scripts via the Script Console.
To display the console either navigate the menu to Script > Console,orpress Ctrl + Shift +
C. In order to effectively use Sharplmage, you need only memorise two commands: dir and help.

The dir [pattern] command lists all the available scripts with their name or path containing the
given pattern string (eg. dir ‘‘Common’’). If no pattern is provided, all available scripts will
be listed. The following example returns all the scripts related to noise suppression:

> dir "Denoising"
Scripting\Filtering\Denoising\AdditiveGaussianNoise
Scripting\Filtering\Denoising\Bilateral
Scripting\Filtering\Denoising\CurvatureAnisotropicDiffusion
Scripting\Filtering\Denoising\CurvatureFlow
Scripting\Filtering\Denoising\GradientAnisotropicDiffusion
Scripting\Filtering\Denoising\ImpulseNoise
Scripting\Filtering\Denoising\Mean
Scripting\Filtering\Denoising\Median
Scripting\Filtering\Denoising\MinMaxCurvatureFlow

http://www.microsoft.com/downloads/details.aspx?familyid=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5
http://www.microsoft.com/downloads/details.aspx?FamilyID=200B2FD9-AE1A-4A14-984D-389C36F85647
http://www.insight-journal.org
http://www.insight-journal.org

Sharplmage: An Image Processing Prototyping Environment 7

Each script has a Help string which can be displayed by calling help scriptname, where
scriptname is the name of the script you want to query (eg. help Mean). Each help string consists
of three components: the name of the script, a description of the script, and a list of parameters
(with default values indicated in brackets). If no default parameter value is shown you are required
to always provide a value. For example:

> help CurvatureFlow

===== Help: CurvatureFlow =====

Performs denoising of the input image using curvature driven flow.
--—-- Parameters ----

(double) TimeStep = the finite difference time step. (0.05)

(int) Iterations = the number of iterations. (2)

Once you have found your desired script (with dir) and you have read the help information (with
help), you are ready to invoke the script. To invoke a script type the name followed by the param-
eters you wish to specify (unspecified parameters will assume their default value). By default the
script input is the currently selected image. For example:

> Open "C:/Temp/BrainProtonDensitySlice.png#F2"

> CurvatureFlow TimeStep=0.15 Iterations=8

--——- CurvatureFlow: Started at 8:12:04 AM --—-—-
Input=BrainProtonDensitySlice.png

TimeStep=0.15

Iterations=8

Applying CurvatureFlowImageFilter...Done.
Output=BrainProtonDensitySlice_CurvatureFlow.png

==== CurvatureFlow: Finished at 8:12:04 AM: Completed in 00:00:109 ====

Sharplmage: An Image Processing Prototyping Environment 8

4 Examples

In this section we will demonstrate some of Sharplmage’s core functionality. It loosely follows the
organisation of the ITK Software Guide.

4.1 Open

An image can be opened by either using a dialog or the script console. To display the dialog select
File >Open >Open Image... (see Figure 1). The dialog can also be displayed by invoking the
Open script with no parameters. To open an image using the Open script, specify the full path and
type separated by a #:

> Open

> Open "C:/Temp/ctheadl.png#UC2"

> Open "C:/Temp/ctheadl.png#SS2"

> Open "C:/Temp/ctheadl.png#F2"

> Open "C:/Temp/VisibleWomanEyeSlice.png#RGBUC2"
4.2 Save

Again, an image can be saved using either a dialog or the script console. To save the image
using the dialog select File >Save As... and specify the path, name, and and pixel type (the
dimensionality and number of components will handled automatically). To save an image using the
Save script, specify the full path and type separated by a #:

> Save
> Save
> Save

llc
"C
"C

:/Temp/ctheadl.png#UC2"
:/Temp/ctheadl.png#SS2"
:/Temp/ctheadl.png#F2"

4.3 Change Properties

It is often desirable to list and/or edit the properties of an image and as such the Properties script
has been provided:

> Properties
Name=C:/Temp/ctheadl.png
PixelType=Float

Size=[256, 256]
Spacing=[1.00000, 1.00000]
Origin=[0.00000, 0.00000]
Direction=1 0 0 1
Buffer=248840952

MTime=812

The Name, Spacing, Origin, and Direction properties can also be changed using this script (use
with caution!):

Sharplmage: An Image Processing Prototyping Environment 9

> Properties Spacing=itkSpacing(0.5,0.5) Origin=itkPoint (5.0,5.0)
Name=C:/Temp/ctheadl.png

PixelType=Float

Size=[256, 256]

*Spacing=[0.50000, 0.50000]

*O0rigin=[5.00000, 5.00000]

Direction=1 0 0 1

Buffer=248840952

MTime=1414

The Rename script is handy for quickly renaming an image (the names of images are important
because they are used as handles for a number of different scripts):

> Rename "Mask1l"

4.4 Threshold

Global threshold operations can be very effective for simple image processing tasks. The
BinaryThreshold script sets all pixels in a given range to the given value, both specified using
the command line. There are two user friendly specialisations which allow the range to be spec-
ified using scroll bars: BinaryThresholdWithForm which displays the result as a binary image,
and BinaryThresholdAsLabel which displays the result as a label over the input image (see
Figure 4).

> BinaryThreshold Lower=0 Upper=180

> BinaryThresholdWithForm
> BinaryThresholdAsLabel

The Threshold script leaves unchanged all pixels with intensity values inside the range defined by
the two thresholds. Pixels with values outside this range are assigned the OutsideValue. Again,
there is a user friendly specification allowing the range to the specified using scroll bars:

> Threshold Lower=0 Upper=180 OutsideValue=0
> ThresholdWithForm OutsideValue=0

4.5 Cast

As previously mentioned, Sharplmage supports images of different pixel types. By default, the
siGdiSliceRenderer rescales non unsigned char images so that the minimum and maximum
values correspond to [0,255]. Figure 5 depicts the same image (consisting of two circles: left=1,
right=2) displayed as unsigned char and float.

Itis common to Cast one type to another and as such a generic script (plus a number of short-hand
aliases) have been provided to facilitate this task:

Cast OutputPixelType=itkPixelType.F
CastToF
CastToSS
CastToUC

vV V V V

Sharplmage: An Image Processing Prototyping Environment

10

[SharpImage [0.9.1]

File Script Window Help

1% oot vewer iran B =TT

Size=[181, 217] Bpacing=[1.0,1 D;l

=10 x|
Tl =
Lawer: 000,00
| i |

Upper: 180,00

) apply in place
) apply to new

i sharpimage [0.9.1]] =101 i
File Script Window Help
% corvewer:oraniRIR =TT (WEY 2
Size=[181, 217] Bpacing=[1.0,1 D;l Lower: 000,00
Al 1 =

Upper: 180.00

(= Apply in place
) apply to new

‘ Reset || Cancel Ok |

OK | ‘ Reset || Cancel

2l & van 4 x 2 & va 4b
= BinaryThresholdWichForm - > BinaryThresholdisLabel -
of] o1

A 12 A 12
i] Script Console 4 b x i 2] Script Console 4B X
Ready... [[Hone . Ready... I [Ti16, 209][116.00, 209.00] 113 _;

(a) BinaryThresholdWithForm (b) BinaryThresholdAsLabel

Figure 4: Binary thresholding: BinaryThresholdWithForm displays the result as a binary image,
whereas BinaryThresholdAsLabel displays the result as a label.

i sharpImage [0.9.1] =1Oi=]
File Script ‘Window Help
M |=[E3) | 2 GDI viewer: Float [100%] =10] =

Size=[246, 256] Spacing=[1 D 1.0] PierType:Fld

6] Spacing=[1.0, 1.0] PierType:U|d

[

|[191, 130][191.00, 130,00] 002,000 :

2

Ready... |

Figure 5: This figure depicts the same image with unsigned char pixel type (left) and float pixel
type (right). The float image is automatically rescaled to consume the entire [0,255] range. The
unsigned char image must be explicitly rescaled using the RescaleIntenityToUC command.

4.6 Intensity Mapping
The RescaleIntensity script linearly scales the pixel values in such a way that the minimum and
maximum values of the input are mapped to minimum and maximum values provided by the user:

> RescalelIntensity OutputMinimum=0 OutputMaximum=100
> RescalelIntensity OutputMaximum=100.0 OutputPixelType=itkPixelType.F

A number of aliases exist for quickly rescaling an image to use an appropriate range of a given pixel
type. RescaleIntensityToF rescales the image to [0.0,1.0], RescaleIntensityToSS rescales
the image to [-32768,32767], and RescaleIntensityToUC rescales the image to [0,255]:

Sharplmage: An Image Processing Prototyping Environment 11

> RescalelIntensityToF
> RescalelIntensityToSS
> RescalelIntensityToUC

The shiftScale script applies a linear intensity mapping by firstly adding Shift to each pixel, then
multiplying each pixel by Scale:

> ShiftScale Shift=100.0 Scale=0.5

The Sigmoid script applies a non-linear intensity mapping useful for focusing attention on a partic-
ular set of values and progressively attenuating the values outside that range:

> Sigmoid Alpha=10 Beta=170 OutputMinimum=10 OutputMaximum=240

ﬁs SharpImage [0.9.2])] [
File Script Window Help

) (=] B3} | P2 GDI Yiewer: Brair B]
Size=[181, 217] Spacing=[1.0, 1.D:;| Size=[181, 217] Spacing=[1.0, 1.EI:;|

e

= Sigmoid Alpha=10 EBeta=170 OutputMinimum=10 OutputMaximam==7 &
---- Bigmoid: Started at &/07/E007 11:40:41 AM ---—-

Input=BrainProtonbensitySlice. pang _|
Blpha=10

Beta=170 oL
1] | 3
>_| Script Console 4 b x

Ready... | [[054, 001][054.00, 001.00]010.000

Figure 6: This figure depicts the result of applying the Sigmoid script.

4.7 Gradients

Gradient vectors are useful for a variety of image processing tasks, including simple edge detection.
Sharplmage provides a number scripts for computing the gradient and gradient magnitude. Gradient
scripts produce multi-component (vector) images, of which a single channel is shown at one time.
To change the channel, select the renderer and type 0, 1, or 2.

> Gradient
> GradientRecursiveGaussian Sigma=1.0

Sharplmage: An Image Processing Prototyping Environment

12

A number of scripts are also provided to computing the gradient magnitude, a useful edge mea-

sure:

> GradientMagnitude
> GradientMagnitudeRecursiveGaussian Sigma=1.0

E SharpImage [0.9.2] ;IQIEI

File Script Window Help

0l

Size=[181, 217] Spacing=[1.0, .00~ |

FC GDI Yiewer: =10] x|
[FC GDI viewe:

Size=[181, 217] Spacing=[1.0, 1.0::[

FE GDI ¥Yiewer: o] x|
[FC D1 Viewer

Size=[181, 21 7] Spacing=[1.0,1 Dj;l

Siqua=1.0
ormalizehcross3cale=False
|

> CradientMammitudeRecursiveGaussian
---- GradientMagnitudeRecursiveCGaussian: Starved at 6/07/2007 11:42:35 AM -—--
Input=BrainProtonDensitySlice. png

(=4
-
»

] Script Console

Ready...

4px

Figure 7: This figure depicts the results of applying the GradientRecursiveGaussian and
GradientMagnitudeRecursiveGaussian scripts with Sigma=1.0.

4.8 Mathematical Morphology

Morphological filtering is a powerful technique which analyses images based on shape using a
structuring element. ITK currently provides two streams of morphological filters: those for binary
and those for greyscale images. Sharplmage brings both of these together into single scripts us-
ing the Operation parameter: if Operation="Binary" then the binary variant is used, else if
Operation="Grayscale" the greyscale variant is used (the default is always greyscale). The
structuring element can be specified using the itkFlatStructuringElement static constructors:

Ball, Box, Annulus. The default type is the Ball (circle in 2-D and sphere in 3-D).

V V. V V V V V V

MorphologicalErode
MorphologicalDilate
MorphologicalOpen Operation="Binary"
MorphologicalClose Operation="Binary"
MorphologicalErode KernelRadius=itkSize (3, 3)
MorphologicalDilate Kernel=itkFlatStructuringElement.Ball (itkSize (2,2))
MorphologicalOpen Kernel=itkFlatStructuringElement.Box (itkSize (2,2))
MorphologicalClose Kernel=itkFlatStructuringElement.Annulus (itkSize (4,4),2)

Sharplmage: An Image Processing Prototyping Environment 13

E' SharpImage [0.9.2] 10| x|
File Script ‘“Window Help
% o1 vewer orammGRRTES| | & oL i 1o JRTEIE [corve A=Y

Size=[181, 217] Spacing=[1.0, 1.Djﬂ Size=[181, 217] Spacing=[1.0, W.Dﬂ 217] Spacing=[1.0,1 Dj;l Size=[1 8.1, 217] Spacing=[1.0, 1.Djﬂ

& [[l

> MorphologicalOpen KernelPRadius=itkSize(3,3) -
---- MorphologicalOpen: Started at 6/07/Z007 1l:46:26 AM —---
Input=ErainProtonDensitySlice. png

Kernel=Ball[3, 3]

pplying GrayscaleMorphologicalOpeningInageFilver. . .Done.

4

mfh

1] Script Console 4 b X
Ready... Nore :

Figure 8: This figure depicts different morphological operations.

4.9 Noise

Sharplmage has a number of scripts for both adding and suppressing noise. Gavin Baker has
implemented additive Gaussian and impulse noise scripts for ITK (see his webpage) which are
available using the AdditiveGaussianNoise and ImpulseNoise scripts:

\

AdditiveGaussianNoise Mean=0.0 StdDev=20.0
ImpulseNoise Probability=0.1

\

A number of naive, neighbourhood, and edge-preserving denoising scripts are also provided:

SmoothingRecursiveGaussian Sigma=1.0

Mean Radius=2

Median Radius=2

GradientAnisotropicDiffusion Conductance=1.5 Iterations=4
CurvatureAnisotropicDiffusion Conductance=1.5 Iterations=4
Bilateral DomainSigma=[5.0,5.0] RangeSigma=5.0
CurvatureFlow TimeStep=0.15 Iterations=4

vV V V V V V V

410 Pixel Math

Per-pixel operations perform logical or mathematical operations on each pixel in an image. ITK im-
plements nearly twenty different pixel math operations which have been drawn together in Sharpim-
age using two simple scripts: UnaryPixelMath and BinaryPixelMath. As their names suggest,
UnaryPixelMath facilitates operations on single images, while BinaryPixelMath operates on
two images. The UnaryPixelMath script supports the following operations: Abs, Exp, Log, Not,
Negate, Sqrt, or Square. The BinaryPixelMath script supports the following operations: Add,
Sub, Mult, Div, And, Or, Xor, Max, Min, Mask, or SquaredDiff.

The following example masks an image using a binary image:

http://www.cs.mu.oz.au/~gavinb/projects/itk.php

Sharplmage: An Image Processing Prototyping Environment 14

E’ SharpImage [0.9.2] ;Iglll

File Script Window Help

FE D1 viewer: BramproGPI=I Y| = =T

Size=[181, 217] Spacing=[1.0, 1.D:;| Size=[181, 217] Spacing=[1.0, 1.D:;| Size=[181, 217] Spacing=[1.0, 1.D:;|

LIJ :

> ImpulseNoise Probability=0.1

---- ImpulseNoise: Started at &/077Z007 11:51:41 AM ----
Input=ErainProtonbensitySlice. png

Applying ImpulseNoizeImageFilter. . Done.
Output=ErainProtonbensitySlice ImpulseNoise.png

4 5
] Script Console 4 b X
Ready... [[[12z, 062][122.00, 062.00] 171,000 _:

Figure 9: This figure depicts results from adding noise to an image.

E" SharpImage [0.9.2] _IEI 5'
File Script Window — Help
JRT=TE [corve JRT=TE [corve 1o/ . =

Size=[181, 217] Spacing=[1.0, 1.0/~ || Size=[181, 217] Spacing=[1.0, 1.0~ || Size=[181, 217] Spacing=[1.0, 1.00<]| Size=[181, 217] Spacing=[1.0, 1.0

e e
- -
= CurvatureFlow TimeStep=0.15 Iterations=4¢

--—— CurvatureFlow: Started at &/07/Z007 11:E50:08 AM ----
Input=EBrainProtonlensityilice. pry

TimeStep=0_15

Iterations=4

[t
-

4 »
] Seript Console 4 b X
Ready... B | 2

Figure 10: This figure depicts results from the Median, GradientAnisotropicDiffusion, and
CurvatureFlow denoising filters.

> Open "C:/Temp/ctheadl.png#F2"
> Open "C:/Temp/maskl.png#F2"
> BinaryPixelMath Operation="Mask" Inputl="cthead" Input2="mask"

Sharplmage: An Image Processing Prototyping Environment

(@) Inputi

(b) Input2 (c) Result

Figure 11: A demonstration of the BinaryPixelMath Mask operation.

4.11 Region growing

The ConnectedThreshold script performs region growing from a seed specified by clicking on the
input image:

> ConnectedThreshold Lower=400 Upper=2000

E’ SharpImage [0.9.1] i i |EI|5|
File Script Window Help

i [m] 5
Size=[181, 217] Spacing=[1.0, 1.0/« |

o cori I
Size=[181, 217] Spacing=[1.0, 1.D:;I

| Clear H Cancel ‘ Ok ‘
|- =f -
> Selected Seeds 1k X
> ComnectedThreshold Lower=100 Upper=180 ;l
—---- ConnectedThreshold: Started at 4/07/Z007 1:12:2Z8 PM ----
User selecting seeds...
-

4 13
o | Script Console 4B o
Ready. .. Mone

Figure 12: ConnectedThreshold region growing from a user specified seed point.

412 Active Contours

Sharplmage provides a FastMarching script to compute the positive motion (expansion) of an
active contour. The FastMarchingImageFilter example given in the ITK Software Guide [6,

Sharplmage: An Image Processing Prototyping Environment 16

Sec. 9.3.1] can be reproduced using six simple commands (plus the seed point specified using the
mouse) (see Figure 13):

Open "C:/Temp/BrainProtonDensitySlice.png#F2"
CurvatureAnisotropicDiffusion TimeStep=0.125 Iterations=5 Conductance=9.0
GradientMagnitudeRecursiveGaussian Sigma=1.0

Sigmoid OutputMinimum=0.0 OutputMaximum=1.0 Alpha=-0.3 Beta=2.0
FastMarching

Added trial point=[56, 92]

> BinaryThreshold Lower=0.0 Upper=100.0

> Select "Brain"

> AddLabel "Threshold"
(b) Smooth (c) Gradient

vV V V V V

(e) Arrival (f) Threshold (g) Label

Figure 13: The FastMarchingImageFilter example from the ITK Software Guide [6, Sec. 9.3.1]
can be reproduced using six simple commands.

An interactive script for computing an edge-based speed image for 2-D or 3-D images is also pro-
vided in LevelSetSpeed (see Figure 14):

> Open "C:/Temp/BrainProtonDensitySlice.png#F2"
> LevelSetSpeed OutputMinimum=-1.0 OutputMaximum=1.0

4.13 Volume Rendering

The siVolumeRenderer implements 3-D texture mapping using fragment shaders written in
OpenGL Shading Language (GLSL). It expects at least one input image (a ‘value’ image), but also
supports gradient / gradient magnitude images. To invoke the renderer using a given value and
gradient magnitude image use the VolumeRender script in the following manner:

Sharplmage: An Image Processing Prototyping Environment 17

[sharpImage [0.9.2] gl x|
Fle Script Window Help
=] TR -
Size=[181, 217] Spacing=[1.0, 1 Dj;l Gaussian Signa: 1,00
&l 1 |
Sigmoid Alpha: -5.50
A] |
Sigmoid Beta: -0,50
wl -l |
Threshold Lower: 35.00
] i
Threshold Upper: 250,00
) apply in place
(*) apply bo e
[£ VariahleSIider| 4b X

> LevelSetSpeed OutputMinimum=-1.0 OutpucMaximan=1.0 =

-
i 2

| »] Script Console 4 b X

Ready... [[188, 208] [1&8.00, 205.00] 002,000 ;

Figure 14: The LevelSetSpeed script in action.

> Open "C:/Temp/engine.mhd#UC3"
> GradientMagnitude
> VolumeRender Value="engine" Gradient="Magnitude"

Once the script has finished, a new siVolumeRenderer is displayed along with a number of forms
for specifying the renderer properties and transfer function. A histogram can be generated for the
transfer function editor background using the ValueEdgeHistogram script:

> Open "C:/Temp/engine.mhd#F3"

> GradientMagnitude
> ValueEdgeHistogram Value="engine" Edge="Magnitude"

To change the fragment shader select the “Renderer Editor” tab, select the “FragmentProgramPath
property, click the “..” button and navigate the desired fragment shader (a vertex shader of the
same name but different extension must also exist in the same directory). A number of existing
fragment shaders are provided, but custom shaders can be easily added for prototyping illustration
techniques.

The simplest shader is shader-v-copy . frag which copies the image value to the fragment and is
useful for maximum intensity projections (see Figure 15(b)):

// Interpolate images
float value = texture3D(sam3Texl, pos3Texl).a;

// Set color
gl_FragColor = vec4(value, value, value, 1.0);

Typically a ‘transfer function’ is employed to transfer opacity and colour information to each potential
pixel (‘fragment’). A simple transfer function is realised in shader-v. frag by indexing a 1-D lookup

25
26
27
28
29
30
34
35
36

26
27
28
29
30
31

Sharplmage: An Image Processing Prototyping Environment

(a) Oblique Section

(d) Value-Magnitude

Figure 15: Results from different fragment shaders and renderer settings.

table (LUT) using only the image value (see Figure 15(c)):

// Interpolate images
float value = texture3D(sam3Texl, pos3Texl).a;

// Interpolate transfer function
vec3 pos3Tf = vee3(value, 0.0, 0.0);
vecd valdTf = texture3D(sam3Tex0, pos3Tf);

// Set color
gl_FragColor = val4Tf;

A more complex transfer function is realised in shader-vm-noadjust . frag by indexing a 2-D LUT

using image value and gradient magnitude [7] (see Figure 15(d)):

// Interpolate images
float value = texture3D(sam3Texl, pos3Texl).a;
float gradmag = texture3D(sam3Tex2, pos3Tex2).a;

// Interpolate transfer function
vec3 pos3Tf = veec3(value, 1.0-gradmag, 0.0);

(f) Silhouette

Sharplmage: An Image Processing Prototyping Environment 19

vecd validTf = texture3D(sam3Tex0, pos3Tf);

// Set color
gl_FragColor

valdTf;

Unfortunately, as shown in Figure 16, this approach does not cater for changes in the sampling rate
(the ratio of the distance between the interpolating proxy geometry). Weiler et al. [12] showed that
the transparency of the fragment (0,g) must be adjusted according the sampling rate (r;) as follows:

1
o =1—[1—0p)" (1)
This adjustment is implemented in shader-vm. frag:

// Adjust the alpha value for the current sampling rate
float adjustAlphaForSamplingRate (float a)
{

return 1.0 - pow(1.0 - a, 1.0 / fSamplingRate);

The previous fragment shader implements what is sometimes called ‘gradient magnitude opac-
ity modulation’. However, true direct volume rendering typically implies the use of an illumination
model, such as the Phong reflection model. The Phong model is a simplified local model consisting
of three reflection terms (ambient, diffuse, and specular):

I=kyi,+ Z [kdid(N'L) + ksis(R - V)n] (2)
lights

where [is the resultant light intensity, k, are constants, i, are the light intensities of the respective
components, N is the normal vector, L the vector to the light source, R the reflection vector, V the
viewing vector, and 7 the specular exponent. For our implementation in shader-vm-phong. frag’
(see Figure 15(e)) we compute the normal using an online central difference method, assume unity
constants, and use a single light positioned along the viewing vector (ie. V = L):

// Compute the gradient using central differences
vec4 gradientFromCentralDifferences()
{
vecd4 gradient = vecd(0.0);
for (int 1i=0; i<3; i++)
{
vec3 pos3L = vec3(pos3Texl); pos3L[i] -= fNormalOffset;
vec3 pos3R = vec3(pos3Texl); pos3R[i] += fNormalOffset;
float vall = texture3D(sam3Texl, pos3L).a;
float valR = texture3D(sam3Texl, pos3R).a;
gradient [i] = 0.5*vall - 0.5*valR;
}

return gradient;

This shader is written for readability rather than speed or size. If you have an older graphics card we recommend
using shader-vm-phong-simple.frag

Sharplmage: An Image Processing Prototyping Environment

20

// Apply the Phong lighting model
vecd4 phong(vecd4 vecdN, gl_LightSourceParameters light)
{
// Compute light/view vector
vecd vecd4l = vecd(0.0, 0.0, -1.0, 0.0);
vec4l *= gl_ModelViewMatrix;
vecd4l = normalize(vecd (vec4lL.x, vecd4L.y, -vecdlL.z, 0.0)

// Compute terms
float fLdotN = dot(vecdlL, vecidN);

vec4 vec4R = normalize((2.0 * fLdotN * vecidN) - vecdl);

float fRdotlL = abs(dot (vecd4R, vecdl));

// Compute contributions

vecd4d vec4A = light.ambient;

vecd vecdD light.diffuse * abs(fLdotN);
vecd vecidS

// Add and return
return (vecd4A + vecdD + vecdS);

void main ()
{
//

// Compute the normal
vecd4 vecd4G = gradientFromCentralDifferences();
vec4 veci4N = normalize(vecdG);

// Apply phong lighting
gl_FragColor = val4Tf * phong(vec4N, gl_LightSource|[0]

light.specular * pow(fRdotL, light.spotExponent);

)

Rheingans and Ebert [11] introduced a number of volume illustration techniques for enhancing
boundaries, silhouettes, and regions. Some of these are realised in shader-vm-enhance. frag

(see Figure 15(f)):

// Compute the normal dot viewing vector
float computeNdotV (wvecd veciN)
{
vecd vecd4V = vecd(0.0, 0.0, -1.0, 0.0);
vecd4V *= gl_ModelViewMatrix;
vecd4V = normalize(vecd (vecd4V.x, vecdV.y, -vecdV.z, 0.0)
return dot (veci4N, vecdV);

// Compute the silhouette enhancement
float enhanceSilhouette (vecd vecdN)

{

if (fEnhanceFactorl <= 0.0) return 0.0;

w

~J Oy OO O O)Y OY OY O
P O W O —J o U1 W&

—J

Sharplmage: An Image Processing Prototyping Environment 21

(b) ry = 0.4

5
R -

B

() ry=0.1 (f) ry = 0.4

Figure 16: A comparison of value-magnitude volume renderings generated with different sampling
rates. First row: no alpha adjustment. Second row: with alpha adjustment.

return pow(1.0 - abs(computeNdotV (vec4N)), fEnhanceFactorl);

p—

// Compute the boundary enhancement
float enhanceBoundary (float value)
{

if (fEnhanceFactorl <= 0.0) return 1.0;
return pow(value, fEnhanceFactorl);

pm—

4.14 Extending Sharplmage

Although Sharplmage has a decent collection of image processing scripts (thanks to ITK), its real
strength lies in the ability to be easily extended. To add a new form for use with Sharplmage follow
these steps:

1. Open Visual Studio and select File > New Project.
2. Select Windows Application, enter the name and location, and click OK.

3. Right click on the project References, and select Add Reference.... Select the Browse tab,
navigate to the Sharplmage folder, select SharpImage.exe, and click OK.

Sharplmage: An Image Processing Prototyping Environment 22

4. In the Solution Explorer, right click on the project name and select Properties. Change
the Output type from Windows Application to Class Library. Save the project and close the
Properties window.

5. In the Solution Explorer, right click on Program.cs and select Delete.

6. In the Solution Explorer, right click Form1.cs and select Rename. Enter the desired name,
such as siFormCustom1.cs.

7. In the Solution Explorer, right click on the form and select View Code. Change the name of
the form in the class declaration and make it extend SharpImage.Forms.siFormTool. Also
change the default constructor name.

8. In the Solution Explorer, right click on the form and select View Designer. Edit the form as
desired. For this example we changed the form text in the Properties explorer and added a
check box.

9. In the Solution Explorer, right click on the form, select View Code, and add code as de-
sired. For this example we added a property named RunFilter which returns the checkbox
Checked property.

10. Select the build type and compile the library.

11. Create a Scripting/Custom folder in the Sharplmage installation directory. Copy the class
library to this folder.

12. Create a script in this folder which uses the form (see below).

13. Invoke the script from Sharplmage.

#= — —— — —— ——

Module: Customl.py
#

Import the base script class
import ImageTolmageScript
from ImageToImageScript import *

Add reference and import required libraries
clr.AddReference ("ManagedITK.Image.Cast")
clr.AddReference ("SharpImage.Extension.Customl")
from itk import *

from SharpImage.Extension.Customl import *

class CustomlScript (ImageToImageScriptObject):

Name = "Customl"
Help = """Insight Journal custom example.
A form is displayed asking if the filter should be run."""
Parameters = """None"""
Form = None
RunFilter = False

def Run(self):
""" Run the script.
self.Initialise ()

nun

Sharplmage: An Image Processing Prototyping Environment 23

def Initialise(self):
""" Tnitialise the environment for running this script.

nun

...

Show the form

self.Form = siFormCustoml ()
self.Form.Continue += self.Continue
self.Form.Cancel += self.Cancel
self.ParentApplication.AddTool (self.Form)

def ThreadedDoWork (self):
""" Perform the main functions of the script on a background thread.
try:
Setup
self.ParentApplication.SetApplicationAsWorking ()

mun

Check if we are running the filter
if (self.Form.RunFilter):

Run the filter

#o...
else:

Don’t run the filter

#...

except Exception, ex:
self.HandleException(ex)
self.FinishedWork (False)
self.Finalise ()

5 Conclusion

This paper described an image processing prototyping environment based on ITK. It currently sup-
ports two renderers (a slice renderer and a volume renderer) and allows various scripts to be called
from a command console. New scripts and forms can be added to the environment at run-time
very easily. We have found the environment useful for a range of image processing tasks including
prototyping volume illustrations. For suggestions or bugs, feel free to contact us?.

2Corresponding author: Dan Mueller: d.mueller@qut.edu.au or dan.muel@gmail.com.

mailto:d.mueller@qut.edu.au
mailto:dan.muel@gmail.com

Sharplmage: An Image Processing Prototyping Environment

rewpoiect x|
Praject types:
= Misual G

- Windaws
Smart Device
- Database
£ Starter Kits
ek
ther Languages
Other Project Types

Templakes:

visual Studio installed templates

(FFlwindaws Application

|l Windaws Contral Library
A Crystal Reports Application
[ASP.NET Web Application

[AClsss Library

(M Console Application

(iiDevice Application

19, ASPLHET Yireb Service Application

My Templates

(p)search Online Templates..,

A project for creating an application with a Windows user interface:

Hame: [=harpimage: Extend.Custom

Location: | C:\Temp

=] Browss...

Solution Mame: [[Sharplmage Extend.CustomL I~ create drectory for solution

ET | Com | Projects Erowse | Recent |

Loak in: I 12 Release

1o o E

Scripking
System

SharpImage

File name: IShalpImage.exe

[
=

Ok Cancel

Files of type: IComponenl Files (" Il Hb:" olbe™ ocx;" exe:" manifest)

(a) Create a new project

(c) Edit project properties

File Script Window Help

(b) Add reference

‘ormExtendShar...ge.cs [Design] T x

“i

X E%: Extend SharpImage x|
Pointer
Bkton ™ Run fiter
heckBox -
CheckedListBox

=5 ComboBox
T DateTimePicker
A Label

A LinkLabel

|22 ListBox

iskign

[n-] MaskedTextBox
121 MonthCalendar
== Notifylcon
(12 NumericUpDawn
| PickureBox

) ProcressBar =

harpImage [0.9.1]

(d) Design the form

=0l

¥ Run Filter

| [Extend SharpImage 4k X

= Customl -
-——-— Customl: Started at 370772007 7:11:21 AM --—--

-
4 5
] script Console 4k x
Ready. ..

(e) Invoke the script

Figure 17: Steps for extending Sharplmage.

24

Sharplmage: An Image Processing Prototyping Environment 25

References

[1] MeVisLab. Technical report, MeVis, 2007, Available online:
http://www.mevislab.de/index.php?id=mevislabmain. 1

[2] SCIRun. Technical report, Scientific Computing and Imaging Institute, University of Utah, 2007,
Available online: http://software.sci.utah.edu/scirun.html. 1

[3] Slicer 3.0. Technical report, NA-MIC, 2007, Available online:
http://www.na-mic.org/Wiki/index.php/Slicer3. 1

[4] VolView 2.0 Users Guide. Technical report, Kitware, Inc, 2007, Available online:
http://www.volview.com/VolView/VolView20Help.pdf. 1

[5] V. Chu and G. Hamarneh. MATITK: Extending MATLAB with ITK. The Insight Journal, Decem-
ber, 2005. 1

[6] L. Ibanez, W. Schroeder, L. Ng, and J. Cates. The ITK Software Guide: The Insight Segmen-
tation and Registration Toolkit. Technical report, Kitware, Inc, 2007. 4.12, 13

[7] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer functions for interactive
volume rendering. IEEE Transactions on Visualization and Computer Graphics, 8(3):270-285,
2002. 2.3, 4.13

[8] G.Lehmann, Z. Pincus, and B. Regrain. WrapITK: Enhanced languages support for the Insight
Toolkit. The Insight Journal, June, 2006. 1

[9] D. Mueller. ManagedITK: .NET wrappers for ITK. The Insight Journal, June, 2007. 1

[10] C. Rezk-Salama. Volume rendering techniques for general purpose graphics hardware. PhD
dissertation, University Erlangen-Nuremberg, 2001. 2.3

[11] P. Rheingans and D. Ebert. Volume illustration: nonphotorealistic rendering of volume models.
IEEE Transactions on Visualization and Computer Graphics, 7(3):253—264, 2001. 4.13

[12] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl. Level-of-detail volume
rendering via 3D textures. In Volume Visualization and Graphics, pages 147—152. IEEE, 2000.
413

[13] T. Yoo, M. Ackerman, W. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxes, and
R. Whitaker. Engineering and algorithm design for an image processing API: A technical report
on ITK - the Insight Toolkit. Proc. of Medicine Meets Virtual Reality, pages 586592, 2002. 1

http://www.mevislab.de/index.php?id=mevislabmain
http://software.sci.utah.edu/scirun.html
http://www.na-mic.org/Wiki/index.php/Slicer3
http://www.volview.com/VolView/VolView20Help.pdf

	1 Introduction
	2 Design
	2.1 Framework
	2.2 Scripts
	2.3 Renderers

	3 Quick Start Guide
	3.1 Installation
	3.2 Usage

	4 Examples
	4.1 Open
	4.2 Save
	4.3 Change Properties
	4.4 Threshold
	4.5 Cast
	4.6 Intensity Mapping
	4.7 Gradients
	4.8 Mathematical Morphology
	4.9 Noise
	4.10 Pixel Math
	4.11 Region growing
	4.12 Active Contours
	4.13 Volume Rendering
	4.14 Extending SharpImage

	5 Conclusion

