
SharpImage: An Image Processing
Prototyping Environment

Release 1.0

Dan Mueller1

July 6, 2007
1Queensland University of Technology, Brisbane, Australia

Abstract

This paper describes an image processing prototyping environment called SharpImage.
SharpImage is a stand-alone Windows application geared towards the pre-processing and
creation of volume illustrations, although other generic tasks are inherently supported. The
user interacts with the environment using a command console, and can view images as a
series slices or through volume rendering. We describe the design and introduce functionality
using a number of examples. We have found the environment useful for prototyping a range of
image processing tasks and provide the source-code in the hope it will be useful for others.

Keywords: SharpImage, ITK, prototyping, scripting

Contents

1 Introduction 2

2 Design 3
2.1 Framework . 3
2.2 Scripts . 4
2.3 Renderers . 4

3 Quick Start Guide 6
3.1 Installation . 6
3.2 Usage . 6

4 Examples 8
4.1 Open . 8
4.2 Save . 8
4.3 Change Properties . 8

SharpImage: An Image Processing Prototyping Environment 2

4.4 Threshold . 9
4.5 Cast . 9
4.6 Intensity Mapping . 10
4.7 Gradients . 11
4.8 Mathematical Morphology . 12
4.9 Noise . 13
4.10 Pixel Math . 13
4.11 Region growing . 15
4.12 Active Contours . 15
4.13 Volume Rendering . 16
4.14 Extending SharpImage . 21

5 Conclusion 23

1 Introduction

The Insight Toolkit (ITK) [13] is an open-source software system designed primarily for medical
image segmentation and registration. The architecture and design of ITK — together with the
complied C++ implementation — provides for efficiency, speed, and flexibility.

However, prototyping image processing pipelines in native ITK can be a daunting task. As such a
number of systems generate wrappers around common functionality: WrapITK [8] uses CableSwig
to automatically generate wrappers for Python (Tcl and Java are also supported to a lesser degree
by this system); MATITK [5] allows some ITK algorithms to be called from MATLAB; and Managed-
ITK [9] uses a set of templates and CMake scripts to generate wrappers for .NET languages (such
as C# and IronPython).

A number of data-flow applications have been built using ITK, allowing users to build pipelines by
constructing block diagrams, for example SCIRun [2] and MeVisLab [1]. Various stand-alone “turn-
key” applications also exist, most of which support some form of extensibility, such as VolView [4]
and Slicer [3].

SharpImage can be considered a stand-alone scripting application. It was originally designed to
facilitate pre-processing and prototyping of volume illustration techniques, however it also supports
generic image processing tasks. The environment can be customised by editing existing scripts,
creating and invoking new scripts at run-time, or by adding new window elements (forms). The
full source-code is provided in the hope it will be of use to others in the medical image processing
community.

SharpImage: An Image Processing Prototyping Environment 3

2 Design

SharpImage consists of two major components: scripts to perform processing, and renderers to
preview images. An application framework is provided to glue these components together.

2.1 Framework

The application framework acts a skeleton on which the scripts and renderers are hung. The frame-
work consists of three major components:

Main Window: The main window parents the renderers, script console, and other windows (see
Figure 1). It also has a status label and progress bar which scripts use to report on their
status.

Script Manager: The script manager is responsible for creating, initialising, running, and mon-
itoring scripts. It parses a command string (eg. CurvatureFlow TimeStep=0.15
Iterations=8), extracting the name and parameters. Given the script name, it searches
the scripting folder for possible matches, sets the parameters, and starts it running.

Dialogs: A number of dialog windows exist for various tasks including opening and saving images.
The most important dialog is the open image dialog which allows the user to specify an image
path, type, and dimensionality (see Figure 1). The dialog attempts to automatically detect the
correct pixel type and dimensions, but these may be overridden by the user to force the ITK
IO module to cast the image to the desired representation.

(a) Main Window (b) Open Image Dialog

Figure 1: The SharpImage application framework components, including the main window and open
image dialog.

SharpImage: An Image Processing Prototyping Environment 4

2.2 Scripts

At the heart of SharpImage is a set of IronPython scripts, most of which operate on images and
show their results in new renderers. Many of the existing scripts apply single ITK filters, however
more complex pipelines can also be constructed. As depicted in Figure 2, all scripts must derive
from the base Script class and consist of a number of properties and methods. A majority of
scripts inherit from ImageToImageScript and consist of the following:

Name: A string representing the name of the script.

Help: A string describing how to use the script.

Input: The input image.

Output: The resultant output image.

Run(): The entry-point used by the manager to invoke the script.

Initialise(): Performs the script initialisation tasks.

Finalise(): Performs the script finalisation tasks.

DoWork(): Creates a new thread and calls ThreadedDoWork().

ThreadedDoWork(): Performs the main function of the script on a background thread.

The use of this script-based architecture is advantageous for a number of reasons: (1) existing
scripts can be edited at run-time, (2) new scripts can be easily added and executed immediately,
(3) functionality can be extended by inheriting from existing scripts, and (4) scripts can encapsulate
functionality allowing for reproducible experiments given only the input image and script parameters.

S c r i p t

+ N a m e : S t r i n g
+ H e l p : S t r i n g

+ R u n ()
+ In i t i a l i se ()
+ D o W o r k ()
+ F i n a l i s e ()

T h r e a d e d S c r i p t

+ T h r e a d : T h r e a d

+ R u n ()
+ D o W o r k ()
+ T h r e a d e d D o W o r k ()

I m a g e T o I m a g e S c r i p t

+ R e n d e r e r : s i R e n d e r e r
+ I n p u t : i t k I m a g e
+ O u t p u t : i t k I m a g e

+In i t i a l i se ()
+ F i n a l i s e ()

C u r v a t u r e F l o w S c r i p t

+ T i m e S t e p : D o u b l e
+ I t e r a t i o n s : U I n t 3 2

+ T h r e a d e d D o W o r k ()

Figure 2: A UML diagram depicting the inheritance hierarchy of SharpImage scripts. In this figure
the CurvatureFlowScript is used as an example.

2.3 Renderers

There are currently two renderers available in SharpImage: a slice renderer for previewing image
slices, and a volume renderer for direct volume rendering. Other renderers (such as those exposed
by VTK) could be added if desired.

SharpImage: An Image Processing Prototyping Environment 5

The slice renderer (siGdiSliceRenderer) uses the Windows GDI+ library to preview a single
orthogonal slice though a 3-D image (or the only slice of a 2-D image). This renderer supports
the following scalar and vector images: unsigned char, signed short, float, double, RGB,
RGBA, Vector, Covariant Vector, and Vector Image. It currently uses 256 greyscales (8-bit)
for display and supports multiple transparent overlays (labels).

The volume renderer (siVolumeRenderer) uses OpenGL to display images using 3-D texture
mapping with fragment shaders (see [10, 7]). The user can rotate the volume using the left mouse
button, translate using the right mouse button, and scale (zoom in/out) using the mouse wheel. This
renderer supports scaling and biasing for multiple pixel representations including unsigned char,
signed short and float images.

The siVolumeRenderer requires a graphics processing unit (GPU) supporting the following exten-
sions:

• GL ARB fragment shader

• GL ARB shader objects

• GL ARB multitexture

• GL EXT texture3D

• GL EXT blend minmax

Any good non-OEM graphics card should support these (such as the ATI Radeon 9800 release in
2003), but for optimal performance we suggest a more recent card (such as the NVIDIA GeForce
8800 GTX released in 2007).

(a) Slice Renderer (b) Volume Renderer

Figure 3: The SharpImage renderers: siGdiSliceRenderer and siVolumeRenderer.

SharpImage: An Image Processing Prototyping Environment 6

3 Quick Start Guide

3.1 Installation

We hope to create an installation package at some stage, but at the moment each component must
be installed manually:

1. Ensure the .NET Framework 2.0 is installed on your system. The .NET Framework Redis-
tributable Package dotnetfx.exe can be obtained from here.

2. Install the Microsoft Visual C++ 2005 Redistributable package (vcredist x86.exe) avail-
able from here. The ManagedITK assemblies which are packaged with SharpImage are
compiled with Visual Studio 8 SP1, so make sure you install the SP1 redistributable package.

3. Download the SharpImage binary files (which include ManagedITK) from: http://www.insight-
journal.org.

4. Unzip the binary files to a suitable directory (eg. C:/Utils/SharpImage).

5. Run SharpImage.exe.

The source-code is available for both ManagedITK and SharpImage, and can be compiled using
the Visual Studio 8.0.50727.762 (SP1) solution files.

3.2 Usage

This section provides the reader with the necessary knowledge to start using SharpImage. We as-
sume you have followed the installation process in the previous section and have a copy of SharpIm-
age open. As a scripting environment, the user interacts by invoking scripts via the Script Console.
To display the console either navigate the menu to Script > Console, or press Ctrl + Shift +
C. In order to effectively use SharpImage, you need only memorise two commands: dir and help.

The dir [pattern] command lists all the available scripts with their name or path containing the
given pattern string (eg. dir ‘‘Common’’). If no pattern is provided, all available scripts will
be listed. The following example returns all the scripts related to noise suppression:

> dir "Denoising"
Scripting\Filtering\Denoising\AdditiveGaussianNoise
Scripting\Filtering\Denoising\Bilateral
Scripting\Filtering\Denoising\CurvatureAnisotropicDiffusion
Scripting\Filtering\Denoising\CurvatureFlow
Scripting\Filtering\Denoising\GradientAnisotropicDiffusion
Scripting\Filtering\Denoising\ImpulseNoise
Scripting\Filtering\Denoising\Mean
Scripting\Filtering\Denoising\Median
Scripting\Filtering\Denoising\MinMaxCurvatureFlow

http://www.microsoft.com/downloads/details.aspx?familyid=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5
http://www.microsoft.com/downloads/details.aspx?FamilyID=200B2FD9-AE1A-4A14-984D-389C36F85647
http://www.insight-journal.org
http://www.insight-journal.org

SharpImage: An Image Processing Prototyping Environment 7

Each script has a Help string which can be displayed by calling help scriptname, where
scriptname is the name of the script you want to query (eg. help Mean). Each help string consists
of three components: the name of the script, a description of the script, and a list of parameters
(with default values indicated in brackets). If no default parameter value is shown you are required
to always provide a value. For example:

> help CurvatureFlow
===== Help: CurvatureFlow =====
Performs denoising of the input image using curvature driven flow.
---- Parameters ----
(double) TimeStep = the finite difference time step. (0.05)
(int) Iterations = the number of iterations. (2)

Once you have found your desired script (with dir) and you have read the help information (with
help), you are ready to invoke the script. To invoke a script type the name followed by the param-
eters you wish to specify (unspecified parameters will assume their default value). By default the
script input is the currently selected image. For example:

> Open "C:/Temp/BrainProtonDensitySlice.png#F2"
> CurvatureFlow TimeStep =0.15 Iterations=8
---- CurvatureFlow: Started at 8:12:04 AM ----
Input=BrainProtonDensitySlice.png
TimeStep =0.15
Iterations=8
Applying CurvatureFlowImageFilter ...Done.
Output=BrainProtonDensitySlice_CurvatureFlow.png
==== CurvatureFlow: Finished at 8:12:04 AM: Completed in 00:00:109 ====

SharpImage: An Image Processing Prototyping Environment 8

4 Examples

In this section we will demonstrate some of SharpImage’s core functionality. It loosely follows the
organisation of the ITK Software Guide.

4.1 Open

An image can be opened by either using a dialog or the script console. To display the dialog select
File >Open >Open Image... (see Figure 1). The dialog can also be displayed by invoking the
Open script with no parameters. To open an image using the Open script, specify the full path and
type separated by a #:

> Open
> Open "C:/Temp/cthead1.png#UC2"
> Open "C:/Temp/cthead1.png#SS2"
> Open "C:/Temp/cthead1.png#F2"
> Open "C:/Temp/VisibleWomanEyeSlice.png#RGBUC2"

4.2 Save

Again, an image can be saved using either a dialog or the script console. To save the image
using the dialog select File >Save As... and specify the path, name, and and pixel type (the
dimensionality and number of components will handled automatically). To save an image using the
Save script, specify the full path and type separated by a #:

> Save "C:/Temp/cthead1.png#UC2"
> Save "C:/Temp/cthead1.png#SS2"
> Save "C:/Temp/cthead1.png#F2"

4.3 Change Properties

It is often desirable to list and/or edit the properties of an image and as such the Properties script
has been provided:

> Properties
Name=C:/Temp/cthead1.png
PixelType=Float
Size=[256, 256]
Spacing=[1.00000, 1.00000]
Origin=[0.00000, 0.00000]
Direction=1 0 0 1
Buffer =248840952
MTime=812

The Name, Spacing, Origin, and Direction properties can also be changed using this script (use
with caution!):

SharpImage: An Image Processing Prototyping Environment 9

> Properties Spacing=itkSpacing (0.5,0.5) Origin=itkPoint (5.0,5.0)
Name=C:/Temp/cthead1.png
PixelType=Float
Size=[256, 256]
*Spacing =[0.50000, 0.50000]
*Origin=[5.00000, 5.00000]
Direction=1 0 0 1
Buffer =248840952
MTime=1414

The Rename script is handy for quickly renaming an image (the names of images are important
because they are used as handles for a number of different scripts):

> Rename "Mask1"

4.4 Threshold

Global threshold operations can be very effective for simple image processing tasks. The
BinaryThreshold script sets all pixels in a given range to the given value, both specified using
the command line. There are two user friendly specialisations which allow the range to be spec-
ified using scroll bars: BinaryThresholdWithForm which displays the result as a binary image,
and BinaryThresholdAsLabel which displays the result as a label over the input image (see
Figure 4).

> BinaryThreshold Lower=0 Upper=180
> BinaryThresholdWithForm
> BinaryThresholdAsLabel

The Threshold script leaves unchanged all pixels with intensity values inside the range defined by
the two thresholds. Pixels with values outside this range are assigned the OutsideValue. Again,
there is a user friendly specification allowing the range to the specified using scroll bars:

> Threshold Lower=0 Upper=180 OutsideValue=0
> ThresholdWithForm OutsideValue=0

4.5 Cast

As previously mentioned, SharpImage supports images of different pixel types. By default, the
siGdiSliceRenderer rescales non unsigned char images so that the minimum and maximum
values correspond to [0,255]. Figure 5 depicts the same image (consisting of two circles: left=1,
right=2) displayed as unsigned char and float.

It is common to Cast one type to another and as such a generic script (plus a number of short-hand
aliases) have been provided to facilitate this task:

> Cast OutputPixelType=itkPixelType.F
> CastToF
> CastToSS
> CastToUC

SharpImage: An Image Processing Prototyping Environment 10

(a) BinaryThresholdWithForm (b) BinaryThresholdAsLabel

Figure 4: Binary thresholding: BinaryThresholdWithForm displays the result as a binary image,
whereas BinaryThresholdAsLabel displays the result as a label.

Figure 5: This figure depicts the same image with unsigned char pixel type (left) and float pixel
type (right). The float image is automatically rescaled to consume the entire [0,255] range. The
unsigned char image must be explicitly rescaled using the RescaleIntenityToUC command.

4.6 Intensity Mapping

The RescaleIntensity script linearly scales the pixel values in such a way that the minimum and
maximum values of the input are mapped to minimum and maximum values provided by the user:

> RescaleIntensity OutputMinimum=0 OutputMaximum =100
> RescaleIntensity OutputMaximum =100.0 OutputPixelType=itkPixelType.F

A number of aliases exist for quickly rescaling an image to use an appropriate range of a given pixel
type. RescaleIntensityToF rescales the image to [0.0,1.0], RescaleIntensityToSS rescales
the image to [-32768,32767], and RescaleIntensityToUC rescales the image to [0,255]:

SharpImage: An Image Processing Prototyping Environment 11

> RescaleIntensityToF
> RescaleIntensityToSS
> RescaleIntensityToUC

The ShiftScale script applies a linear intensity mapping by firstly adding Shift to each pixel, then
multiplying each pixel by Scale:

> ShiftScale Shift=100.0 Scale=0.5

The Sigmoid script applies a non-linear intensity mapping useful for focusing attention on a partic-
ular set of values and progressively attenuating the values outside that range:

> Sigmoid Alpha=10 Beta=170 OutputMinimum=10 OutputMaximum =240

Figure 6: This figure depicts the result of applying the Sigmoid script.

4.7 Gradients

Gradient vectors are useful for a variety of image processing tasks, including simple edge detection.
SharpImage provides a number scripts for computing the gradient and gradient magnitude. Gradient
scripts produce multi-component (vector) images, of which a single channel is shown at one time.
To change the channel, select the renderer and type 0, 1, or 2.

> Gradient
> GradientRecursiveGaussian Sigma=1.0

SharpImage: An Image Processing Prototyping Environment 12

A number of scripts are also provided to computing the gradient magnitude, a useful edge mea-
sure:

> GradientMagnitude
> GradientMagnitudeRecursiveGaussian Sigma=1.0

Figure 7: This figure depicts the results of applying the GradientRecursiveGaussian and
GradientMagnitudeRecursiveGaussian scripts with Sigma=1.0.

4.8 Mathematical Morphology

Morphological filtering is a powerful technique which analyses images based on shape using a
structuring element. ITK currently provides two streams of morphological filters: those for binary
and those for greyscale images. SharpImage brings both of these together into single scripts us-
ing the Operation parameter: if Operation="Binary" then the binary variant is used, else if
Operation="Grayscale" the greyscale variant is used (the default is always greyscale). The
structuring element can be specified using the itkFlatStructuringElement static constructors:
Ball, Box, Annulus. The default type is the Ball (circle in 2-D and sphere in 3-D).

> MorphologicalErode
> MorphologicalDilate
> MorphologicalOpen Operation="Binary"
> MorphologicalClose Operation="Binary"
> MorphologicalErode KernelRadius=itkSize(3,3)
> MorphologicalDilate Kernel=itkFlatStructuringElement.Ball(itkSize(2,2))
> MorphologicalOpen Kernel=itkFlatStructuringElement.Box(itkSize(2,2))
> MorphologicalClose Kernel=itkFlatStructuringElement.Annulus(itkSize(4,4),2)

SharpImage: An Image Processing Prototyping Environment 13

Figure 8: This figure depicts different morphological operations.

4.9 Noise

SharpImage has a number of scripts for both adding and suppressing noise. Gavin Baker has
implemented additive Gaussian and impulse noise scripts for ITK (see his webpage) which are
available using the AdditiveGaussianNoise and ImpulseNoise scripts:

> AdditiveGaussianNoise Mean=0.0 StdDev=20.0
> ImpulseNoise Probability =0.1

A number of naı̈ve, neighbourhood, and edge-preserving denoising scripts are also provided:

> SmoothingRecursiveGaussian Sigma=1.0
> Mean Radius=2
> Median Radius=2
> GradientAnisotropicDiffusion Conductance =1.5 Iterations=4
> CurvatureAnisotropicDiffusion Conductance =1.5 Iterations=4
> Bilateral DomainSigma =[5.0,5.0] RangeSigma =5.0
> CurvatureFlow TimeStep =0.15 Iterations=4

4.10 Pixel Math

Per-pixel operations perform logical or mathematical operations on each pixel in an image. ITK im-
plements nearly twenty different pixel math operations which have been drawn together in SharpIm-
age using two simple scripts: UnaryPixelMath and BinaryPixelMath. As their names suggest,
UnaryPixelMath facilitates operations on single images, while BinaryPixelMath operates on
two images. The UnaryPixelMath script supports the following operations: Abs, Exp, Log, Not,
Negate, Sqrt, or Square. The BinaryPixelMath script supports the following operations: Add,
Sub, Mult, Div, And, Or, Xor, Max, Min, Mask, or SquaredDiff.

The following example masks an image using a binary image:

http://www.cs.mu.oz.au/~gavinb/projects/itk.php

SharpImage: An Image Processing Prototyping Environment 14

Figure 9: This figure depicts results from adding noise to an image.

Figure 10: This figure depicts results from the Median, GradientAnisotropicDiffusion, and
CurvatureFlow denoising filters.

> Open "C:/Temp/cthead1.png#F2"
> Open "C:/Temp/mask1.png#F2"
> BinaryPixelMath Operation="Mask" Input1="cthead" Input2="mask"

SharpImage: An Image Processing Prototyping Environment 15

(a) Input1 (b) Input2 (c) Result

Figure 11: A demonstration of the BinaryPixelMath Mask operation.

4.11 Region growing

The ConnectedThreshold script performs region growing from a seed specified by clicking on the
input image:

> ConnectedThreshold Lower=400 Upper=2000

Figure 12: ConnectedThreshold region growing from a user specified seed point.

4.12 Active Contours

SharpImage provides a FastMarching script to compute the positive motion (expansion) of an
active contour. The FastMarchingImageFilter example given in the ITK Software Guide [6,

SharpImage: An Image Processing Prototyping Environment 16

Sec. 9.3.1] can be reproduced using six simple commands (plus the seed point specified using the
mouse) (see Figure 13):

> Open "C:/Temp/BrainProtonDensitySlice.png#F2"
> CurvatureAnisotropicDiffusion TimeStep =0.125 Iterations=5 Conductance =9.0
> GradientMagnitudeRecursiveGaussian Sigma=1.0
> Sigmoid OutputMinimum =0.0 OutputMaximum =1.0 Alpha=-0.3 Beta=2.0
> FastMarching
Added trial point=[56, 92]
> BinaryThreshold Lower=0.0 Upper=100.0
> Select "Brain"
> AddLabel "Threshold"

(a) Input (b) Smooth (c) Gradient (d) Sigmoid

(e) Arrival (f) Threshold (g) Label

Figure 13: The FastMarchingImageFilter example from the ITK Software Guide [6, Sec. 9.3.1]
can be reproduced using six simple commands.

An interactive script for computing an edge-based speed image for 2-D or 3-D images is also pro-
vided in LevelSetSpeed (see Figure 14):

> Open "C:/Temp/BrainProtonDensitySlice.png#F2"
> LevelSetSpeed OutputMinimum=-1.0 OutputMaximum =1.0

4.13 Volume Rendering

The siVolumeRenderer implements 3-D texture mapping using fragment shaders written in
OpenGL Shading Language (GLSL). It expects at least one input image (a ‘value’ image), but also
supports gradient / gradient magnitude images. To invoke the renderer using a given value and
gradient magnitude image use the VolumeRender script in the following manner:

SharpImage: An Image Processing Prototyping Environment 17

Figure 14: The LevelSetSpeed script in action.

> Open "C:/Temp/engine.mhd#UC3"
> GradientMagnitude
> VolumeRender Value="engine" Gradient="Magnitude"

Once the script has finished, a new siVolumeRenderer is displayed along with a number of forms
for specifying the renderer properties and transfer function. A histogram can be generated for the
transfer function editor background using the ValueEdgeHistogram script:
> Open "C:/Temp/engine.mhd#F3"
> GradientMagnitude
> ValueEdgeHistogram Value="engine" Edge="Magnitude"

To change the fragment shader select the “Renderer Editor” tab, select the “FragmentProgramPath”
property, click the “...” button and navigate the desired fragment shader (a vertex shader of the
same name but different extension must also exist in the same directory). A number of existing
fragment shaders are provided, but custom shaders can be easily added for prototyping illustration
techniques.

The simplest shader is shader-v-copy.frag which copies the image value to the fragment and is
useful for maximum intensity projections (see Figure 15(b)):

25 // Interpolate images
26 float value = texture3D(sam3Tex1 , pos3Tex1).a;
30
31 // Set color
32 gl_FragColor = vec4(value , value , value , 1.0);

Typically a ‘transfer function’ is employed to transfer opacity and colour information to each potential
pixel (‘fragment’). A simple transfer function is realised in shader-v.frag by indexing a 1-D lookup

SharpImage: An Image Processing Prototyping Environment 18

(a) Oblique Section (b) Minimum Intensity Projection (c) Value

(d) Value-Magnitude (e) Phong (f) Silhouette

Figure 15: Results from different fragment shaders and renderer settings.

table (LUT) using only the image value (see Figure 15(c)):

25 // Interpolate images
26 float value = texture3D(sam3Tex1 , pos3Tex1).a;
27
28 // Interpolate transfer function
29 vec3 pos3Tf = vec3(value , 0.0, 0.0);
30 vec4 val4Tf = texture3D(sam3Tex0 , pos3Tf);
34
35 // Set color
36 gl_FragColor = val4Tf;

A more complex transfer function is realised in shader-vm-noadjust.frag by indexing a 2-D LUT
using image value and gradient magnitude [7] (see Figure 15(d)):

26 // Interpolate images
27 float value = texture3D(sam3Tex1 , pos3Tex1).a;
28 float gradmag = texture3D(sam3Tex2 , pos3Tex2).a;
29
30 // Interpolate transfer function
31 vec3 pos3Tf = vec3(value , 1.0-gradmag , 0.0);

SharpImage: An Image Processing Prototyping Environment 19

32 vec4 val4Tf = texture3D(sam3Tex0 , pos3Tf);
36
37 // Set color
38 gl_FragColor = val4Tf;

Unfortunately, as shown in Figure 16, this approach does not cater for changes in the sampling rate
(the ratio of the distance between the interpolating proxy geometry). Weiler et al. [12] showed that
the transparency of the fragment (α0) must be adjusted according the sampling rate (rs) as follows:

αk = 1− [1−α0]
1
rs (1)

This adjustment is implemented in shader-vm.frag:

25 // Adjust the alpha value for the current sampling rate
26 float adjustAlphaForSamplingRate(float a)
27 {
28 return 1.0 - pow(1.0 - a, 1.0 / fSamplingRate);
29 }

The previous fragment shader implements what is sometimes called ‘gradient magnitude opac-
ity modulation’. However, true direct volume rendering typically implies the use of an illumination
model, such as the Phong reflection model. The Phong model is a simplified local model consisting
of three reflection terms (ambient, diffuse, and specular):

I = kaia + ∑
lights

[
kdid(N ·L)+ ksis(R ·V)n

]
(2)

where I is the resultant light intensity, kx are constants, ix are the light intensities of the respective
components, N is the normal vector, L the vector to the light source, R the reflection vector, V the
viewing vector, and n the specular exponent. For our implementation in shader-vm-phong.frag1

(see Figure 15(e)) we compute the normal using an online central difference method, assume unity
constants, and use a single light positioned along the viewing vector (ie. V = L):

32 // Compute the gradient using central differences
33 vec4 gradientFromCentralDifferences()
34 {
35 vec4 gradient = vec4(0.0);
36 for (int i=0; i<3; i++)
37 {
38 vec3 pos3L = vec3(pos3Tex1); pos3L[i] -= fNormalOffset;
39 vec3 pos3R = vec3(pos3Tex1); pos3R[i] += fNormalOffset;
40 float valL = texture3D(sam3Tex1 , pos3L).a;
41 float valR = texture3D(sam3Tex1 , pos3R).a;
42 gradient[i] = 0.5*valL - 0.5*valR;
43 }
44 return gradient;

1This shader is written for readability rather than speed or size. If you have an older graphics card we recommend
using shader-vm-phong-simple.frag.

SharpImage: An Image Processing Prototyping Environment 20

45 }
46
47 // Apply the Phong lighting model
48 vec4 phong(vec4 vec4N , gl_LightSourceParameters light)
49 {
50 // Compute light/view vector
51 vec4 vec4L = vec4(0.0, 0.0, -1.0, 0.0);
52 vec4L *= gl_ModelViewMatrix;
53 vec4L = normalize(vec4(vec4L.x, vec4L.y, -vec4L.z, 0.0));
54
55 // Compute terms
56 float fLdotN = dot(vec4L , vec4N);
57 vec4 vec4R = normalize((2.0 * fLdotN * vec4N) - vec4L);
58 float fRdotL = abs(dot(vec4R , vec4L));
59
60 // Compute contributions
61 vec4 vec4A = light.ambient;
62 vec4 vec4D = light.diffuse * abs(fLdotN);
63 vec4 vec4S = light.specular * pow(fRdotL , light.spotExponent);
64
65 // Add and return
66 return (vec4A + vec4D + vec4S);
67 }
68
69 void main()
70 {
71 // ...
85
86 // Compute the normal
87 vec4 vec4G = gradientFromCentralDifferences();
88 vec4 vec4N = normalize(vec4G);
89
90 // Apply phong lighting
91 gl_FragColor = val4Tf * phong(vec4N , gl_LightSource[0]);
92 }

Rheingans and Ebert [11] introduced a number of volume illustration techniques for enhancing
boundaries, silhouettes, and regions. Some of these are realised in shader-vm-enhance.frag
(see Figure 15(f)):

50 // Compute the normal dot viewing vector
51 float computeNdotV(vec4 vec4N)
52 {
53 vec4 vec4V = vec4(0.0, 0.0, -1.0, 0.0);
54 vec4V *= gl_ModelViewMatrix;
55 vec4V = normalize(vec4(vec4V.x, vec4V.y, -vec4V.z, 0.0));
56 return dot(vec4N , vec4V);
57 }
58
59 // Compute the silhouette enhancement
60 float enhanceSilhouette(vec4 vec4N)
61 {
62 if (fEnhanceFactor1 <= 0.0) return 0.0;

SharpImage: An Image Processing Prototyping Environment 21

(a) rs = 0.1 (b) rs = 0.4 (c) rs = 1.6 (d) rs = 6.4

(e) rs = 0.1 (f) rs = 0.4 (g) rs = 1.6 (h) rs = 6.4

Figure 16: A comparison of value-magnitude volume renderings generated with different sampling
rates. First row: no alpha adjustment. Second row: with alpha adjustment.

63 return pow(1.0 - abs(computeNdotV(vec4N)), fEnhanceFactor1);
64 }
65
66 // Compute the boundary enhancement
67 float enhanceBoundary(float value)
68 {
69 if (fEnhanceFactor1 <= 0.0) return 1.0;
70 return pow(value , fEnhanceFactor1);
71 }

4.14 Extending SharpImage

Although SharpImage has a decent collection of image processing scripts (thanks to ITK), its real
strength lies in the ability to be easily extended. To add a new form for use with SharpImage follow
these steps:

1. Open Visual Studio and select File > New Project.

2. Select Windows Application, enter the name and location, and click OK.

3. Right click on the project References, and select Add Reference.... Select the Browse tab,
navigate to the SharpImage folder, select SharpImage.exe, and click OK.

SharpImage: An Image Processing Prototyping Environment 22

4. In the Solution Explorer, right click on the project name and select Properties. Change
the Output type from Windows Application to Class Library. Save the project and close the
Properties window.

5. In the Solution Explorer, right click on Program.cs and select Delete.

6. In the Solution Explorer, right click Form1.cs and select Rename. Enter the desired name,
such as siFormCustom1.cs.

7. In the Solution Explorer, right click on the form and select View Code. Change the name of
the form in the class declaration and make it extend SharpImage.Forms.siFormTool. Also
change the default constructor name.

8. In the Solution Explorer, right click on the form and select View Designer. Edit the form as
desired. For this example we changed the form text in the Properties explorer and added a
check box.

9. In the Solution Explorer, right click on the form, select View Code, and add code as de-
sired. For this example we added a property named RunFilter which returns the checkbox
Checked property.

10. Select the build type and compile the library.

11. Create a Scripting/Custom folder in the SharpImage installation directory. Copy the class
library to this folder.

12. Create a script in this folder which uses the form (see below).

13. Invoke the script from SharpImage.

1 #==
4 # Module: Custom1.py
17 #==
18
19 # Import the base script class
20 import ImageToImageScript
21 from ImageToImageScript import *
22
23 # Add reference and import required libraries
24 clr.AddReference("ManagedITK.Image.Cast")
25 clr.AddReference("SharpImage.Extension.Custom1")
26 from itk import *
27 from SharpImage.Extension.Custom1 import *
28
29 class Custom1Script(ImageToImageScriptObject):
30 # ---
31 Name = "Custom1"
32 Help = """Insight Journal custom example.
33 A form is displayed asking if the filter should be run."""
34 Parameters = """None"""
35 Form = None
36 RunFilter = False
37 # ---
38
39 def Run(self):
40 """ Run the script. """
41 self.Initialise()

SharpImage: An Image Processing Prototyping Environment 23

42
43 def Initialise(self):
44 """ Initialise the environment for running this script. """
46
47 # ...
54
55 # Show the form
56 self.Form = siFormCustom1()
57 self.Form.Continue += self.Continue
58 self.Form.Cancel += self.Cancel
59 self.ParentApplication.AddTool(self.Form)
74
75 def ThreadedDoWork(self):
76 """ Perform the main functions of the script on a background thread. """
77 try:
78 # Setup
79 self.ParentApplication.SetApplicationAsWorking()
80
81 # Check if we are running the filter
82 if (self.Form.RunFilter):
83 # Run the filter
84 # ...
94 else:
95 # Don’t run the filter
96 #...

101
102 except Exception , ex:
103 self.HandleException(ex)
104 self.FinishedWork(False)
105 self.Finalise()

5 Conclusion

This paper described an image processing prototyping environment based on ITK. It currently sup-
ports two renderers (a slice renderer and a volume renderer) and allows various scripts to be called
from a command console. New scripts and forms can be added to the environment at run-time
very easily. We have found the environment useful for a range of image processing tasks including
prototyping volume illustrations. For suggestions or bugs, feel free to contact us2.

2Corresponding author: Dan Mueller: d.mueller@qut.edu.au or dan.muel@gmail.com.

mailto:d.mueller@qut.edu.au
mailto:dan.muel@gmail.com

SharpImage: An Image Processing Prototyping Environment 24

(a) Create a new project (b) Add reference

(c) Edit project properties (d) Design the form

(e) Invoke the script

Figure 17: Steps for extending SharpImage.

SharpImage: An Image Processing Prototyping Environment 25

References

[1] MeVisLab. Technical report, MeVis, 2007, Available online:
http://www.mevislab.de/index.php?id=mevislabmain. 1

[2] SCIRun. Technical report, Scientific Computing and Imaging Institute, University of Utah, 2007,
Available online: http://software.sci.utah.edu/scirun.html. 1

[3] Slicer 3.0. Technical report, NA-MIC, 2007, Available online:
http://www.na-mic.org/Wiki/index.php/Slicer3. 1

[4] VolView 2.0 Users Guide. Technical report, Kitware, Inc, 2007, Available online:
http://www.volview.com/VolView/VolView20Help.pdf. 1

[5] V. Chu and G. Hamarneh. MATITK: Extending MATLAB with ITK. The Insight Journal, Decem-
ber, 2005. 1

[6] L. Ibanez, W. Schroeder, L. Ng, and J. Cates. The ITK Software Guide: The Insight Segmen-
tation and Registration Toolkit. Technical report, Kitware, Inc, 2007. 4.12, 13

[7] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer functions for interactive
volume rendering. IEEE Transactions on Visualization and Computer Graphics, 8(3):270–285,
2002. 2.3, 4.13

[8] G. Lehmann, Z. Pincus, and B. Regrain. WrapITK: Enhanced languages support for the Insight
Toolkit. The Insight Journal, June, 2006. 1

[9] D. Mueller. ManagedITK: .NET wrappers for ITK. The Insight Journal, June, 2007. 1

[10] C. Rezk-Salama. Volume rendering techniques for general purpose graphics hardware. PhD
dissertation, University Erlangen-Nuremberg, 2001. 2.3

[11] P. Rheingans and D. Ebert. Volume illustration: nonphotorealistic rendering of volume models.
IEEE Transactions on Visualization and Computer Graphics, 7(3):253–264, 2001. 4.13

[12] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl. Level-of-detail volume
rendering via 3D textures. In Volume Visualization and Graphics, pages 147–152. IEEE, 2000.
4.13

[13] T. Yoo, M. Ackerman, W. Lorensen, W. Schroeder, V. Chalana, S. Aylward, D. Metaxes, and
R. Whitaker. Engineering and algorithm design for an image processing API: A technical report
on ITK - the Insight Toolkit. Proc. of Medicine Meets Virtual Reality, pages 586–592, 2002. 1

http://www.mevislab.de/index.php?id=mevislabmain
http://software.sci.utah.edu/scirun.html
http://www.na-mic.org/Wiki/index.php/Slicer3
http://www.volview.com/VolView/VolView20Help.pdf

	1 Introduction
	2 Design
	2.1 Framework
	2.2 Scripts
	2.3 Renderers

	3 Quick Start Guide
	3.1 Installation
	3.2 Usage

	4 Examples
	4.1 Open
	4.2 Save
	4.3 Change Properties
	4.4 Threshold
	4.5 Cast
	4.6 Intensity Mapping
	4.7 Gradients
	4.8 Mathematical Morphology
	4.9 Noise
	4.10 Pixel Math
	4.11 Region growing
	4.12 Active Contours
	4.13 Volume Rendering
	4.14 Extending SharpImage

	5 Conclusion

