
Tagged Volume Rendering of the Heart:
A Case Study

Release 1.0

Dan Mueller1

July 6, 2007
1Queensland University of Technology, Brisbane, Australia

Abstract

This is a companion paper describing the process and parameters for tagged volume rendering
of the heart. We firstly review the relevant concepts and consider the problem of visualising
the coronary arteries from computed tomography angiography (CTA) images. We then discuss
the implementation using the SharpImage prototyping environment. Finally, we list the set of
commands capable of reproducing our results using the accompanying dataset.

Keywords: tagged volume rendering, heart, coronary arteries, ITK, SharpImage

Contents

1 Introduction 2

2 Implementation 3
2.1 Vessel Segmentation . 3
2.2 Fragment Shader . 5

3 Commands 7
3.1 Orient and Resize . 7
3.2 Speed Function . 7
3.3 Initial Contour . 8
3.4 Fast Marching . 8
3.5 Vesselness . 9
3.6 Combine Tags . 9
3.7 Histogram . 9
3.8 Volume Render . 9

4 Results 10

Tagged Volume Rendering of the Heart: A Case Study 2

5 Conclusion 11

1 Introduction

For diagnostic and treatment planning purposes, radiologists and surgeons require means to visu-
alise the coronary arteries from computed tomography angiography (CTA) images. However, this
task is non-trivial for various reasons: (a) unwanted structures (such as the thoracic cage) clut-
ter the regions of interest; (b) the contrast agent highlights the coronary arteries (as desired), but
also portions of the ventricles, atria, aorta, and pulmonary arteries, and (c) the coronary arteries
can exhibit high-intensity calcification artefacts. Clinicians currently have a number of tools at their
disposal, including: thin slab maximum intensity projection [1], curved planar reformatting [3], and
direct volume rendering (DVR).

In the case of direct volume rendering, the dataset is segmented during the rendering process (‘on-
line’) via a lookup table (‘transfer function’). Various online segmentation algorithms for DVR have
been discussed in the literature [8, 4, 12]. Kniss et al. [4] advocated the use of two dimensional
transfer functions dependent on pixel value and gradient magnitude (termed ‘value-magnitude’
transfer functions), in which the user interactively specifies the function using a number of widgets.
This method is simple, fast and effective for simple datasets; yet, it is insufficient for delineating
objects of interest sharing similar characteristics. Tzeng et al. [12] proposed an approach using an
online machine learning algorithm (such as an artificial neural network or support vector machine),
with the current pixel value, gradient magnitude, location, and neighbourhood values as inputs. Be-
cause of their online nature, both of these methods are constrained by the graphics hardware on
which they are implemented.

A number of more recent methods combine both offline and online segmentation. Hadwiger et al.
[2] proposed tagged volume rendering which uses a number of a priori segmented binary masks
(‘tags’), each assigned separate transfer functions. Kniss et al. [5] introduced a probabilistic method
which decouples classification from colour-mapping, simplifying the transfer function interface. We-
ber et al. [13] proposed the use of contour-trees for classifying objects based on topology (the
trees are computed and simplified offline before being uploaded the the graphics hardware). Of
these methods, tagged volume rendering is the most flexible as it does not restrict the choice of
segmentation algorithm.

In this paper we apply tagged volume rendering to the problem of visualising the coronary arteries.
We utilise Hessian-based line filters for segmenting the coronary arteries [9] and use the Fast
Marching active contour method [10] for segmenting the pericardial cavity. A suitable speed function
is presented for controlling the expansion of the active contour. The exact set of SharpImage [6]
commands for reproducing the results on the accompanying dataset are given. For your reference, a
pre-print of the main MICCAI paper can be found here: http://eprints.qut.edu.au/archive/00008421/

http://eprints.qut.edu.au/archive/00008421/

Tagged Volume Rendering of the Heart: A Case Study 3

2 Implementation

This section details the implementation of the method. It requires built versions of ITK 3.2, Man-
agedITK 3.2.0.3 [7], and SharpImage 0.9.2 [6]. Before tackling the case study, we must extend
the SharpImage environment to handle vessel segmentation and implement a fragment shader for
tagged transfer functions.

2.1 Vessel Segmentation

SharpImage does not have an explicit vessel segmentation command, however it is quite easy to
add such a script. The first step is to wrap the required filters using a ManagedITK external project
(see source/vesselness/CMakeLists.txt):

1 PROJECT(WrapVesselness)
2
3 # Find required packages
4 FIND_PACKAGE(ITK REQUIRED)
5 FIND_PACKAGE(ManagedITK REQUIRED)
6
7 # Use required packages
8 INCLUDE(${ITK_USE_FILE})
9 INCLUDE(${MANAGED_ITK_USE_FILE})

10
11 # Wrap the project
12 BEGIN_MANAGED_WRAP_EXTERNAL_PROJECT("Filtering" "Vesselness")
13 SET(MANAGED_WRAPPER_OUTPUT "${CMAKE_BINARY_DIR}")
14 END_MANAGED_WRAP_EXTERNAL_PROJECT()

We need to wrap two filters, itkHessianRecursiveGaussianImageFilter and
itkHessian3DToVesselnessMeasureImageFilter:

1 # Begin the wrapping
2 WRAP_CLASS("itk::HessianRecursiveGaussianImageFilter")
3
4 # Wrap the class for INT and REAL types
5 WRAP_IMAGE_FILTER_INT(1)
6 WRAP_IMAGE_FILTER_REAL(1)
7
8 # Wrap the Sigma property
9 BEGIN_MANAGED_PROPERTY("Sigma" SET)

10 SET(MANAGED_PROPERTY_SUMMARY "Set the Gaussian variance (in image spacing).")
11 SET(MANAGED_PROPERTY_TYPE "double")
12 SET(MANAGED_PROPERTY_SET_BODY "m_PointerToNative ->SetSigma(value);")
13 END_MANAGED_PROPERTY()
14
15 # Wrap the NormalizeAcrossScale property
16 BEGIN_MANAGED_PROPERTY("NormalizeAcrossScale" GETSET)
17 SET(MANAGED_PROPERTY_SUMMARY "Get/set whether normalization should occur.")
18 SET(MANAGED_PROPERTY_TYPE "bool")
19 SET(MANAGED_PROPERTY_GET_BODY "return m_PointerToNative ->GetNormalizeAcrossScale();")
20 SET(MANAGED_PROPERTY_SET_BODY "m_PointerToNative ->SetNormalizeAcrossScale(value);")
21 END_MANAGED_PROPERTY()
22
23 # End the wrapping
24 END_WRAP_CLASS()

Tagged Volume Rendering of the Heart: A Case Study 4

1 # Begin the wrapping
2 WRAP_CLASS("itk::Hessian3DToVesselnessMeasureImageFilter")
3
4 # Wrap the template arguments
5 WRAP_TEMPLATE("${ITKM_F}" "${ITKT_F}")
6
7 # Wrap the Alpha1 property
8 BEGIN_MANAGED_PROPERTY("Alpha1" GETSET)
9 SET(MANAGED_PROPERTY_SUMMARY "Get/set alpha1.")

10 SET(MANAGED_PROPERTY_TYPE "double")
11 SET(MANAGED_PROPERTY_GET_BODY "return m_PointerToNative ->GetAlpha1();")
12 SET(MANAGED_PROPERTY_SET_BODY "m_PointerToNative ->SetAlpha1(value);")
13 END_MANAGED_PROPERTY()
14
15 # Wrap the Alpha2 property
16 BEGIN_MANAGED_PROPERTY("Alpha2" GETSET)
17 SET(MANAGED_PROPERTY_SUMMARY "Get/set alpha2.")
18 SET(MANAGED_PROPERTY_TYPE "double")
19 SET(MANAGED_PROPERTY_GET_BODY "return m_PointerToNative ->GetAlpha2();")
20 SET(MANAGED_PROPERTY_SET_BODY "m_PointerToNative ->SetAlpha2(value);")
21 END_MANAGED_PROPERTY()
22
23 # End the wrapping
24 END_WRAP_CLASS()

We point CMake at this folder, choose a build directory, and configure the project for Visual Studio
81. ManagedITK should create the relevant files, including a FinishCMake.bat file which must be
run before opening the solution file and compiling the project. The output will be a single executable
ManagedITK.Filtering.Vesselness.dll.

The next step is to create a Python script for use with SharpImage (see
source/vesselness/Vesselness.py):

1 #==
4 # Module: Vesselness.py
17 #==
18
19 # Import the base script class
20 import ImageToImageScript
21 from ImageToImageScript import *
22
23 # Add CLR reference and import required libraries
24 clr.AddReference("ManagedITK.Filtering.Vesselness")
25 from itk import *
26
27 class VesselnessScript(ImageToImageScriptObject):
28 # ---
29 Name = "Vesselness"
30 Help = """Implements a Hessian -based line enhancement filter for segmenting\r\
31 tubular objects. The input image must be a 3-D image."""
36 Sigma = 1.0
37 Alpha1 = 0.5
38 Alpha2 = 2.0
39 NormalizeAcrossScale = False
40 # ---
54
55 def ThreadedDoWork(self):
56 """ Perform the main functions of the script on a background thread. """
57 try:
58 # Start

1We have not tried Visual Studio Express Edition, so there may be issues if you are using that specific compiler.

Tagged Volume Rendering of the Heart: A Case Study 5

59 self.StartedWork()
60 self.WriteInputName()
61
62 # Compute hessian
63 filterHessian = itkHessianRecursiveGaussianImageFilter.New(self.Input)
64 self.AddEventHandlersToProcessObject(filterHessian)
65 filterHessian.SetInput(self.Input)
66 filterHessian.Sigma = self.Sigma
67 filterHessian.NormalizeAcrossScale = self.NormalizeAcrossScale
70
71 # Compute vesselness
72 filterVesselness = itkHessian3DToVesselnessMeasureImageFilter.New(itkPixelType.F)
73 self.AddEventHandlersToProcessObject(filterVesselness)
74 filterVesselness.SetInput(filterHessian.GetOutput())
75 filterVesselness.Alpha1 = self.Alpha1
76 filterVesselness.Alpha2 = self.Alpha2
79 filterVesselness.UpdateLargestPossibleRegion()
80 filterVesselness.GetOutput(self.Output)
81
82 # Clean up and finish
83 self.DisconnectInputAndOutput()
84 self.DisposeOfObject(filterHessian)
85 self.DisposeOfObject(filterVesselness)
86 self.WriteOutputName()
87 self.FinishedWork(True)
88
89 except Exception , ex:
90 self.HandleException(ex)
91 self.FinishedWork(False)
92 self.Finalise()

These files (ManagedITK.Filtering.Vesselness.dll and Vesselness.py) must be
copied to the SharpImage Scripting folder (we recommend creating a subfolder called
SharpImage/Scripting/Custom or similar). A pre-compiled version of the Man-
agedITK assembly is provided with this article if you wish to bypass this step (see
results/ManagedITK.Filtering.Vesselness.dll).

2.2 Fragment Shader

We implement a derivation of the tagged volume rendering method described by Hadwiger et al.
[2]. In their original method tags represent exact objects, which requires tri-linear interpolation and
complex boundary filtering to avoid artefacts and improve resolution. Our application allows us to
make a different assumption: a tag is a mask guaranteeing to include structures of interest, but not
exactly delineate them. We can therefore use nearest neighbour interpolation and a stack of value-
magnitude transfer functions to refine the structures inside the tags (ie. a 3-D texture, similar to
Svakhine et al. [11, Sec. 3]). The tagged transfer function is implemented using OpenGL Shading
Language (GLSL) (see source/fragment-shader/shader-vmt-phong.frag):

1 //===
4 // Module: shader-vmt-phong.frag
17 //===
18 uniform sampler3D sam3Tex0; // Sampler for transfer function
19 uniform sampler3D sam3Tex1; // Sampler for value image
20 uniform sampler3D sam3Tex2; // Sampler for gradient image
21 uniform sampler3D sam3Tex3; // Sampler for tags image
22 varying vec3 pos3Tex1; // Current coord of value image

Tagged Volume Rendering of the Heart: A Case Study 6

23 varying vec3 pos3Tex2; // Current coord of gradient image
24 varying vec3 pos3Tex3; // Current coord of tags image
96
97 void main()
98 {
99 // Interpolate images
100 float value = vec4(texture3D(sam3Tex1 , pos3Tex1)).a;
101 float gradmag = vec4(texture3D(sam3Tex2 , pos3Tex2)).a;
102 float tags = vec4(texture3D(sam3Tex3 , pos3Tex3)).a;
103
104 // Interpolate transfer function
105 const float fNumLayers = 4.0;
106 vec3 pos3TfAll = vec3(value , 1.0-gradmag , 0.0);
107 vec3 pos3TfTag1 = vec3(value , 1.0-gradmag , 1.0/(fNumLayers -1.0));
108 vec3 pos3TfTag2 = vec3(value , 1.0-gradmag , 2.0/(fNumLayers -1.0));
109 vec4 val4TfAll = texture3D(sam3Tex0 , pos3TfAll);
110 vec4 val4TfTag1 = texture3D(sam3Tex0 , pos3TfTag1);
111 vec4 val4TfTag2 = texture3D(sam3Tex0 , pos3TfTag2);
112
113 // Adjust alpha for sampling rate
114 val4TfAll.a = adjustAlphaForSamplingRate(val4TfAll.a);
115 val4TfTag1.a = adjustAlphaForSamplingRate(val4TfTag1.a);
116 val4TfTag2.a = adjustAlphaForSamplingRate(val4TfTag2.a);
117
118 // Mix tags
119 bool light , enhance;
120 vec4 val4Mix;
121 if (val4TfAll.a == 0 && tags > 0.5)
122 {
123 // Tag 2
124 val4Mix = val4TfTag2;
125 enhance=true; light=true;
126 if (val4TfTag2.a <= 0.0) discard;
127 }
128 else if (val4TfAll.a == 0 && tags > 0.25)
129 {
130 // Tag 1
131 val4Mix = val4TfTag1;
132 enhance=true; light=true;
133 if (val4TfTag1.a <= 0.0) discard;
134 }
135 else
136 {
137 // All
138 val4Mix = val4TfAll;
139 enhance=true; light=true;
140 if (val4TfAll.a <= 0.0) discard;
141 }
142
143 // Compute the normal
144 vec4 vec4G = gradientFromCentralDifferences();
145 vec4 vec4N = normalize(vec4G);
155
156 // Apply lighting
157 if (light)
158 gl_FragColor = val4Mix * phong(vec4N , gl_LightSource[0]);
159 else
160 gl_FragColor = val4Mix;
161 }

Tagged Volume Rendering of the Heart: A Case Study 7

3 Commands

This section lists the SharpImage commands required to reproduce our results. You will need a
good desktop computer with at least 2 GB RAM and a recent graphics card with at least 512 MB
VRAM (you will receive memory allocation errors otherwise). For this experiment we used an Intel
Pentium D, 2×3.0 GHz processors, 2 GB RAM, NVIDIA GeForce 8800 GTX, 768 MB VRAM. We
assume the data has been unzipped to C:/Temp, along with source/commands/A-SPHERES.txt.
The full list of commands can be found in source/commands/commands.txt.

3.1 Orient and Resize

Because our data came from various sources, we found it desirable to orient the images to the
same anatomical position. Much of the processing is undertaken on subsampled images, so we
also resize the image at this point.

2 > Open "C:/Temp/A.mhd#SS3"
3 > Orient Given="RPI" Desired="ASL"
4 > Properties Origin=itkPoint(0,0,0)
5 > Save "C:/Temp/A-ASL.mhd"
6 > CastToF
7 > Resize OutputSize=itkSize(256,256,256) Interpolator="Linear"
8 > Save "C:/Temp/A-ASL-SMALL.mhd"
9 > Close

3.2 Speed Function

We now compute the edge-based speed function:

12 > Open "C:/Temp/A-ASL-SMALL.mhd#F3"
13 > CurvatureFlow TimeStep=0.1 Iterations=10
14 > Threshold Lower=-2000 Upper=100 OutsideValue =100
15 > ConnectedThreshold Lower=60 Upper=100
17 > Rename "Sternum"
18 > BinaryPixelMath Operation="Add" Input1="Threshold" Input2="Sternum"
19 > LevelSetSpeed OutputMinimum =0.0
28 > Save "C:/Temp/A-ASL-SMALL -SPEED.mhd"
29 > Close

The seed for the region growing can be anywhere in the sternum (we used [50, 90, 100]) and the
parameters for the speed function were as follows:

Gaussian Normalize=False
Gaussian Sigma=0.5
Sigmoid Alpha=-10.0
Sigmoid Beta=10.0

Tagged Volume Rendering of the Heart: A Case Study 8

Threshold Lower=-250.0
Threshold Upper=355.0
Rescale OutputMinimum =000.000
Rescale OutputMaximum =001.000

3.3 Initial Contour

The initial contour could be computed from a set of points or — as we prefer — from a set of spheres
generated using a 3-D interface:

32 > Open "C:/Temp/A-ASL-SMALL.mhd#SS3"
33 > BinaryThreshold Lower=-250 Upper=2000
34 > CastToUC
35 > GenerateMaskFromFile "C:/Temp/A-SPHERES.txt"
36 > BinaryPixelMath Operation="Mask" Input1="Cast" Input2="Mask"
37 > MorphologicalOpen Operation="Binary" KernelRadius=itkSize(4,4,4)
38 > Save "C:/Temp/A-ASL-SMALL -INITIAL.mhd"
39 > Close

Notice the morphological opening which removes unwanted pulmonary vessels. The list of spheres
is defined in source/commands/A-SPHERES.txt:

Sphere: Center=119,062,100 Radius=48
Sphere: Center=095,085,076 Radius=45
Sphere: Center=068,106,055 Radius=25
Sphere: Center=112,018,126 Radius=54
Sphere: Center=102,075,126 Radius=50

3.4 Fast Marching

We now evolve the active contour, extract the contour at a suitable arrival time, and return the tag
to full size:

42 > Open "C:/Temp/A-ASL-SMALL.mhd#SS3"
43 > Open "C:/Temp/A-ASL-SMALL -INITIAL.mhd#UC3"
44 > Open "C:/Temp/A-ASL-SMALL -SPEED.mhd#F3"
45 > FastMarching InitialImage="Initial" StoppingValue =100.0
46 > MorphologicalErode KernelRadius=itkSize(2,2,2)
47 > BinaryThreshold Lower=0 Upper=14
48 > CastToUC
49 > Resize OutputSize=itkSize(512,373,512) Interpolator="Nearest"
50 > Save "C:/Temp/A-ASL-HEART.mhd"
51 > Close

Tagged Volume Rendering of the Heart: A Case Study 9

3.5 Vesselness

We now segment the vessels using the script created earlier:

54 > Open "C:/Temp/A-ASL-SMALL.mhd#F3"
55 > Vesselness Sigma=0.7
56 > ImageRange Minimum=0.0 Maximum =100.0
60 > CastToUC
61 > Resize OutputSize=itkSize(512,373,512) Interpolator="Nearest"
62 > MorphologicalDilate Operation="Binary" KernelRadius=itkSize(2,2,2)
63 > Save "C:/Temp/A-ASL-VESSELS.mhd"
64 > Close

The ImageRange script is required to increase the contrast for selecting the seeds. We specified
two seeds for the region growing: one in the left coronary artery (LCA) [95, 122, 169], and one in
the right coronary artery (RCA) [126, 86, 96].

3.6 Combine Tags

We are now ready to combine our two tags into a single image:

67 > Open "C:/Temp/A-ASL-VESSELS.mhd#UC3"
68 > Open "C:/Temp/A-ASL-HEART.mhd#UC3"
69 > ShiftScale Shift=-150
70 > BinaryPixelMath Operation="Max" Input1="Heart_Shift" Input2="Vessels"
71 > Save "C:/Temp/A-ASL-TAGS.mhd"
72 > Close

3.7 Histogram

This step is purely optional, but it is often desirable to have a histogram to aid transfer function
specification:

75 > Open "C:/Temp/A-ASL-SMALL.mhd#F3"
76 > MorphologicalGradientMagnitude KernelRadius=itkSize(1,1,1)
77 > ValueEdgeHistogram Value="Small" Edge="Magnitude" NumberOfBins =[512,128]
78 > Save "C:/Temp/A-ASL-HISTOGRAM.png"
79 > Close

3.8 Volume Render

The preparation is now complete and we are ready to render the volumes:

Tagged Volume Rendering of the Heart: A Case Study 10

82 > Open "C:/Temp/A-ASL-HISTOGRAM.png#UC2"
83 > Open "C:/Temp/A-ASL-TAGS.mhd#UC3"
84 > Open "C:/Temp/A-ASL.mhd#SS3"
85 > MorphologicalGradientMagnitude KernelRadius=itkSize(1,1,1)
86 > RescaleIntensityToUC
87 > VolumeRender Value="A-ASL.mhd" Gradient="Rescale" Tags="Tags"
88 Tf=siTransferFunction(itkSize(512,128),"All","Heart","Vessels")

Select the “Renderer Editor” and configure the “FragmentProgramPath”. Select the “Transfer func-
tion editor” and right-click on the transfer function to add components similar to those shown in the
results section.

4 Results

(a) Dataset A: Normal (b) Dataset A: Tagged

(c) Dataset C: Normal (d) Dataset C: Tagged

Figure 1: Resultant images using the normal and tagged volume rendering approaches. Dataset A
is provided with this article.

Tagged Volume Rendering of the Heart: A Case Study 11

5 Conclusion

We have presented a method for tagged volume rendering of the heart. The method is comprised
of two stages: offline segmentation of the coronary arteries and pericardial cavity; followed by the
online application of value-magnitude transfer functions to refine the tags. The method was pre-
sented using the SharpImage prototyping environment which made the steps somewhat involved,
but easily reproduced. Feel free to contact us with any questions or suggestions2.

2Corresponding author: Dan Mueller: d.mueller@qut.edu.au or dan.muel@gmail.com.

mailto:d.mueller@qut.edu.au
mailto:dan.muel@gmail.com

Tagged Volume Rendering of the Heart: A Case Study 12

References

[1] E. Fishman, D. Ney, D. Heath, F. Corl, K. Horton, and P. Johnson. Volume rendering versus
maximum intensity projection in CT angiography: What works best, when, and why. Radio-
graphics, 26(3):905–922, 2006. 1

[2] M. Hadwiger, C. Berger, and H. Hauser. High-quality two-level volume rendering of segmented
data sets on consumer graphics hardware. In Visualization, pages 301–308. IEEE, 2003. 1,
2.2

[3] A. Kanitsar, R. Wegenkittl, D. Fleischmann, and M. Gröller. Advanced curved planar reforma-
tion: flattening of vascular structures. In IEEE Visualization, pages 43–50, 2003. 1

[4] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer functions for interactive
volume rendering. IEEE Transactions on Visualization and Computer Graphics, 8(3):270–285,
2002. 1

[5] J. Kniss, R. Van Uitert, A. Stephens, G. Li, and T. Tasdizen. Statistically quantitative volume
visualization. In Visualization, pages 287 – 294. IEEE, 2005. 1

[6] D. Mueller. SharpImage: An ITK prototyping environment. The Insight Journal, December,
2007. 1, 2

[7] Daniel Mueller. ManagedITK: .NET wrappers for ITK. The Insight Journal, June, 2007. 2

[8] H. Pfister, B. Lorensen, C. Bajaj, G. Kindlmann, W. Schroeder, L. Avila, K. Raghu, R. Machi-
raju, and J. Lee. The transfer function bake-off. IEEE Computer Graphics and Applications,
21(3):16–22, 2001. 1

[9] Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller, G. Gerig, and R. Kikinis.
Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear struc-
tures in medical images. Medical Image Analysis, 2(2):143–168, 1998. 1

[10] J. Sethian. Level Set Methods and Fast Marching Methods. Cambridge Press, 2nd edition,
1999. 1

[11] N. Svakhine, D. Ebert, and D. Stredney. Illustration motifs for effective medical volume illustra-
tion. IEEE Computer Graphics and Applications, 25(3):31–39, 2005. 2.2

[12] F. Tzeng, E. Lum, and K. Ma. An intelligent system approach to higher-dimensional classifica-
tion of volume data. IEEE Transactions on Visualization and Computer Graphics, 11(3):273–
284, 2005. 1

[13] G. Weber, S. Dillard, H. Carr, V. Pascucci, and B. Hamann. Topology-controlled volume ren-
dering. IEEE Transactions on Visualization and Computer Graphics, 13(2):330–341, 2007.
1

	1 Introduction
	2 Implementation
	2.1 Vessel Segmentation
	2.2 Fragment Shader

	3 Commands
	3.1 Orient and Resize
	3.2 Speed Function
	3.3 Initial Contour
	3.4 Fast Marching
	3.5 Vesselness
	3.6 Combine Tags
	3.7 Histogram
	3.8 Volume Render

	4 Results
	5 Conclusion

