Flux driven medial curve extraction

Release 1.0

Xavier Mellado Esteban!, Ignacio Larrabide!, Monica Hernandez? and Alejandro
Frangi1

August 3, 2007

!Computational Imaging Lab, Department of Technology, Pompeu Fabra University,
Psg. Circunval-laci6 8 - Barcelona, Spain

ignacio.larrabide @upf.edu

2 Aragon Institute of Engineering Research (I3A), University of Zaragoza, Spain

Abstract

In this document it is described the implementation of the flux driven automatic centerline extraction
algorithm proposed by Bouix ef al. in 2004. This is based on a skeletonisation algorithm initially
proposed by Siddiqi et al. in 2002, using properties of an average outward flux measure to distinguish
skeletal points from non-skeletal ones. This information is combined with a topology preserving thinning
procedure to obtain the final result. This implementation combines this skeletonisation algorithm with
other techniques as described in the paper of Bouix et al. to produce an ITK filter that generates as output
the skeleton, as a binary object represented in an image, of the input surface, represented as a distance
transform image. In this work is described this medial curve extraction procedure following the ITK

philosophy.
Contents
1 Introduction 2
2 Proposed classes and implementation 3
2.1 itk::AverageOutwardFluxImageFilter . . . . . . . . . ... ... L oo 3
2.2 itk::MedialCurvelmageFilter . . . . . . . . . . . . .. ... 5
3 Tests 7
4 Conclusion 7
A Accompanying data 7

B Acknowledgments 8




1 Introduction

In this work is described a method that computes the centerline from the distance transform representation of
a surface. Flux driven medial curve [1] is a method for extracting centerlines based on a recently developed
skeletonisation algorithm proposed by Siddiqi et al. [4].

The approach is based on an algorithm whose theoretical properties have been thoroughly justified [4, 2],
when other topological thinning methods presented in the literature use heuristics for the selection of an-
chor points. Also, the algorithms developed here lend themselves to the use of quite standard numerical
implementations, finding all centerline paths in volumetric tubular structures having arbitrary topology. In
most cases, methods presented in the literature are designed to find a single centerline path at a time and
have numerical implementations that are more complex. The implemented approach is fully automatic and
requires no user interaction. Several of the other methods do require the user to select at least the end points
of a particular centerline path.

This algorithm uses the Average Outward Flux (AOF) of the input image. The AOF is computed using the

following equation:
26

1
AOF (x) ==Y (n;,VD(x;)) (1)
iz
where X; is one of the 26-neighbors at x, n; is the outward normal at x; of the unit sphere centered at x and
D is the Euclidean distance function.

The strategy followed to extract the centerline path is to thin the medial surface to obtain a structure com-
posed of only one curve (the medial curve) and then prune the result to obtain well centered paths. The
process used to obtain the medial curve is described in Algorithm 1. In order to make the algorithm more
computationally efficient, an ordered heap structure is used. We call simple points', those points that, when
removed, do not change the topology of the object [1]. Such a point has the property that its removal: i)
does not create a hole, ii) does not create a cavity and iii) does not disconnect a connected component. The
classification of a simple point is a specific case of a more general categorization of a simple point x in a
cubic lattice first introduced by [3]. This categorization is based on two numbers:

e C*: the number of 26-connected components 26-adjacent to x in O N N.

e C: the number of 6-connected components 6-adjacent to x in O N Njg.

Here O is a 26-connected object, Ny is the 26-neighborhood of x without x and N3 is the 18-neighborhood
of x including x. Simple (and hence removable) points can be identified by the conditions C* =1 and C = 1.
The AOF threshold parameter is the average outward flux threshold at which end points are preserved in the
extraction of the medial curve.

The code that implements this algorithm is in the class MedialCurveImageFilter. This class actually
requires two inputs:

e The surface from which the centerline will be computed. This information should be provided in its
distance map representation. This is a real valued function, and the input point (pixel) type should be
float at least.

e The average outward flux: it is computed as described in the work of Bouix ef al. [1] in class
AverageOutwardFluxImageFilter, also provided. The input pixel type should be float at least
as AOF is a real valued function.

'In the case of the numerical implementation, a point corresponds to a pixel.



Algorithm 1 Algorithm 1 - Medial curve extraction.
Require: A surface implicitly represented by its signed distance map S representation, the AOF of this
distance map at each point, AOF threshold.
Ensure: The centerline represented as a binary image.
for each point x do
if xis simple then
OrdHeap.insert(x) // ordered by —D(x) as the sorting key for insertion;
end if
end for
while OrdHeap.size > 0 do
x = OrdHeap.pop()
if x is simple then
if (x is an end point of a 3D curve) and (AOF(x)< threshold) then
mark x as a medial curve (end) point;
else
remove X;
for all neighbors y of x do
if yis simple then
insert X in OrdHeap an ordered by —D(x) as the sorting key for insertion;
end if
end for
end if
end if
end while

The algorithm output is a binary image containing the centerline of the input structure. Because of this, the
output is only allowed to be of type unsigned char.

2 Proposed classes and implementation

The classes proposed are:

e itk::itk::AverageOutwardFluxImageFilter : computes the AOF of a distance map representing
the surface. In this case we are interested in computing the AOF of the input distance map surface
representation.

e itk::itk::MedialCurveImageFilter : topology preserving thinning procedure that iteratively re-
moves simple elements from the image preserving the number of connected components and avoiding
the creation of cavities.

2.1 itk::AverageOutwardFluximageFilter

A special class for the computation of AOF was implemented. This class implements Eq. (1) in order to
compute the AOF for every image pixel. The main class features are presented below.



2.1 itk::AverageOutwardFluximageFilter 4

template< class TInputImage,
class TOutputPixelTlype = float,
class TInputVectorPixelType = ::itk::CovariantVector<TOutputPixelType,
::itk::GetImageDimension<TInputImage>::ImageDimension> >
class ITK_EXPORT AverageOutwardFluxImageFilter:
public ImageToImageFilter<TInputImage, ::itk::Image<TOutputPixelType,
::itk::GetImageDimension<TInputImage>::ImageDimension> >

public:

typedef typename itk::Image< TInputVectorPixelType,
TInputImage::ImageDimension > TInputVectorImage;
typedef typename itk::Image< TOutputPixelType,
TInputImage::ImageDimension > TOutputImage;

#ifdef ITK_USE_CONCEPT_CHECKING
/** Begin concept checking */
itkConceptMacro (SameDimensionCheck,
(Concept::SameDimension<InputImageDimension, OutputImageDimension>));
itkConceptMacro (InputVectorIsReallyAVectorCheck,
(Concept::HasValueType<TInputVectorPixelType>));
itkConceptMacro (InputVectorIsFloatingPointCheck,
(Concept::IsFloatingPoint<TInputVectorPixelType::ValueType>));
itkConceptMacro (InputVectorIsSameDimensionInput ImageCheck,
(Concept::SameDimension<TInputVectorPixelType::SizeType, InputImageDimension>));
itkConceptMacro (OutputIsFloatingPointCheck,
(Concept::IsFloatingPoint<TOutputPixelType>));
/** End concept checking */
fendif
virtual void SetGradientImage (InputVectorConstPointerType gradient)
{this->ProcessObject: :SetNthInput
( 1, const_cast< TInputVectorImage * >(gradient.GetPointer()) );}

virtual InputVectorConstPointerType GetGradientImage ()
{return ( static_cast< TInputVectorImage *>
(this—>ProcessObject::GetInput (1)) );}
void GenerateDatal();
protected:
AverageOutwardFluxImageFilter();
virtual "AverageOutwardFluxImageFilter();

[...]
i



2.2 itk::MedialCurvelmageFilter 5

The class template definition is used to ensure consistency of sizes and types between both inputs and the
output. The ITK concept checking macros are used for: ensuring that

1. input and output images have the same dimension;
2. input vector image is actually a vector image;
3. input vector image is of floating point precision at least;

4. input vector image is of the same dimension that the input image and to ensure that the output is
flouting point precision at least.

2.2 itk::MedialCurvelmageFilter

The main algorithm is implemented using a set of protected methods providing some basic and also impor-
tant information about image pixels. First, a threshold is applied over the object and this information is used
as initial data.

template< class TInputlmage,
class TAverageOutwardFluxPixelType = float,
class TOutputPixelType = unsigned char>
class ITK_EXPORT MedialCurveImageFilter:
public ImageToImageFilter<TInputImage, ::itk::Image<TOutputPixelType,
::itk::GetImageDimension<TInputImage>::ImageDimension> >

public:
[...]
typedef typename itk::Image< TAverageOutwardFluxPixelType,
TInputImage::ImageDimension > TAverageOutwardFluxFImage;
typedef typename itk::Image< TOutputPixelType,
TInputImage::ImageDimension > TOutputImage;

typedef typename TOutputImage::IndexType OutputIndexType;
[...]
typedef std::vector<Pixel> HeapContainer;
typedef std::priority_queue<Pixel, HeapContainer, Greater > HeapType;

virtual void SetAverageOutwardFluxImage (AOFConstPointerType aoflImage)
{this->ProcessObject::SetNthInput
(1, const_cast< TAverageOutwardFluxFImage * >(aoflImage.GetPointer()) );}

virtual AOFConstPointerType GetAverageOutwardFluxImage ()
{return ( static_cast< TAverageOutwardFluxFImage *>

(this->ProcessObject::GetInput (1)) );}

#ifdef ITK_USE_CONCEPT_CHECKING



2.2 itk::MedialCurvelmageFilter 6

/** Begin concept checking */
itkConceptMacro (SameDimensionCheck,
(Concept::SameDimension<InputImageDimension, OutputImageDimension>));
itkConceptMacro (AOFIsFloatingPointCheck,
(Concept::IsFloatingPoint<TAverageOutwardFluxPixelType>));
/** End concept checking */
fendif

[...]
protected:

MedialCurvelImageFilter();
virtual "MedialCurveImageFilter();
bool IsBoundary( OutputIndexType p );
bool IsIntSimple( OutputIndexType p );
bool IsExtSimple( OutputIndexType p )
bool IsEnd( OutputIndexType p );

[...]

4

i

In this case, two inputs are needed by the filter. The first one is the distance map representation of the input
surface and the second one is the AOF computed over the distance map. Concept checking macros are used
for ensuring input surface and output images have the same dimension and that the average outward flux
image, set as second input, is float type.

The method bool IsBoundary (OutputIndexType p ) returns true if p belongs to the object and at least
one of its 26 neighbors belongs to background, meaning p is exactly at image boundaries. The method
bool IsIntSimple( OutputIndexType p ) returns true if deletion from the object changes local object
topology in the 27 neighborhood. An object pixel is simple for object’s topology if its deletion from the
object does not change the topology in the pixel neighborhood. The algorithm proceeds finding the first 26
connected pixels to the object pixel being visited. A flood fill algorithm goes through the adjacent object
pixels different from p using 26 connectivity. Finally, if the number of flooded pixels is equal to the number
of object pixels-1, and local topology does not change, meaning that the pixel is simple for the object.

The method bool IsExtSimple( OutputIndexType p ) returns true if its deletion from the object
changes local background topology in the 18 neighborhood. An object pixel is simple for the background
topology if its deletion from the object does not change background’s topology in the pixel neighborhood.
The algorithm proceeds finding the first pixel in the background. A flood fill algorithm goes through the
adjacent background pixels, different from p, using the 6 connectivity in the 18 neighborhood. Finally,
if the number of flooded pixels is equal to the number of 6 connected background pixels-1, and the local
background topology does not change, the pixel is simple for the background.

The method bool IsEnd(OutputIndexType p ) returns true if the pixel has less than two object neigh-
bors. That is, p is a medial axis end point if in 26-neighborhood there is only one foreground pixel.



Image size (cylinder) | True centerline mean distance | Image size (torus) | True centerline mean distance
10 x 40 x 10 0.00446911 30 x30 x5 0.043751
20 x 80 x 20 0.00107213 60 x 60 x 10 0.014036
40 x 160 x 40 0.000244575 120x 120 x 20 0.00458682
80 x 320 x 80 7.94051e-005 240x 240 x 40 0.00209226

Table 1: Image size vs. centerline mean distance
3 Tests

Test code for these classes is provided itkMedialCurveTest.cpp file. This application receives as input
the distance map representation of a surface. The steps followed to compute the centerline are:

1. load the distance map image,

2. apply a light smoothing on the distance map image” and compute its gradient,

3. compute the average outward flux using itk: :AverageOutwardFluxImageFilter,
4.

extract the centerline using itk::MedialCurveImageFilter.

In order to test the accuracy of the method with respect to the definition of the image, a specific test was per-
formed. In this case, two different synthetic geometries, for which the exact centerline is easily obtainable,
where used: a straight tube (length 4, diameter 1) and a semi-torus (240 degrees, curvature radius 7 and tube
diameter 1). For both geometries different refinements of the underlying 3D image where generated. For
the resulting centerlines was computed the average distance to the real centerline. Results are presented in
Table 1.

The output is provided as a binary image containing the centerline of the input structure. This algorithm
provides a robust way for extracting centerlines from complex objects that also accounts for bifurcations.

In Figure 1 are presented the results with the corresponding input surfaces from which they where obtained.

4 Conclusion

This paper describes a set of ITK classes that implement the method for centerline extraction proposed in
[1]. This implementation is based in computing the average outward flux at every point of the image and
subsequently use this information in a robust topology preserving thinning algorithm. As it can be observed
in Table 1 and Figure 1, accuracy of the obtained centerline is highly dependent on image resolution, so for
more precise results a more refined distance map should be used. It can also be observed (from the algorithm
description) that the computational time depends linearly on the image size, as AOF and posterior topology
preserving thinning are computed pixel by pixel. In the case of 3D images this value grows very fast. In
contrast, very good approximations of centerlines are obtained even for grosse definition of the image.

A Accompanying data

With this code 6 different input data sets are provided:

2This pre-processing is performed to improve the quality of the derivatives.



Figure 1: Input geometries and output centerlines for the provided data.

cylinder.vtk : a simple cylinder geometry,

torus.vtk : a torus geometry,
e aneu_l.vtk, aneu_2.vtk :two different synthetic artery geometries with aneurysms,

e aneu_3.vtk, aneu_4.vtk : two different real artery geometries with aneurysms.

B Acknowledgments

The authors would like to acknowledge to J. R. Cebral, PhD from the George Mason University (Vir-
ginia, USA), C. Putman, MD from the Inova Fairfax Hospital (Virginia, USA) and to R. Barrena, MD
from Zaragoza University (Spain), for providing the 3DRA and CTA data, respectively, measurements and
clinical background. It is also greatly appreciated the help of Prof. José Maria Pozo from the CILab - UPF,
for providing the synthetic geometries. The work of X. M. and I. L. were supported by a grant of the Pom-
peu Fabra University. The work of A. F. F. was supported by the Spanish Ministry of Education & Science
under a Ramén y Cajal Research Fellowship. This work was partially generated within the framework of
the Integrated Project @neurIST (IST-2005-027703), which is co-financed by the European Commission,
and ISCIII IM3 Network (G03/185) funded by Spanish Ministry of Health. And also partially supported by
MEC TEC2006-03617, ISCIII FIS2004/40676, and CDTI CENIT-CDTEAM grants. The CILab is part of
the ISCIII CIBER-BBN (CB06/01/0061).



References 9

References

[1] S.Bouix, K. Siddiqi, and A. Tannenbaum. Flux driven automatic centerline extraction. Technical Report
SOCS-04.2, School of Computer Science, McGill University, 2004. 1,1, 1, 4

[2] J. Damon. Global geometry of regions and boundaries via skeletal and medial integrals. Technical
report, Department of Mathematics, University of North Carolina at Chapel Hill, 2003. 1

[3] G.Malandain, G. Bertrand, and N. Ayache. Topological segmentation of discrete surfaces. International
Journal of Computer Vision, 10(2):183-197, 1993. 1

[4] K. Siddiqi, B. B. Kimia, and C. Shu. Geometric shock-capturing eno schemes for sub-pixel interpola-
tion, computation and curve evolution. Graphical Models and Image Processing, 59(5):278-301, 1997.
1



