
Non-rigid Groupwise Registration using
B-Spline Deformation Model

Release 0.00

Serdar K. Balci1, Polina Golland1 and William M. Wells2

July 17, 2007
1MIT CSAIL, Cambridge, MA, USA

2Brigham & Women’s Hospital, Harvard Medical School, Cambridge, MA, USA

Abstract

In this work, we extend a previously demonstrated entropy based groupwise registration method to in-
clude a non-rigid deformation model based on B-splines. We describe an open source implementation of
the groupwise registration algorithm using the Insight Toolkit ITK www.itk.org. We provide the source
code, parameters, input and output data that we used for validation.

We describe an efficient implementation of the algorithm by using a stochastic optimization scheme
embedded in a multi-resolution setting. The objective function is optimized using gradient descent algo-
rithm combined with line search for the step size. The derivative of the objective function is evaluated
efficiently by computing Jacobian of B-spline deformation field locally.

We demonstrate the algorithm in application to different imaging modalities including proton density,
FA, T1 and T2 MR images. We validate the algorithm on synthetic datasets varying from 2 to 30 images
by recovering randomly applied affine and B-spline transforms.

Contents

1 Introduction 2

2 Algorithm 2
2.1 Stack Entropy Cost Function . 3
2.2 Free-Form B-spline Deformation Model . 3

3 Implementation 4
3.1 Metric . 5
3.2 Optimization . 5

Efficient B-spline Implementation . 5
3.3 Component Interaction . 6
3.4 Summary of New Classes . 6

4 Results 7

5 Running Tests 8

2

6 Conclusion 8

A Test Results 10

B Registration Example 11

C Using Command Line Modules 15
C.1 Registration Parameters . 15

1 Introduction

Groupwise registration is an important tool in medical image analysis for establishing anatomical correspon-
dences among subjects in a population [10, 2]. A groupwise registration scheme can be used to characterize
anatomical shape differences within and across populations [9].

Miller et al. [7] introduce an efficient groupwise registration method in which they consider sum of uni-
variate entropies along pixel stacks as a joint alignment criterion. They provide a template-free approach
to groupwise registration by simultaneously driving all subjects to the common tendency of population.
Zollei et al. [11] successfully applied this method to groupwise registration of medical images using affine
transforms and used stochastic gradient descent algorithm for optimization.

In our work, we extend Miller et al.’s [7] method to include free-form deformations based on B-splines
in 3D. We describe an efficient implementation using stochastic optimization in a multi-resolution setting.
To optimize the objective function we use gradient descent algorithm combined with line search for the
step size. We validate the algorithm on synthetic datasets by recovering randomly applied affine and B-
spline transforms. All experiments that we present are easily reproducable as we provide our source code,
parameters, input data and an automated procedure to obtain the results.

This paper is organized as follows. In the next section, we describe the groupwise registration algorithm by
describing the stack entropy cost function and B-spline based deformation model. In Section 3, we present
our registration framework and describe implementation of the metric, deformation model and optimization.
In Section 4, we demonstrate the groupwise registration algorithm in application to different sets of input
data. In Section 5, we describe an automated procedure to reproduce the test results. In Appendix A, we
give all test results and in Appendix B we go over a groupwise registration example. In Appendix C we
discuss important registration parameters.

2 Algorithm

Given a set of images {I1, . . . , IN}, each described by intensity values In(xn) across the image space xn ∈ Xn,
we can define a common reference frame xR ∈ XR and a set of transforms T which maps points from the
reference frame to points in the image space

T = {Tn : xn = Tn(xR), n = 1, . . . ,N} (1)

In the following section, we describe the stack entropy cost function as introduced by Miller et al. [7]
and applied to groupwise registration of medical images using affine transforms by Zollei et al. [11]. We

2.1 Stack Entropy Cost Function 3

continue by describing the transformation model and extend Miller et al.’s [7] method to include free-form
deformations based on B-splines.

2.1 Stack Entropy Cost Function

In order to align all subjects in the population, we consider sum of univariate entropies as a joint registration
criterion. We let xv ∈ XR be a sample from a spatial location in the reference frame and H(I(T (xv))) be the
univariate entropy of the stack of pixel intensities {I1(T1(xv)), . . . , IN(TN(xv))} at spatial location xv. The
objective function for the groupwise registration can be given as follows

f =
V

∑
v=1

H(I(T (xv))). (2)

We employ a Parzen window based density estimation scheme to estimate univariate entropies [3]:

f =−
V

∑
v=1

1
N

N

∑
i=1

log
1
N

N

∑
j=1

Gσ(di j(xv)) (3)

where di j(x) = Ii(Ti(x))− I j(Tj(x)) is the distance between intensity values of a pair of images evaluated
at a point in the reference frame and Gσ is a Gaussian kernel with variance σ2. Parzen window density
estimator allows us to obtain analytical expressions for the derivative of the objective function with respect
to the transformation parameters

∂ f
∂Tn

=
V

∑
v=1

1
σ2N

N

∑
i=1

N

∑
j=1

Gσ(di j(xv))di j(xv)

∑
N
k=1 Gσ(dik(xv))

∂di j(xv)
∂Tn

. (4)

2.2 Free-Form B-spline Deformation Model

For the nonrigid deformation model, we define a combined transformation consisting of a global and a local
component

T (x) = Tlocal(Tglobal(x)) (5)

where Tglobal is a twelve parameter affine transform and Tlocal is a deformation model based on B-splines.

Following Rueckert et al.’s formulation [8], we denote Φi, j,k an nx× ny× nz grid of control points with
uniform spacing. The free form deformation can be written as a 3-D tensor product of 1-D cubic B-splines.

Tlocal(x) = x+
3

∑
l=0

3

∑
m=0

3

∑
n=0

Bl(u)Bm(v)Bn(w)Φi+l, j+m,k+n (6)

where x = (x,y,z), i = bx/nxc− 1, j = by/nyc− 1, k = bz/nzc− 1, u = x/nx−bx/nxc, v = y/ny−by/nyc,
w = z/nz−bz/nzc and where Bl is l’th cubic B-spline basis function. Using the same expressions for u,v
and w as above, the derivative of the deformation field with respect to B-spline coefficients can be given by

∂Tlocal(x,y,z)
∂Φi, j,k

= Bl(u)Bm(v)Bn(w) (7)

where l = i−bx/nxc+1, m = j−by/nyc+1 and n = k−bz/nzc+1. We consider Bl(u) = 0 for l < 0 and
l > 3. The derivative terms are nonzero only in the neighborhood of a given point. Therefore, optimization
of the objective function using gradient descent can be implemented efficiently.

4

Figure 1: The basic components of the registration framework are a metric, an optimizer and arrays of input images,
transforms and interpolators.

As none of the images are chosen as an anatomical reference, it is necessary to add a geometric constraint
to define the reference coordinate frame. Similar to Bhatia et al. [1], we define the reference frame by
constraining the average deformation to be the identity transform:

1
N

N

∑
n=1

Tn(x) = x (8)

This constraint assures that the reference frame lies in the center of the population. In the case of B-splines,
the constraint can be satisfied by constraining the sum of B-spline coefficients across images to be zero. In
the gradient descent optimization scheme, the constraint can be forced by subtracting the mean from each
update vector [1].

3 Implementation

Figure 1 displays the basic components of a groupwise registration framework and the interactions between
them. The framework is an extension of ITK’s pairwise registration framework described in ITK software
guide [4].

The basic input to the registration process is an array of images. In our setting all images are considered to
be moving images. None of the images are chosen as a fixed image to avoid anatomical bias to the chosen
reference. Instead, the reference frame is defined by constraining the sum of all transforms to be the identity
transform as shown in equation 8. The constraint is forced inside the metric classes by subtracting the mean
from transform parameter updates.

Every image is associated with an interpolator and a transform. Each transform map points from the common
coordinate frame to the corresponding space of the input image. Interpolators allow to evaluate intensity
values at non-grid locations. The metric computes an objective function which measures how well the

3.1 Metric 5

group of images are registered. The optimizer component optimizes this objective function by searching
over the parameters of the transforms.

In following sections, we introduce registration components and the interactions between them.

3.1 Metric

We extended itk::ImageToImageMetric base class to itk::MultiImageMetric to compute an objective
function on a group of images. The base class is multi-threaded and provides generic methods to be used by
the optimizer.

itk::UnivariateEntropyMultiImageMetric derive from this class and compute the sum of univariate
entropies as given in equation 3. This metric uses a stochastic subsampling scheme to efficiently evaluate
the objective function [6]. The function SampleFixedImageDomain takes random samples from the image
domain in a multi-threaded fashion. In each iteration of the registration process, random samples are taken
and the objective function is evaluated only on this sample set. The metric makes use of the B-spline
optimization for Jacobian computations if a B-spline transform is connected to it.

itk::VarianceMultiImageMetric computes sum of variances along pixel stacks. This class matches each
image to a mean template image using sum of squared errors as an objective function similar to Joshi et al.
[5]. This class also follows a stochastic subsampling procedure and performs multi-threaded execution.

3.2 Optimization

We provide an efficient optimization scheme by using line search with the gradient descent algorithm. For
each iteration, the class itk::GradientDescentLineSearchOptimizer performs a line search to deter-
mine the step size of the gradient descent algorithm. Empirically we observed that this optimization method
is more robust to optimization parameters and increases the convergence rate.

As in every iterative search algorithm, local minima pose a significant problem. To avoid local minima
we use a multi-resolution optimization scheme. The registration is first performed at a coarse scale by
downsampling the input. Results from coarser scales are used to initialize optimization at finer scales.

Efficient B-spline Implementation

To compute B-spline deformation fields efficiently we modified itk::BSplineDeformableTransform
to take into account the locality of B-splines for Jacobian computations. The new class
itk::BSplineDeformableTransformOpt computes the Jacobian field locally by using the function
GetJacobian(point, indexes, weights). This function returns the nonzero indexes of the Jaco-
bian field and the weights associated with them. The metric class can make use of this optimization
in GetValueAndDerivative() method with an if statement for B-splines. itk::MultiImageMetric
has a member bool m BsplineDefined, which is turned on if the metric class is used with
itk::BSplineDeformableTransformOpt. As only a fixed number of control points in the Jacobian field
are nonzero, the computational gain is significant, especially if the deformation field is dense. The changes
we made to itk::BSplineDeformableTransform are backward compatible as we keep the default imple-
mentation of the member function GetJacobian(point).

3.3 Component Interaction 6

3.3 Component Interaction

Interconnections between the components should be handled before starting the registration. We mod-
ified the pairwise registration method itk::MultiResolutionImageRegistrationMethod to create a
groupwise registration method itk::MultiResolutionMultiImageRegistrationMethod that automati-
cally initializes connections between registration components and provides a multiresolution optimization
scheme. The Registration method has several functions to describe a multiresolution groupwise registration
setting.

• SetNumberOfImages(): Sets number of images used in registration

• SetNumberOfLevels(): Sets number of multiresolution levels

• SetOptimizer(): Sets the optimizer

• SetMetric(): Sets the registration metric

• SetImagePyramidArray(int, imagePyramid): Uses the given image pyramid in the registration

• SetTransformArray(int,transform): Connects the given transform to corresponding images

• SetInterpolatorArray(int,interpolator): Connects the given interpolator to corresponding images

• SetTransformParametersLength(): Allocates space for transform parameters

• StartRegistration(): Connects the components and starts the registration

Using the functions above the registration method initializes registration components, handles the intercon-
nections between them and performs a multi-resolution optimization. Appendix B provides a registration
example using this class.

3.4 Summary of New Classes

We provide the following classes as part of the groupwise registration framework.

• itk::MultiImageMetric<TImage>

A multi-threaded base class templated over the input image for groupwise registration metrics.

– itk::UnivariateEntropyMultiImageMetric<TImage>

Computes sum of univariate entropies along pixel stacks.

– itk::VarianceMultiImageMetric<TImage>

Computes sum of variances along pixel stacks.

• itk::MultiResolutionMultiImageRegistrationMethod<TImage>

Provides a generic interface for multi-resolution registration using components of the registration framework.

• itk::GradientDescentLineSearchOptimizer

Gradient descent optimizer combined with line search for determining the step size.

• itk::BSplineDeformableTransformOpt<TScalarType, NDimensions, VSplineOrder >

B-spline deformable transform optimized for Jacobian computations.

7

Affine Data

B
ef

or
e

A
ft

er

Bspline Data

B
ef

or
e

A
ft

er

Figure 2: Central slices of synthetic affine and B-spline 3D volumes before and after registration.

4 Results

To validate the algorithm we run synthetic experiments using four different imaging modalities: proton
density data with 181×217×180 voxels and 1×1×1 mm spacing, T1 data with 181×217×180 voxels
and 1× 1× 1 mm spacing, T2 data with 181× 217× 180 voxels and 1× 1× 1 mm spacing, FA data with
256×256×50 voxels and 0.9375×0.9375×2.5 mm spacing. The input data can be obtained from ITK’s
Data directory at http://public.kitware.com/pub/itk/Data/.

For each sample medical data we perform two different sets of experiments. First, we apply random affine
transforms to input data and register this synthetic dataset using global affine registration. In the second
setting, we apply random B-spline transforms to input data and recover applied transforms using B-spline
registration. Figure 2 show the central slices of 10 random 3D images from the T1 MR image before and
after registration. The figure indicate that the images are well aligned after registration.

To evaluate registration accuracy visually, we compute mean and standard deviation images before and after
registration. Figure 3 show the central slices of mean and standard deviation images for all four modalities
using an input data of 10 images. Visually we can observe that the mean images get sharper and the standard
deviation images get darker. In a perfect registration, the standard deviation images should be all zero
images.

From the images in figure 3, we can note some registration artifacts at image boundaries. These occur
because during random image generation images get cropped at boundaries. For datasets generated with
affine transforms, standard deviation images get close zero after affine registration. Therefore, we can state
that for all imaging modalities transform components are recovered successfully.

For datasets generated with B-spline transforms, we note some residuals at central locations in standard
deviation images after non-rigid registration. This occur because we used the same transform complexity
with 8× 8× 8 B-spline control points for both image generation and registration. The residuals can be
made smaller by using B-splines with higher number of control points, as a dense deformation field can
capture larger shape variations. The main reason for the residuals is that the inverse of a B-spline transform
is generally not a B-spline transform and the registration results show the best fit to the inverse transforms.

To examine the performance of the algorithm with respect to number of input images we run experiments
with 2, 10 and 30 images. For the results of these experiments see Appendix A. The results in Appendix
A suggest that the groupwise registration algorithm is robust to varying number of input images. Visu-
ally, standard deviation values are close to zero which indicates successful recovery of applied transforms.

8

Before After Before After Before After Before After

Affine Data
M

ea
n

ST
D

Bspline Data

M
ea

n
ST

D

Figure 3: Central slices of 3D volumes before and after registration for (from left to right) PD, T1, T2 and FA synthetic
images. Inside a block top row shows the mean images and bottom row standard deviation images before and after
registration. Blocks in the top row show the results for synthetic data generated with 10 random affine transforms and
blocks in the bottom row show results for synthetic data generated with 10 random B-spline transforms.

The experiments show that the groupwise registration algorithm can handle few input images including a
minimum of two input images.

5 Running Tests

To reproduce the results presented in this paper please follow the directions below:

1. Compile ITK 2.8 or higher (http://www.itk.org).

2. Install CMake 2.4 or higher (http://www.cmake.org).

3. Download Groupwise Registration Project from Insight Journal (http://insight-journal.org).

4. Configure and compile Groupwise Registration Project using CMake. Point the folder containing brain MR
images to Brainweb DATA ROOT and the folder containing FA images to FAImage Data ROOT. To avoid
timeout errors set DART TESTING TIMEOUT parameter to a large value(e.g. 36000).

5. To reproduce the results presented in this document, run CTest from the project folder.

6. Check test results from the corresponding folders in Testing/Temporary. Examine registration parameters and
the example code GroupwiseRegistrationExample.cxx.

6 Conclusion

In this paper, we describe an open source implementation of a non-rigid groupwise registration algorithm
using the Insight Toolkit ITK www.itk.org. We provide the source code, parameters, input and output data
that we used for validation.

9

We demonstrated the algorithm in application to different imaging modalities including proton density, FA,
T1 and T2 MR images. We validated the algorithm on synthetic datasets varying from 2 to 30 images by
recovering randomly applied affine and B-spline transforms.

Appendix A show the results for all experiments Appendix B present a groupwise registration example using
the implemented classes and Appendix C explain how to use command line modules.

10

A Test Results

Before After Before After Before After

Affine Data

M
ea

n
ST

D

Bspline Data

M
ea

n
ST

D

(a) 2 Images (b) 10 Images (b) 30 Images

Figure 4: Central slices of 3D volumes before and after registration for proton density images with varying number of
input images.

Before After Before After Before After

Affine Data

M
ea

n
ST

D

Bspline Data

M
ea

n
ST

D

(a) 2 Images (b) 10 Images (b) 30 Images

Figure 5: Central slices of 3D volumes before and after registration for T1 MR images with varying number of input
images.

11

Before After Before After Before After

Affine Data

M
ea

n
ST

D

Bspline Data

M
ea

n
ST

D

(a) 2 Images (b) 10 Images (b) 30 Images

Figure 6: Central slices of 3D volumes before and after registration for T2 MR images with varying number of input
images.

Before After Before After Before After

Affine Data

M
ea

n
ST

D

Bspline Data

M
ea

n
ST

D

(a) 2 Images (b) 10 Images (b) 30 Images

Figure 7: Central slices of 3D volumes before and after registration for FA images with varying number of input images.

B Registration Example

The source code for this example can be found in Source/GroupwiseRegistrationExample.cxx

In this example we show how to use the groupwise registration framework. The example code performs
groupwise registration on an input data and outputs the resulting transform parameters. The resulting trans-
form parameters can be used to transform input images, calculate mean and standard deviation images. As
the size of the example code is relatively large to explain all in detail here, we will briefly mention main
parts and show how to set up main components.

We first include project specific headers and define the pixel types using #define statements.

#include "MultiResolutionMultiImageRegistrationMethod.h"
#include "VarianceMultiImageMetric.h"
#include "UnivariateEntropyMultiImageMetric.h"
#include "BSplineDeformableTransformOpt.h"
#include "GradientDescentLineSearchOptimizer.h"

12

#define Dimension 3
#define InternalPixelType float

As itk::ImageFileReader casts input images to specified internal type we only define an internal image
type. For metric calculations pixel type should have real value (float or double). To decrease the memory
requirements we use float type.

typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

We declare the registration method type by using the internal image type as a template argument. This class
handles the interconnection between registration components and uses a multi-resolution optimization.

typedef itk::MultiResolutionMultiImageRegistrationMethod< InternalImageType >
RegistrationType;

RegistrationType::Pointer registration = RegistrationType::New();

First we set the number of images to be used in the registration and the number of multi-resolution levels.
The number N is parsed from the input parameters.

registration->SetNumberOfImages(N)
registration->SetNumberOfLevels(multiLevelAffine);

To optimize the objective function we use gradient descent algorithm combined with line search. We declare
the optimizer type and connect to the registration using SetOptimizer() method.

typedef itk::GradientDescentLineSearchOptimizer LineSearchOptimizerType;
LineSearchOptimizerType::Pointer lineSearchOptimizer;
lineSearchOptimizer = LineSearchOptimizerType::New();

registration->SetOptimizer(lineSearchOptimizer);

Next, we define the metric type by passing internal image type as a template argument. To avoid if state-
ments later in the code we assign metric pointers to the base class typedef itk::MultiImageMetric. The
metric pointer is connected to the registration using SetMetric() method. The type of the metric to be used
can be set through parameters in the input files.

typedef itk::MultiImageMetric< InternalImageType> MetricType;
typedef itk::VarianceMultiImageMetric< InternalImageType> VarianceMetricType;
typedef itk::UnivariateEntropyMultiImageMetric< InternalImageType> EntropyMetricType;
MetricType::Pointer metric;
if(metricType == "variance")
{

metric = VarianceMetricType::New();
}
else
{

EntropyMetricType::Pointer entropyMetric = EntropyMetricType::New();
entropyMetric->SetImageStandardDeviation(parzenWindowStandardDeviation);
metric = entropyMetric;

}

registration->SetMetric(metric);

13

After instantiating the metric and the optimizer, we connect images to the registration method. Each image is associ-
ated with an interpolator and a transform. Therefore, we start by declaring interpolator and transform arrays.

typedef itk::AffineTransform< ScalarType, Dimension > TransformType;
typedef std::vector<TransformType::Pointer> TransformArrayType;
TransformArrayType affineTransformArray(N);

typedef itk::LinearInterpolateImageFunction<InternalImageType,ScalarType> InterpolatorType;
typedef vector<InterpolatorType::Pointer> InterpolatorArrayType;
InterpolatorArrayType interpolatorArray(N);

We instantiate interpolator and transforms in a for loop and connect to the registration method

affineTransformArray[i] = TransformType::New();
registration->SetTransformArray(i, affineTransformArray[i]);

interpolatorArray[i] = InterpolatorType::New();
registration->SetInterpolatorArray(i,interpolatorArray[i]);

To perform a multi-resolution registration we build image pyramids and connect to the registration method.
We start by declaring image pyramid filters.

typedef itk::RecursiveMultiResolutionPyramidImageFilter<InternalImageType,InternalImageType>
ImagePyramidType;

typedef vector<ImagePyramidType::Pointer> ImagePyramidArray;
ImagePyramidArray imagePyramidArray(N);

In a for loop we construct image pyramid and connect them to registration using SetImagePyramidArray
function.

imagePyramidArray[i] = ImagePyramidType::New();
imagePyramidArray[i]->SetNumberOfLevels(multiLevelAffine);
imagePyramidArray[i]->SetInput(imageReader->GetOutput());
imagePyramidArray[i]->Update();

registration->SetImagePyramidArray(i, imagePyramidArray[i]);

We now set up the initial parameters of the registration. Registration method uses a parameters array which
is formed by the concatenation of individual transform parameters.

typedef RegistrationType::ParametersType ParametersType;
ParametersType initialAffineParameters(affineTransformArray[0]->GetNumberOfParameters()*N);
initialAffineParameters.Fill(0.0);

registration->SetInitialTransformParameters(initialAffineParameters);

Next, we specify the region from which the samples are taken. We specify the sample region to be the whole
image region.

InternalImageType::RegionType fixedImageRegion;
imagePyramidArray[0]->GetOutput(imagePyramidArray[0]->GetNumberOfLevels()-1)->GetBufferedRegion();
registration->SetFixedImageRegion(fixedImageRegion);

14

In the following line we set the number samples to be used in the metric. For choosing the parameters of the
algorithm see the section C.1 on registration parameters.

metric->SetNumberOfSpatialSamples(numberOfSamples);

Now, we all components are instantiated and the registration is ready to be started

registration->StartRegistration();

We use the results of global affine registration above to initialize B-spline transforms. We start by declaring
the B-spline transform type.

const unsigned int SplineOrder = 3;
typedef double CoordinateRepType;
typedef itk::BSplineDeformableTransformOpt< CoordinateRepType,Dimension,SplineOrder >

BSplineTransformType;
typedef vector<BSplineTransformType::Pointer> BSplineTransformArrayType;
BSplineTransformArrayType bsplineTransformArrayLow(N);

Next, we set the total parameters length of B-splines. This is necessary as ITK’s B-spline implementation
only holds pointers to actual transform parameters. We calculate length of the B-spline parameters explicitly
from the input parameters.

registration->SetTransformParametersLength(
static_cast<int>(pow(static_cast<double>(bsplineInitialGridSize+SplineOrder),

static_cast<int>(Dimension))*Dimension*N));

To initialize B-splines using the results of the global affine registration we get the latest parameters from the registra-
tion.

ParametersType affineParameters = registration->GetLastTransformParameters();
ParametersType affineCurrentParameters(affineTransformArray[0]->GetNumberOfParameters());

for(int i=0; i<N; i++)
{

for(unsigned int j=0; j<affineTransformArray[0]->GetNumberOfParameters(); j++)
{

affineCurrentParameters[j]=
affineParameters[i*affineTransformArray[0]->GetNumberOfParameters()+j];

}
affineTransformArray[i]->SetParametersByValue(affineCurrentParameters);

}

In a for loop, we initialize B-splines and connect them to registration method.

bsplineTransformArrayLow[i] = BSplineTransformType::New();
bsplineTransformArrayLow[i]->SetBulkTransform(affineTransformArray[i]);
bsplineTransformArrayLow[i]->SetParameters(bsplineParametersArrayLow[i]);

registration->SetInitialTransformParameters
(i, bsplineTransformArrayLow[i]->GetParameters());

registration->SetTransformArray(i, bsplineTransformArrayLow[i]);

15

To make use of the B-spline optimization, we explicitly connect B-spline transforms to the metric.

metric->SetBSplineTransformArray(i, bsplineTransformArrayLow[i]);

Now, B-spline registration can be started

registration->StartRegistration();

After each stage of the algorithm, e.g. affine and B-spline registration, transform parameters are written to
files using itk::TransformFileReader.

To obtain a dense deformation field capturing variations at different scales, we gradually increase the com-
plexity of the deformation field by refining the grid of B-spline control points. See the example code on how
to initialize B-spline control points at finer grids using results at coarser grids.

C Using Command Line Modules

We provide the modules CreateImageSetAffine and CreateImageSetBspline to generate synthetic
datasets from a sample data. These modules apply random transforms to the input image, generate a dataset
with the specified number of images and write the results to an output folder. The usage of the command
line modules is as follows

CreateImageSetAffine inputImage outputFolder numberOfImages

GroupwiseRegistration is the main command line tool to perform groupwise registration. The parameters
of the registration algorithm are passed to the binary using two text files. Folders under Testing/Temporary
contain the text files that we used for each experiment. The following line shows the usage of the binary

GroupwiseRegistration filenames.txt parameters.txt

The first text file contains the paths of the input folder, output folder and the file names. The second text file
supplies the parameters of the registration algorithm and is explained more in detail in the next section. A
sample filenames.txt for setting up a registration with two input images is as follows

-i inputFolder/
-o outputFolder/

-f filename1
-f filename2

The registration code only outputs transform parameters. These transform parameters can be used to visual-
ize registration results. We provide ComputeOutputs command line module to visualize registration results
in 3D. This module outputs transformed images, mean and standard deviation images along with central
slices. ComputeOutputs takes the same input arguments as GroupwiseRegistration and can be used as
follows

ComputeOutputs filenames.txt parameters.txt

C.1 Registration Parameters

Registration parameters for each experiment can be found under corresponding folders in
Testing/Temporary. Here we briefly go over the registration parameters used in a non-rigid regis-

C.1 Registration Parameters 16

tration setting.

The metric type can be specified using the option -metricType. entropy option computes sum of univariate
entropies and variance option computes sum of variances along pixel stacks.

-metricType entropy

By default, global affine registration is performed. B-spline registration can be turned on by using the
-useBspline on option. -useBsplineHigh option specifies whether to use mesh refinement in the regis-
tration.

-useBspline on
-useBsplineHigh off

The initial size of the B-spline deformation field can be set using the following option. To capture anatomical
variations at different scales we start with a coarse size of 8 points and gradually increase the number of
control points.

-bsplineInitialGridSize 8

If -useBsplineHigh is turned on, the number of mesh refinements can be specified using the
-numberOfBsplineLevel option. After each level of B-spline registration the number of B-spline con-
trol points are doubled, e.g. 8→ 16→ 32 for a two level mesh refinement starting from an initial size of
8.

-numberOfBsplineLevel 2

For stochastic optimization we randomly subsample the image domain. Increasing the percentage of samples
increases the registration accuracy; however, it also increases the registration time. Empirically, we found
the following parameters as a good trade-off between registration accuracy and run-time.

-numberOfSpatialSamplesAffinePercentage 0.0025
-numberOfSpatialSamplesBsplinePercentage 0.0050
-numberOfSpatialSamplesBsplineHighPercentage 0.0200

For a successful registration, multi-resolution optimization plays a key role. For all experiments we used a
three level multi-resolution optimization. If the resolution of the input images are smaller than the data we
used (≈ 200×200×200) the number of multi-resolution levels can be decreased to two.

-multiLevelAffine 3
-multiLevelBspline 3
-multiLevelBsplineHigh 3

For optimization we used fixed number of iterations as the stopping criteria. The command line module
GroupwiseRegistration outputs metric values every ten iterations. These outputs can be used to check
the convergence of the algorithm. The number of iterations can be increased for higher registration accuracy.
During the tests we observed that the number of iterations should be increased with an increase in the number
of input images.

-optAffineNumberOfIterations 50
-optBsplineNumberOfIterations 75
-optBsplineHighNumberOfIterations 50

References 17

The initial step size of the gradient descent algorithm can be set using the following options. As we use line
search for the actual step size, the registration accuracy is relatively robust to step size.

-optAffineLearningRate 1e-4
-optBsplineLearningRate 1e4
-optBsplineHighLearningrate 1e4

An important parameter for itk::UnivariateEntropyMultiImageMetric is the width of the Gaussian
kernel to compute the entropy. We observed that approximately five percent of the range of the intensity
values work in practice. For intensity values ranging between 0-255 we used a value of 10.

-parzenWindowStandardDeviation 10

References

[1] K K Bhatia, J V Hajnal, B K Puri, A D Edwards, and D Rueckert. Consistent groupwise non-rigid
registration for atlas construction. In IEEE ISBI, 2004. 2.2, 2.2

[2] W R Crum, T Hartkens, and D L G Hill. Non-rigid image registration: Theory and practice. The
British Journal of Radiology, 77(140–153), 2004. 1

[3] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. John Wiley and Sons, 1973. 2.1

[4] L. Ibanez, W. Schroeder, L. Ng, and J. Cates. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-
10-6, http://www.itk.org/ItkSoftwareGuide.pdf, first edition, 2003. 3

[5] S Joshi, Brad Davis, Matthieu Jomier, and Guido Gerig. Unbiased diffeomorphic atlas construction
for computational anatomy. NeuroImage, 23:151–160, 2004. 3.1

[6] Stefan Klein, Marius Staring, and Josien P.W. Pluim. A comparison of acceleration techniques for
nonrigid medical image registration. In WBIR, pages 151–159, 2006. 3.1

[7] E. Miller, N. Matsakis, and P. Viola. Learning from one example through shared densities on trans-
forms. In IEEE CVPR, pages 464–471, 2000. 1, 2

[8] D. Rueckert and et al. Nonrigid registration using free-form deformations: Application to breast mr
images. IEEE TMI, 22:120–128, 2003. 2.2

[9] A Toga and P Thompson. The role of image registration in brain mapping. Image and Vision Comput-
ing, 19(3–24), 2001. 1

[10] Barbara Zitova and Jan Flusser. Image registration methods: A survey. Image and Vision Computing,
21(977–1000), 2003. 1

[11] Lilla Zollei, E. Learned-Miller, E. Grimson, and W. Wells. Efficient population registration of 3d data.
In Computer Vision for Biomedical Image Applications, ICCV, pages 291–301, 2005. 1, 2

