Label object representation and manipulation
with ITK

Gaétan Lehmann?

August 4, 2008

1INRA, UMR 1198; ENVA; CNRS, FRE 2857, Biologie du Développent et Reproduction, Jouy en
Josas, F-78350, France.

Abstract

Richard Beare has recently introduced a new filter to effitydabelize the connected components
with ITK, and has also proposed to use the-length encodingised in that filter to implement some
of the most useful binary mathematical morphology opegattite opening by attribute. Following that
idea, and after have searched a way to use the ITK’s spajedtstior this task, a new set of classes have
been developed to represent and manipulate the label inaagethe objects within them in ITK. Those
new classes have been used to implement several label imegepulation based on object attributes,
as well as the binary and label specialization of some madiiead morphology filters based on the
morphological reconstruction. This contribution come#wv@5 new classes, and should greatly enhance
the binary mathematical morphology in ITK.

All the source codes are provided, as well as a full set o§teistl several usage examples of the new

classes.
Contents
1 Introduction 2
2 Definitions 3
2.1 Label . . . 3
2.2 Labelimage. e 3
2.3 Binaryimage e e e e 3
2.4 Attribute. . . . L e 4
3 Existing classes and naming convention in ITK 4
4 Data representation 5
4.1 itk:LabelMap. e e 5
4.2 itk::LabelObject and its specializations, 5
itk::ShapeLabelObject attributes 6
itk::StatisticsLabelObject attributes. 7

4.3 itk::LabelObjectline e 8

5 General view of the usage 8
5.1 Generatingtheitk::LabelMap. 8
5.2 Valuating the attributes 9
5.3 Manipulating the itk::LabelMap. e 9
5.4 Generating an itk::Image from the itk::LabelMap. 9

6 Prebuilt mini-pipeline filters 11
6.1 Binaryfilters e 12
6.2 Labelfilters. L 12

7 Binary and label specialization of mathematical morpholagy filters 13

8 Computation details 13
8.1 Binaryimage moments e e e 13
8.2 RoUNANESS e e 15
8.3 Pixel'sneighborhood. 16

9 Usage examples 16
9.1 Prebuilt pipelines. 16

Binary shape opening e 16
Statistics relabel 17
Label shape keep Nobejcts. e 18
Binary fillholes e e 19
9.2 LabelObject and LabelMap manipulation. 20
AttributeLabelObject. e 20
Custom attribute accessor. 23
9.3 Reading attribute values. 25
9.4 Themaskfeatures. e 27
9.5 Afullpythonexample e 28

10 Threading support 31

11 In place filtering 32

12 Wrappers support 32

13 Known bugs and future work 33

14 Conclusion 33

15 Acknowledgments 33

1 Introduction

Identifying the objects in an image is a very common taslerofealized by producing an image of the same
size with a single pixel value per object. This image is chidabel image. There are several way to create

such image. It can be done by searching the connected comiganea binary image, it can be produced
directly by some algorithms, like the watershed transfdtroan even be simply done by hand, etc.

2 Definitions

In that article, some terms will be cited very frequently. illivy to define them, in the context of the image
analysis.

2.1 Label

A label is an identifier of something with the same caradiessn the image. Those caracteristics can be
whatever you want, for example, the range of pixel valuesstime object in sense of connected component,
etc. A label can be represented by anything and only need tanlmgie in the image. It doesn't even
require to be ordered. In practice, we choose to use theraltagmber types, for several reasons: they are
commonly used in image analysis, they efficiently reprensiemlabel in memory, and its easy to find the
next label by adding 1.

2.2 Label image

A label image is an image which contains several label pixédten, the labels are representing some
objects placed on a background, and so the label image maypesticular label for the background.

(a) Alabel Image. (b) The same image with colored labels

Figure 1: (a) the label image of connected components inr€@ub) is the same image with labels colored
with itk::LabelToRGBImageFilter

2.3 Binary image

A binary image is an image with two labels: a foreground ladoad a background label. In practice, the
binary images are using a pixel type able to store more thasettwo values. The foreground is thus defined

2.4 Attribute 4

with a particular label, and the other label in the image amslered as the background. A side effect of
that is that a label image can be considered as a binary ilmadeso, it let us manipulate a single object in
a label image.

(a) A simple binary image. (b) A binary image, or a label image?

Figure 2: (a) is a simple binary image. Usually, the whitesptxave the value 255, and the background the
value 0. (b) contains 3 values (0, 100 and 200). The foregtamatue must be defined by the user, either 0,
100 or 200, and the values which are not the foreground ateeibbackground.

2.4 Attribute

An attribute is a value of any type associated with a labetaft be for example the size of an object, the
mean of its pixels intensities, etc.

3 Existing classes and naming convention in ITK

In ITK, the label and the binary images are implemented asalsiitk::Image. The pixel types used are
most of the time integral, signed or unsigned, but may be loérotypes. Several definitions of a binary
image or used in ITK. Depending of the class which implemgrt binary image can be:

e All the pixels with a given value are in the foreground. Thieest are in the background. That's the
definition proposed in that article.

¢ All the pixels with a given value are in the background. Theeos$ are in the foreground.

e All the pixels greater than a value (zero by default, or theamef the maximum value in the im-
age and the minimum value in the image) are in the foregrourte other are in the background.
This definition is often used in the levelset framework, veharborder can be defined at a subpixel
resolution.

All those definitions should be uniformized to enhance ugpegence with ITK. In that article (and all the
others from the same author), the first one is the only one.used

The filters which are manipulating binary images are oftegfiped with the word "Binary”, to differenciate
the grayscale versions which don’t have a prefix. It seem ta tpaite good practice which have been kept
in that article.

The filter dedicated to the manipulation of label images hheeword "Label” somewhere in there name.
Again, it seem to be a good practice which have been kept trattiale.

4 Data representation

The label images are often used to represent the connectedooents of an image. In this contribution,
another representation has been chosen.

The objects contained in the image, as connected comparantye efficiently stored in memory as a set
of lines, using the run-length encoding: a starting poimtefach line, and the length of the line on a given
dimension (by convention, the dimension 0).

The image is a collection of those objects, and it also stomeesvalues of the image, like its size, its spacing,
etc.

4.1 itk::LabelMap

Theitk::LabelMap class is in charge of managing the collection of label okj@étthe image, as well as
storing the metadata associated with the image like thergpabe physical position - all the metadata found
in itk::Image It has been chosen, to simplify the implementation anddhltst and because the feature is
rarely useful in practice, to not implement the conditiobatkground in thétk::LabelMap class. All the
images represented byitk::LabelMap object have a background. If the user want to manipulate anch
image with no background, he/she has to avoid the backgrtaled, for example by using a larger label

type.

Theitk::LabelMapprovide a part of the API of thigk::Imageclass, and so can be manipulated as an irhage
in many cases. The performance can be very different howbeeause of the very different data structure
used.

Theitk::LabelMapis a templated class, which take a single parameter: thedy@bel objectstored by
that class. The dimension of the image is took fromléiee| objectclass, and thus don’t need to be defined
as template parameter of that class. The pixel type of thgénaédso comes from tHabel objectclass.

4.2 itk::LabelObject and its specializations
Theitk::LabelObjectclass represent the label objects. It has two main features:

¢ It manage the set pixels which compose the object. The patelstored using the run-length encod-
ing.

e |t has a label.

1The classes before threvision 4were implemented with the conditional background featu.the related code has been
removed bitween revision 3 and revision 4.
2|t doesn’t support the itk::Image iterators though

4.2 itk::LabelObject and its specializations 6

No attribute — excepted the label — are stored in this clab&ghwean thus be seen as the base class for the
objects with attributes, or which can be used when no ategare required.

Theitk::LabelObjectclass is templated and takes two required template paresnete

¢ the type of the label;

e the dimension of the image.

Several subclasses are provided with that contributioopter the most common usages of the label objects
manipulation:

e itk::AttributeLabelObjectis able to store a generic attribute. It is generic in the sehat its type is
given in template parameter.

e itk::ShapelLabelObjeatontains numerous attribute related to the shape of thédbfect. Computing
the values of those attributes does not require a featurgama

e itk::StatisticsLabelObjectontains numerous statistics about the grey values of arteaiage in
the same place than the label object. Computing the valud®eé attributesloesrequire a feature
image.

The classe#tk::ShapelLabelObjecanditk::StatisticsLabelObjechave been created to reduce the number
of filters made to manipulate the attributes, and to make tmeputation of all the set of attributes much
efficient.

The scalar values of the attributes of titke:ShapelLabelObjecand theitk::StatisticsLabelObjectlasses
are often given both in pixel and in physical units, in ordebt able to give some parameter independant
of the image spacing.

The position in the images are given in index position whenhbsition is the exact position of a pixel
(for example, the position of the maximum value in the featimage) or in physical position when the
position is given at a subpixel resolution (for example, teatroid). In both case, the position can eas-
ily be converted to the other representation with itkeLabelMap:: TransformPhysicalPointTolndexénd
itk::LabelMap::TransformindexToPhysicalPointf)ethods.

Both itk::ShapelLabelObjectind itk::StatisticsLabelObjectare templated classes. They take the same
template parameters than thtk::LabelObject class. The two first template parameters of the
itk::AttributeLabelObjectclass or the same than the ones ofittha_abelObjectclass. The third one is
the attribute type.

itk::ShapeLabelObject attributes

e Sizeis the size of the object in number of pixels. Its typeimsigned long

e PhysicalSizds the size of the object in physical unit. It is equal to Bigemultiplicated by the
physical pixel size. Its type idouble

3In the early stage of development, all the attributes wereaged as iritk::AttributeLabelObjectand a set of 8 classes made
to manipulate a single attribute were provided, leadingto@e number of classes.

4.2

itk::LabelObject and its specializations 7

Centroidis the position of the center of the shape in physical coettés It is not constrained to
be in the object, and thus can be outside if the object is noteco Its type isitk::Pointj double,
ImageDimension ¢,

Regionis the bounding box of the object given in the pixel coordisatThe physical coordinate can
easily be computed from it. Its typeiik::ImageRegionj ImageDimension ¢,

RegionElongationis the ratio of the longest physical size of the region on oimeedsion and its
smallest physical size. This descriptor is not robust, anghirticular is sensitive to rotation. Its type
is double

SizeRegionRatits the ratio of the size of the object region (the bounding)tzmd the real size of the
object. Its type iglouble

SizeOnBorderts the number of pixels in the objects which are on the bordé&neimage. A pixel on
several borders (a pixel in a corner) is counted only one ,tsoethe size on border can't be greater
than the size of the object. This attribute is particulargfukto remove the objects which are touching
too much the border. Its type imsigned long

PhysicalSizeOnBordes the physical size of the objects which are on the bordehefrhage. In 2D,

it is a distance, in 3D, a surface, etc. Contrary toRtgsicalSizattribute which is directly linked to
the Size this attribute is not directly linked to theizeOnBordeattribute. This attribute is particulary
useful to remove the objects which are touching too much tddy. Its type iglouble

FeretDiameteiis the diameter in physical units of the sphere which inclalii¢he object. The feret
diameter is not computed by default, because of its high coation. Its type islouble

BinaryPrincipalMomentsontains the principal moments. Its typeitls:Vectorj double, ImageDi-
mension ¢,

BinaryPrincipalAxescontains the principal axes of the object. Its typetks:Matrixj double, Im-
ageDimension, ImageDimension ¢,

BinaryElongationis the elongation of the shape, computed as the ratio of thedaprincipal moment
by the smallest principal moment. Its value is greater orétul. Its type iddouble

EquivalentRadiuss the equivalent radius of the hypersphere of the same lsiethe label object.
The value depends on the image spacing. Its typeible

EquivalentPerimeters the equivalent perimeter of the hypersphere of the sameethan the label
object. The value depends on the image spacing. Its typetkle

EquivalentEllipsoidPerimeteis the size of the ellipsoid of the same size and the sameagatal the
axes than the label object. The value depends on the imagmgpdts type isitk::Vectorj double,
ImageDimension .¢,

itk::StatisticsLabelObject attributes

e Minimumis the minimum value in the feature image for the object. \etis the feature image pixel

type.

4.3

itk::LabelObjectLine 8

4.3

MinimumIndexis the index position in the image where the first minimum waisnt. Its type
isitk::Indexj ImageDimension.¢,

Maximumis the maximum value in the feature image for the object.yitg iis the feature image pixel
type.

MaximumIndexs the index position in the image where the first maximum wamé. Its type
isitk::Indexj ImageDimension.¢,

Meanis the mean of the pixel values in the object. Its typdasble

Sumis the sum of all the pixel values in the objects. Its typdasble

Sigmais the standard deviation of the pixels values in the objdtdsype isdouble
Varianceis the variance of the pixels values in the objects. Its tgmouble
Medianis the median of the pixels values in the obejct. Its typaoigble
CenterOfGravityis the center of gravity of the object. Its typeitis.:Pointj double ¢,
Kurtosisis the kurtosis of the pixel values in the objects. Its typdasble
Skewnesis the skewness of the pixel values in the objects. Its typeidle

PrincipalMomentscontains the principal moments. Its typeitls:Vectorj double, ImageDimension
ér

PrincipalAxescontains the principal axes of the object. Its typ@gksMatrixj double, ImageDimen-
sion, ImageDimension. ¢,

Elongationis the elongation of the shape, computed as the ratio of tigesaprincipal moment by
the smallest principal moment. Its value is greater or etpuallts type sdouble

Histogramis the histogram of the pixels covered by the label objechanfeature image. Its type is
itk::Histogramj double ¢, *

itk::LabelObjectLine

itk::LabelObjectLineis the object used to store the position and the size of asslig.

5 General view of the usage

5.1 Generating the itk::LabelMap

Theitk::LabelMapclass provide some methods to fill the image "by hand”, likeukualSetPixel(Jmethod.
However, the most efficient way is to convert a label image binary image stored in aitk::lmageto a
itk::LabelMap, by usingitk::BinarylmageToLabelMapFilteor itk::LabellmageToLabelMapFilter

5.2 Valuating the attributes 9

5.2 Valuating the attributes

The label objects produced by those filters have no attribatee set, and thus, the attributes must be
valuated. Some filters are provided for the most common used:o

e itk::ShapeLabelMapkFilteto fill the attributes of thatk::ShapelLabelObjest

e anditk::StatisticsLabelMapFiltetto fill the attributes of thetk::StatisticsLabelObjest

For theitk::AttributeLabelObjectclass or other classes, the user must set the value by hjrfaretixample
by implementing a subclass itk::InPlaceLabelMapFilter

5.3 Manipulating the itk::LabelMap

Once created and, optionally, valuated, several filterpeoeided to manipulate thigk::LabelMap

e An opening can be performed with ti@@peningLabelMapFilteclasses. Those classes will remove
all the objects with an attribute value lower or greater thagiven value. Because we often can use
some criteria which have not been used during the segmentatocedure, like the size of the object,
the mean value of its pixels, etc., the attribute openingftisnoa very efficient way to enhance a
segmentation. For example, after a thresholding of a ged¢smage, the objects too small or too
big to be of interest can be removed that way. The chttsbuteSelectionLabelMapFilteand its
subclasd.abelSelectionLabelMapFiltetan be used to remove some objects based on their attribute
value, even if the attribute type has no ordering property.

e A fixed number of objects can be kept, with tKeepNObjectsLabelMapFiltetlasses. They are
chosen according to the value of their attribute. The useicbaose to keep the ones with the highest,
or with the lowest attribute values.

e The objects can be relabeled, with tRelabelLabelMapFilteclasses. The order of the label is de-
pendant of the value of the attribute. Again, the user cashido have the objects with the highest
attribute value in the first labels, or to have the objectdhwiie lowest attribute values in the first
labels.

e The region covered by thik::LabelMapcan be changed wiiltk::ChangeRegionLabelMapFilteand
its subclassesitk::CropLabelMapFilter, itk::PadLabelMapFilter RegionFromReferenceLabelMap-
Filter anditk::AutoCropLabelMapFiltey.

It can also be useful to simply get the attribute values aasat with the objects. In that case, the classes
provided in with that article can be used in placdtkfLabelStatisticsimageFilteror to get some data about
the shape or the position of the object.

5.4 Generating an itk::Image from the itk::LabelMap

Once the manipulation of the objects is done, it can be usefyd back to a more classik::Image Several
classes are provided to do that:

5.4 Generating an itk::Image from the itk::LabelMap 10

(a) Alabel image (b) All the objects smaller than 1000 pixels re-
moved

(c) All the objects greater than 1000 pixels (d) All the objects with roundness smaller than 0.8
moved removed

(e) Allthe objects with elongation smaller than (f All the objects with perimeter smaller than 100
removed removed

Figure 3. Some example of opening with different attributel @parameters. Note that the labels are kept
unchanged in the output image.

11

e Theitk::LabelMapToLabellmageFilteclass simply convert @k::LabelMapto a label image stored
in aitk::Image.

e The itk::LabelMapToBinarylmageFilterput all the objects in the foreground of a binary im-
age stored in a itk:lmage. It is intended to be used with amgen produced by the
itk::BinarylmageToLabelMapFilterThe background values of the original image can also benecst
by this filter.

e The itk::LabelMapMaskimageFilterclass can be used to mask an image with the objects of the
itk::LabelMap. With that filter, the image can be cropped to contain onlyriba-masked zorfe,
or the non-masked zone padded by a user defined number of.pixel

e Theitk::LabelMapToAttributelmageFilteproduce aritk::Image with the value of the attribute of the
objects of thatk::LabelMap. This filter is mostly useful to have a global view of the &iirie values
in the image.

e The LabelMapToRGBImageFiltaoroduce a coloitk::Image with itk::RGBPixelas pixel type. The
label objects are in color, as in Figule This class is mostly useful for a quick visual validation
without going outside ITK.

e Finally, theLabelMapOvelaylmageFiltgoroduce a coloitk::Imagewith itk::RGBPixelas pixel type.
The label objects are in color on top of a grayscale imagey &gure5. This class is mostly useful
for a quick visual validation without going outside ITK.

6 Prebuilt mini-pipeline filters

The general view of the previous section show a very commoy tvaise those classes. To make them
easier to use, some prebuilt classes have been made, tonpéni mini-pipeline:

e creation of thatk::LabelMapfrom anitk::lmage

¢ valuation of the attribute(s) of the objects,

e filtering of theitk::LabelMap,

e creation of aritk::Image from the filtereditk::LabelMap,

with a specific attribute.

Also, when using thétk::ShapelLabelObjecbr theitk::StatisticsLabelObjectlass, we usually want them
to be valuated. Some classes are provided to perform thepigaline:

e creation of thatk::LabelMapfrom anitk::Image

e valuation of the attributes of the objects

with theitk::ShapeLabelObjectr theitk:: StatisticsLabelObject

Because the objects are often get from a label image or fromambimage, those filters have been made
for binary, and label images.

4 The code used to produce the output region based on the tarfitére image is partially copied from a contribution of Frete
Cechht t p: // www. vi si on. ee. et hz. ch/ ~pcech/ it kAut oCropl mageFilter/ .

http://www.vision.ee.ethz.ch/~pcech/itkAutoCropImageFilter/

6.1 Binary filters

12

6.1 Binary filters

The filte

o itk

o itk

The filte

e itk
o itk
o itk
o itk
e itk

o itk

rs to produce valuated attributes:

::BinarylmageToShapelLabelMapFilter

::BinarylmageToStatisticsLabelMapFilter

rs to fully hide the usage of the label objects:

::BinaryAttributeKeepNObjectsimageFilter
.:BinaryAttributeOpeninglmageFilter
.:BinaryShapeKeepNObjectsimageFilter
::BinaryShapeOpeningimageFilter
::BinaryStatisticsKkeepNObjectsimageFilter

::BinaryStatisticsOpeninglmageFilter

6.2 Label filters

The filte

o itk

o itk

The filte

o itk

o itk::
o itk:
e itk:
o itk::
o itk::
o itk:

o itk:

rs to produce valuated attributes:

::LabellmageToShapelLabelMapFilter

::LabellmageToStatisticsLabelMapFilter

rs to fully hide the usage of the label objects:

::LabelAttributeKeepNObjectsImageFilter
LabelAttributeOpeninglmageFilter
LabelShapeKeepNObjectsimageFilter
:LabelShapeOpeningimageFilter
LabelStatisticskeepNObjectsimageFilter
LabelStatisticsOpeninglmageFilter
:ShapeRelabellmageFilter

:StatisticsRelabellmageFilter

13

7 Binary and label specialization of mathematical morphology filters

All the following filters are using a morphological reconsttion, implemented internally as an attribute
opening with thetk::AttributeLabelObjectclass. Some binary filters are implemented:

e itk::BinaryClosingByReconstructionimageFilter
e itk::BinaryFillholelmageFilter

e itk::BinaryGrindPeakimageFilter

e itk::BinaryOpeningByReconstructionimageFilter
e itk::BinaryReconstructionByDilationimageFilter

e itk::BinaryReconstructionByErosionimageFilter
and some label filters, useful when the label objects areaxind, or when we want to avoid loosing the
label by using a binary filter. Because the notion of recartsion by erosion is difficult with labels, only a
few filters are implemented:

e itk::LabelReconstructionByDilationimageFilter

8 Computation details

8.1 Binary image moments

Central image moments for grayscale images are usually ctad@s

Cm.j = % —Cg.ng (l)
S = (1(p)-pi-pj) 2
j pgb j

where§ ; is the central momenD is the domain of definition of the imadel (p) is the pixel value of the

image at the positiomp, 0 <i < n, 0<i < n, nis the image dimensiory; is the physical position on the
axisi, M is the total mas<Cgis the center of gravity. With binary imagdgp) is either O ifp is outside the

object, or 1 ifpis inside.

The complexity iSO(Np), whereNg is the number of pixels in the image.

With the run-length encoding of the binary objects, the clexip/ can be decreased @(N,), whereN,,
is the number of lines in the object.

S = ED(I(p)-pi.pj) (3)

pe

= p;(pi.pj)
= L;%(pi-pj)

8.1 Binary image moments 14

Where O is a binary object in the image, andis a line of the objec, encoded with the run-length
encoding. In a linep; is a constant if > 0, s0,§ ; can be written:

> (IL.pi-pj) if i >0andj >0,

LeO

S <pi. > po> ifi>0andj=0,

SLj _ LeO peL (4)

> <pj. > po> ifi=0andj >0,

L€O peL

3 3P ifi=j=0.

LEOpeL

It is known that

n
ZJX _ n(n+1) -
& 2
d n(n+1)(2n+1)

B ¢

In order to use those formulae in the computatiorggf the physical position has to be expanded in:
Pj = 0j + S;ji; (7)

whereo; is the origin of the line on the axig s; is the spacing on the axis andi; is the index on the axis
j.

With equations/, 5 and6, it is easy to remove the loop in the computation of the sumhgkal positions
of the axis O:

IL—-1

Po = (00 + Soio) (8)
-1
= lL.og+% Z i
i9=0

= |L<Oo+w>

wherel_ is the length of the line (in pixels), and in the sum of the sgqu the physical positions of the axis
0:

8.2 Roundness 15

IL—-1
P = Y (0o+soio)? (9)
pe io0=0
IL—-1
= S (05+S5i§ + 200%0i0)
io=0
-1 IL—-1
= 10§+ Y i5+20050 Y o
Io 0 Io 0

_ |L.05+%< |L—1)|E(2|L—1)> + 08, (@)

= I (0(2)+So(|L—1) <W+Oo>>

Finally, S j, used in the computation of the central moments, is compaged

(||_ pi-p;) ifi >0andj >0,
(p (o0 + 2052 if i > 0andj =0,

S Leo(p, I (o0+ 215-2)) if i — 0 andj > O, (10)
(IL (G+sl-1) (222 +00))) ifi=j=0.

8.2 Roundness

The computation works with any image dimension, and so usalé#iinition of volume and area of an
hypersphere in any dimension.

Tern
rs+1

whereV, is the volume of the hypersphends the image dimension, amds the radius of the hypersphere.

Vn(r) = (11)

n (5)! if nis even
<2) {\/ﬁz%”n/z if nis odd (12)

n!! is the double factoria) defined as:

Al — 1 _|fn<2, (13)
n(n—2)1 if n>2

An(r) = — (14)

8.3 Pixel's neighborhood 16

whereA, is the area of the hypersphere.

R— 1/ (15)

whereR is the roundnessa is the measured area of the objecind ther is the radius of an hypersphere
with the same volume than the object, computed using equafio

8.3 Pixel's neighborhood
The run-length encoding does not allow an easy access teifklors of a given pixel. If the neighborhood
of all the pixels must be accessed, it is much easier to cobkeritk::LabelMap to atk::Image with

the itk::LabelMapToLabellmageFilterand use that image to access the neighbors. That's whani do
in itk::ShapelLabelMapFilteto compute the maximum Feret diameter, and the perimetienatsbn.

9 Usage examples

9.1 Prebuilt pipelines
Binary shape opening

The source code is available in the filmary_shape.opening.cxx

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkSinpl eFilterWatcher.h"

#incl ude "itkBi naryShapeQpeni ngl mageFilter.h"

int min(int argc, char * argv[])

{

if(argc '=9)
{
std::cerr << "usage: " << argv[0] << " input output foreground background |ambda reverseQrdering c
[l std::cerr << " " << std::endl;
exit(1);
}

const int dim= 3,
typedef itk::lmage< unsigned char, dim> |Type;

typedef itk::lmageFil eReader< | Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();

SMore details about perimeter estimation will be publisheaother article.

9.1 Prebuilt pipelines 17

reader->SetFi | eNane(argv[1]);

typedef itk::BinaryShapeQpeni ngl mageFilter< | Type > Bi naryQpeni ngType;
Bi nar yQpeni ngType: : Poi nter opening = Bi naryQpeni ngType: : New() ;

openi ng->Set | nput (reader->Cet Qut put());

openi ng- >Set For egr oundVal ue(atoi (argv[3]));

openi ng- >Set Backgr oundVal ue(atoi (argv[4]));

openi ng- >Set Lanbda(atof (argv[5]));

openi ng- >Set Rever seOrdering(atoi(argv[6]));

openi ng- >Set Ful | yConnected(atoi (argv[7]));

openi ng->Set Attribute(argv[8]);

i tk::SinpleFilterWatcher watcher(opening, "filter");

typedef itk::lmageFileWiter< |Type > WiterType;
WiterType::Pointer witer = WiterType:: New();
writer->Setlnput(opening->GetCQutput());
writer->SetFileNane(argv[2]);

writer->Update();

return 0;

Statistics relabel

The source code is available in the fitistics_relabel.cxx

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkSinpl eFilterWatcher.h"

#include "itkStatisticsRel abel I nageFilter.h"

int main(int argc, char * argv[])

{
if(argc '=8)
{
std::cerr << "usage: " << argv[0] << " input input output background useBg reverseOrdering attribut
[l std::cerr << " " << std::endl;
exit(1);
}

const int dim=3;

typedef itk::lmage< unsigned char, dim> |Type;
typedef itk::lmgeFil eReader< | Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->SetFi | eNane(argv[1]);

Reader Type: : Poi nter reader2 = Reader Type:: New();
reader2->Set Fil eNane(argv[2]);

9.1 Prebuilt pipelines 18

typedef itk::StatisticsRel abellmageFilter< |Type, |Type > Rel abel Type;
Rel abel Type: : Pointer relabel = Rel abel Type:: New();

rel abel - >Set | nput (reader->CGetQutput());

rel abel - >Set Feat urel mage(reader2->CGet Qut put ());

rel abel - >Set Backgr oundVal ue(atoi (argv[4]));

rel abel - >Set Rever seOrdering(atoi(argv[6]));

rel abel ->Set Attribute(argv[7]);

itk::SinpleFilterWatcher watcher(relabel, "filter");

typedef itk::lmageFileWiter< | Type > WiterType;
WiterType::Pointer witer = WiterType::New();
writer->Setlnput(relabel->GetQutput());
writer->SetFileNanme(argv[3]);

writer->Update();

return 0;

Label shape keep N obejcts

The source code is available in the fiddbel_shape keep.n_objects.cxx

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkSinpl eFilterWatcher.h"

#include "itkLabel ShapeKeepNbj ect sl mageFilter. h"

int min(int argc, char * argv[])

{
if(argc '=7)
{
std::cerr << "usage: " << argv[0] << " input output background nb reverseOrdering attribute" << st
Il std::cerr << " : " << std::endl;
exit(l);
}

const int dim=3;
typedef itk::lmage< unsigned char, dim> |Type;

typedef itk::lmageFileReader< |Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->SetFi | eNane(argv[1]);

typedef itk::Label ShapeKeepNQbj ect sl mageFilter< | Type > Label Openi ngType;
Label Openi ngType: : Poi nter opening = Label Openi ngType: : New();

openi ng- >Set | nput (reader->Get Qutput ());

openi ng- >Set Backgr oundVal ue(atoi (argv[3]));

openi ng- >Set Nunber O Cbj ect s(atoi (argv[4]));

openi ng- >Set Rever seOrdering(atoi (argv[5]));

9.1 Prebuilt pipelines

openi ng->Set Attribute(argv[6]);
itk::SinpleFilterWatcher watcher(opening, "filter");

typedef itk::lmageFileWiter< |Type > WiterType;
WiterType::Pointer witer = WiterType:: New();
writer->Setlnput(opening->GetQutput());
writer->SetFileNane(argv[2]);

writer->Update();

return 0;

Binary fill holes

The source code is available in the filmary_fillhole.cxx

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkComrmand. h"

#include "itkSinpl eFilterWatcher.h"

#include "itkLabel Object.h"

#include "itkLabel Map. h"
#include "itkBinaryFillhol el mageFilter.h"

int main(int argc, char * argv[])

{
if(argc !'=5)
{
std::cerr << "usage: " << argv[0] << " input output conn fg" << std::endl;
Il std::cerr << " : " << std::endl;
exit(1);
}

const int dim= 2;
typedef itk::lmge< unsigned char, dim> |Type;

typedef itk::lmgeFileReader< | Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->Set Fi | eNane(argv[1]);

reader - >Updat e() ;

typedef itk::BinaryFillholelmageFilter< | Type > |2LType;
[2LType: : Poi nter reconstruction = |2LType:: New();
reconstruction->Set|nput(reader->CGetQutput());
reconstruction->Set Ful | yConnected(atoi(argv[3]));
reconst ruction- >Set ForegroundVal ue(atoi (argv[4]));
/1 reconstruction->Set BackgroundVal ue(atoi(argv[5]));
itk::SinpleFilterWtcher watcher(reconstruction, "filter");

typedef itk::lImageFileWiter< |Type > WiterType;

9.2 LabelObject and LabelMap manipulation

20

WiterType::Pointer witer = WiterType::New();

writer->Setlnput(reconstruction->GetCQutput());

witer-
witer-

return

>Set Fi | eName(argv[2]);
>Updat e();
0;

9.2 LabelObject and LabelMap manipulation

AttributeLabelObject

Theitk::AttributeLabelObjectet the user specify the type of the attribute he wants toaisé thus is the good choice
to implement a new attribute.

The source code is available in the fjeneric_attribute.cxx

First we include the headers of the class we will use, andegesscommand line.

#i ncl ude
#i ncl ude

#i ncl ude
#i ncl ude

#i ncl ude
#i ncl ude
#i ncl ude

#i ncl ude

#i ncl ude
#i ncl ude

"itkl mageFi | eReader . h"
"itklmageFileWiter.h"

"itkAttributelLabel Object.h”
"itkLabel Map. h"

"itkLabel | mageToLabel MapFilter. h"

"I tkAttribut eKeepNObj ect sLabel MapFilter. h"

"itkAttribut eOpeni ngLabel MapFilter.h"
"itkAttribut eRel abel Label MapFilter.h"

"itkLabel MapToAttri but el mageFilter.h"
"itkLabel MapToLabel I rageFilter. h"

int main(int argc, char * argv[])

{
if(argc '=10)
{
std::cerr << "usage: " << argv[0] << " [abel
[l std::cerr << " " << std::endl;
exit(1);
}

input attr keep open rel abel

Declare the dimension used, and the type of the image fot iswpai output.

const int dim= 2;
typedef unsigned char PType;
typedef itk::lmge< PType, dim > |Type;

bg lanbda nb" << std:: enc

The AttributeLabelObject class take 3 template parametiees?2 ones from the LabelObject class, and the type of the
attribute associated with each node. Here we have chosenbdeddVe then declares the type of the LabelMap with
the type of the label object.

9.2 LabelObject and LabelMap manipulation 21

typedef itk::AttributelLabel Cbject< unsigned long, dim double > Label Object Type;
typedef itk::Label Map< Label Chject Type > Label MapType;

We read the input images.

typedef itk::lmgeFil eReader< | Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->SetFi | eNane(argv[1]);

Reader Type: : Poi nter reader2 = Reader Type:: New();
reader2->Set Fi | eNane(argv[2]);

And convert the label image to a LabelMap.
typedef itk::Label | mageToLabel MapFilter< |Type, Label MapType > |2LType;
[2LType: : Pointer i2l = 12LType:: New();
i 2 ->Set | nput(reader->GetQutput());
i 21 - >Set BackgroundVal ue(atoi(argv[7]));

The next step is made outside the pipeline model, so we calatéy) now.

i 2l ->Updat e() ;
reader 2- >Updat e() ;

Now we will valuate the attribute. The attribute will be theam of the pixels values in the 2nd image. Note that the
StatisticsLabelObject can give us that value, without hg¢o code that by hand - that's an example.

Lets begin by declaring the iterator for the objects in thag®, and get the object container, to reuse it later.

Label MapType: : Label Obj ect Cont ai ner Type: : const iterator it;
Label MapType: : Pointer |abel Map = i2l->Cet Qut put();
const Label MapType: : Label Obj ect Cont ai ner Type & | abel Obj ect Cont ai ner = | abel Map- >Cet Label Qbj ect Cont ai r

Now iterate over all the objects in the image.

for(it = |abel bjectContainer.begin(); it !=|abel ObjectContainer.end(); it++)
{

The label is there if we need it, but it can also be found atll@abgect-¢ GetLabel().

const PType & label = it->first;
Label Cbj ect Type * | abel Object = it->second;

Init the variables used for the computation.

doubl e nean = 0;
unsi gned long size = 0;

Create the iterator for the lines, and iterate over them

9.2 LabelObject and LabelMap manipulation 22

Label Qbj ect Type: : Li neCont ai ner Type: : const iterator |it;
Label Qbj ect Type: : Li neCont ai ner Type |ineContainer = | abel Cbject->CGet Li neContai ner();

for(lit = lineContainer.begin(); lit !'=1lineContainer.end(); lit++)
{
const Label MapType:: I ndexType & firstldx = |it->Getlndex();
const unsigned long & length = lit->GetLength();

size += length;
Then iterate over all the pixels in the line, and get the pigdlies in the feature image to compute their mean.

long endldx0 = firstldx[0] + length;

for(Label MapType:: I ndexType idx = firstldx; idx[0]<endldx0; idx[O0]++)
{
mean += reader 2->CGet Qut put ()->Cet Pi xel (idx);
}

}

Complete the compuation of the mean, and set it as attiblile ¥ar the current object.

mean /= size;
| abel Cbj ect->Set Attribute(nmean);

The LabelObject class provides a Print() method to dispgkivars.
| abel Chj ect->Print(std::cout);

}

Now that the objects have their attribute, we are free to puate them with the common filters, or by hand. The
default accessor (AttributeLabelObject) is the wright @ieen using AttributeLabelObject so we don't have to specify
it. A different one can be used if needed though.

typedef itk::AttributeKeepNbjectsLabel MapFilter< Label MapType > KeepType;
KeepType: : Poi nter keep = KeepType:: New();

keep->Set I nput (| abel Map);

keep->Set ReverseOrdering(true);

keep- >Set Nunber Of Qbj ect s(atoi (argv[9]));

Prevent the filter to run in place, so the input image is not ifiext!
keep->Set I nPlace(false);

typedef itk::AttributeQpeningLabel MapFilter< Label MapType > Qpeni ngType;
Qpeni ngType: : Poi nter opening = Openi ngType: : New() ;

openi ng->Set | nput (| abel Map);

openi ng- >Set Lanbda(atof (argv[8]));

openi ng->Set I nPl ace(fal se);

typedef itk::AttributeRelabel Label MapFilter< Label MapType > Rel abel Type;
Rel abel Type: : Pointer relabel = Rel abel Type:: New();

rel abel ->Set I nput (| abel Map);

rel abel ->Set I nPlace(false);

9.2 LabelObject and LabelMap manipulation 23

The attribute values can be put directly in a classic image.

typedef itk::Label MapToAttributel mageFilter< Label MapType, |Type > A2l Type;
A2l Type: : Pointer a2i = A2l Type:: New();
a2i->Setlnput(|abel Map);

Or the label collection can be converted back to an label anagto a binary image (not shown here)

typedef itk::Label MapToLabel | nageFi | ter< Label MapType, |Type > L2l Type;
L2l Type:: Pointer |2i = L2 Type:: New();

Finally, write the results

typedef itk::lmageFileWiter< | Type > WiterType;
WiterType::Pointer witer = WiterType:: New();

writer->Setlnput(a2i->GetCQutput());
writer->SetFileNane(argv[3]);
writer->Update();

witer->Setlnput(|2i->GetQutput());

| 2i - >Set | nput (keep->Get Qutput ());
writer->SetFileName(argv[4]);
writer->Update();

| 2i - >Set | nput (openi ng->CGet Qut put ());
writer->SetFileNane(argv[5]);
writer->Update();

| 2i ->Set I nput (rel abel ->CGet Qutput());
writer->SetFileNanme(argv[6]);
writer->Update();

return 0;

Custom attribute accessor

This example shows how to use the LabelMap classes to renfidlie abject with a bounding size smaller (or greater)
than a given value on the z axis. The attribute we are intedestalready computed yhapelLabelMapFilteand
stored inShapeLabelObjectt is not usable as is however, because it is part of a muttanent attributeRegion

To be able to use it with the standard classes, we have todeawi accessor which can be used by the opening filter.
The source code is available in the Sienple_generic_attribute.cxx

First include the classes we’ll use

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkSinpl eFilterWatcher.h"

#include "itkLabel | mageToShapeLabel MapFilter.h"

9.2 LabelObject and LabelMap manipulation 24

#include "itkAttributeQpeni ngLabel MapFilter.h"
#include "itkLabel MapToLabel | mageFilter.h"

Now we can declare the custom accessor type, which will be bgehe opening filter.

tenpl ate< class TLabel Obj ect >
class | TK_ EXPORT Last Di nesi onRegi onSi zeChj ect Accessor

{
public:

The declaration ofttributeValueTypé mandatory. It is used internally in the opening filter tdile the type of the
lambda valueAttributeValue Typshould be the same as the type returned by the operator(poheth

typedef unsigned |ong AttributeVal ueType;

operator()is the core of the accessor. It takes a label object as paggra@id return the attribute of interest. Some
computations can be done inside the accessor method, Inghbeld be as fast as possible, becayserator()may

be called many time by some filters. If an attribute value sak®@e to compute, it should rather be computed once
for all and stored in a new attribute. In that case, there isoraputation at all, only an access to a value hidden in a
multicomponent attribute, so things are very fast.

inline const AttributeVal ueType operator()(const TLabel Object * |abel Object)

{
return | abel Obj ect - >CGet Regi on(). Get Si ze() [TLabel Cbj ect: : I mageDi mensi on- 1] ;

}
}s

Now the main program. First the usual validation of the nundf@rguments.

int min(int argc, char * argv[])

{
if(argc '=6)
{
std::cerr << "usage: " << argv[0] << " input output bg lanbda reverse" << std::endl;
[l std::cerr << " : " << std::endl;
exit(1);
}

Let's declare the dimension used, and the type of the inpagan

const int dim=3;
typedef unsigned char PType;
typedef itk::lmge< PType, dim > |Type;

We read the input image.
typedef itk::lmgeFil eReader< | Type > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->SetFi | eNane(argv[1]);

And convert it to aLabelMap with the shape attributes computed. We use the default ¢tddpect type provided by
LabellmageToShapeLabelMapFilter

9.3 Reading attribute values 25

typedef itk::Label | mageToShapeLabel MapFilter< |Type > |2LType;
[2LType: : Pointer i2l = 12LType:: New();

i 2 ->Set | nput(reader->GetQutput());

i 21 - >Set BackgroundVal ue(atoi(argv[3]));

The opening filter is declared with our custom accessor tygpgeaond template argument, so it will be able to user
our custom attribute to make the opening.

typedef LastDi mesi onRegi onSi zeQhj ect Accessor< | 2LType: : Label Obj ect Type > Accessor Type;

typedef itk::AttributeCOpeningLabel MapFilter< |2LType:: QutputlnageType, AccessorType > Qpeni ngType;
Qpeni ngType: : Poi nter opening = Openi ngType: : New() ;

openi ng->Set I nput (i2l->CetQutput ());

openi ng- >Set Lanbda(atof (argv[4]));

openi ng- >Set Rever seOrdering(atof (argv[5]));

i tk::SinpleFilterWtcher watcher(opening, "filter");

The label map is then converted back to an label image.

typedef itk::Label MapTolLabel | nageFi | ter< |2LType:: Qut put | mageType, |Type > L2l Type;
L2l Type:: Pointer |2i = L2 Type:: New();
| 2i ->Set | nput (opening->CGet Qut put ());

Write the result to the disk.

typedef itk::lmgeFileWiter< |Type > WiterType;
WiterType::Pointer witer = WiterType::New();
writer->Setlnput(|2i->GetQutput());
writer->SetFileNanme(argv[2]);

writer->Update();

Finally, print all the label objects after the opening, t@ch everything has been done right.

openi ng- >Get Qut put () - >Pri nt Label Obj ect s();
std::cout << "Nunber of objects after the opening: " << opening->GCet Qut put ()->Get Number Of Label Obj ect ¢

return 0;

}

9.3 Reading attribute values

In that example, we will read a binary image, and get sometobates about the obejcts contained in that image. The
source code is available in the fadtribute_values.cxx

First include the classes we'll use

#include "itkl mageFil eReader. h"

#include "itkShapeLabel Ooject. h"

#include "itkLabel Map. h"

#include "itkBinaryl mageToLabel MapFilter.h"
#include "itkShapeLabel MapFilter.h"

int main(int, char * argv[])

{

const int dim= 2;

9.3 Reading attribute values 26

then declare the type of the inputimage

typedef unsigned char Pixel Type;
typedef itk::lmge< Pixel Type, dim> | mgeType;

read the inputimage

typedef itk::|mageFil eReader< |mageType > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->SetFi | eNane(argv[1]);

define the object type. Here the ShapelLabelObject type isechim order to read some attribute related to the shape
of the objects (by opposition to the content of the objecthwhe StatisticsLabelObejct).

typedef unsigned |ong Label Type;
typedef itk::ShapelLabel Object< Label Type, di m> Label Cbject Type;
typedef itk::Label Map< Label Cbject Type > Label MapType;

convert the image in a collection of objects

typedef itk::Binaryl mageToLabel MapFilter< |nmageType, Label MapType > Converter Type;
ConverterType:: Pointer converter = ConverterType:: New();

converter->Setlnput(reader->GetQutput());

converter->Set Foregr oundVal ue(200);

and valuate the attributes with the dedicated filter: ShapelMapFilter

typedef itk::ShapelLabel MapFilter< Label MapType > ShapeFilter Type;
ShapeFi | ter Type: : Poi nter shape = ShapeFilterType:: New();
shape- >Set | nput (converter->GetQutput());

update the shape filter, so its output will be up to date

shape- >Updat e() ;

then we can read the attribute values we're interestedtkrtBinarylmageTolLabelMapFilteproduces consecutives
labels, so a simpléor loop will do the job.

}

Label MapType: : Pointer |abel Map = converter->Cet Qut put ();
for(unsigned int |abel=1; |abel<=label Map->CGet Nunber O Label Obj ects(); |abel ++)

{

Il we don't need a SmartPointer of the |abel object here, because the reference is kept in

Il in the |abel map.

const Label Obj ect Type * | abel Cbject = | abel Map->Cet Label Ooj ect(|abel);

std::cout << label << "\t" << |abel Qbject->CetPhysical Size() << "\t" << |abel Object->CetCentroid()

}

return 0;

9.4 The mask features 27

9.4 The mask features

Theitk::LabelMapMaskimageFilteclass let the user mask a part ofitla:Imagewith the objects of étk::LabelMap.
It can also crop the image to contain only the masked region.

The source code is available in the fitesk.cxx

First we include the headers of the class we will use, andegesscommand line.

#include "itkl mageFil eReader. h"
#include "itklmageFileWiter.h"
#include "itkSinpl eFilterWatcher.h"

#include "itkLabel Object.h"

#include "itkLabel Map. h"

#include "itkLabel | mageToLabel MapFilter.h"
#include "itkLabel MapMaskl nageFilter. h"

int main(int argc, char * argv[])

{
if(argc '=9)
{
std::cerr << "usage: " << argv[0] << " l|abellmage input output |abel bg neg crop cropBorder" << st
[l std::cerr << " : " << std::endl;
exit(l);
}

the filters are able to work in any dimension. Lets choose 3he@rogram can be tested on 2D and 2D image.
const int dim=3;

declare the input image type
typedef itk::lmge< unsigned char, dim> |nmageType;

and the label object type to use. The input image is a labej@nso the type of the label can be the same type than
the pixel type. itk::LabelObject is chosen, because ordynttask feature is tested here, so we don’t need any attribute.

typedef itk::Label Cbject< unsigned char, dim> Label Object Type;
typedef itk::Label Map< Label Cbject Type > Label MapType;

read the label image and the input image to be masked.

typedef itk::lmageFileReader< |mageType > Reader Type;
Reader Type: : Poi nter reader = Reader Type:: New();
reader->Set Fi | eNane(argv[1]);

Reader Type: : Poi nter reader2 = Reader Type:: New();
reader2->Set Fi | eNane(argv[2]);

convert the label image to a label collection image.

9.5 A full python example 28

typedef itk::Label | mageToLabel MapFi | ter< |InageType, Label MapType> |2LType;
[2LType: : Pointer i2l = 12LType:: New();
i 2 ->Set | nput(reader->GetQutput());

then mask the image. Two inputs are required (the label caile image, and the image to be masked). The label
used to mask the image is passed with$e¢label(method. The background in the output image, where the image
is masked, is passed wigetBackground()The user can choose to mask the image outside the label ¢thjats the
default behavior), or inside the label object with the cholsdel, by callingSetNegated()Finally, the image can be
cropped to the masked region, by calliBgtCrop(true)or to a region padded by a border, by calling b8&tCrop()
andSetCropBorder()The crop border defaults to 0, and the image is not croppetefault.

typedef itk::Label MapMaskl mageFi|ter< Label MapType, |mageType > MaskType;
MaskType: : Poi nter mask = MaskType:: New();
mask->Set I nput (12l ->CetQutput());

mask- >Set Feat ur el mage(reader2->Get Qutput());
mask- >Set Label (atoi (argv[4]));

mask- >Set Backgr oundVal ue(atoi (argv[5]));

mask- >Set Negat ed(atoi(argv[6]));

mask->Set Crop(atoi (argv[7]));

MaskType: : Si zeType border;

border.Fill(atoi(argv[8]));

mask- >Set Cr opBor der (border);
itk::SinpleFilterWatcher watcher6(mask, "“filter");

Finally, save the outputimage.

typedef itk::lmageFileWiter< ImageType > WiterType;
WiterType::Pointer witer = WiterType:: New();
writer->Setlnput(mask->CetQutput());
writer->SetFileNanme(argv[3]);

writer->Update();

return 0;

9.5 A full python example
In that example, we want to:

¢ find the nuclei in the first image
¢ find the spots insice the nucleus in the second image

e get the mean value in the nucleus, in the zone of each spot.

The source code is available in example.py.

Lets begin with the usuamports.

inport itk, sys
itk.auto_progress()

Then declare the type we will use, asGr+.

9.5 A full python example 29

.V‘f»-._

(a) Nucleus (b) Spots

Figure 4: The input images.

Di nension = 2
Pi xel Type = itk.UC
| mgeType = itk.lnage[Pixel Type, Dinension]

itk.F
itk.lmage[DistancePixel Type, Dinension]

Di st ancePi xel Type
Di st ancel mageType

RGBPi xel Type
RGBI mageType

i tk. RGBPi xel [Pi xel Type]
itk.l mage[RGBPi xel Type, Dinension]

Label Cbj ect Type = itk. StatisticsLabel Qbject[itk.UL, Dinmension]
Label MapType = itk. Label Map[Label Obj ect Type]

read the image of the nucleus
nucl ei = itk.lmgeFi| eReader[|nmageType]. New(Fi | eNane="i mages/ noyaux. png")

perform a simple binarization. Note that the Otsu filter dnesuse the same convention as usual: the white part is
outside.

otsu = itk. & suThreshol dl nageFi | ter[I nageType, |nageType].New(nuclei, QutsideVal ue=255,
I nsi deVal ue=0)

The nuclei are not separated. We split them with a watershed.

maurer = itk.Si gnedMaurerDi st anceMapl nageFi | ter[I nageType, Distancel mageType]. New(ot su)

wat er shed = itk. Morphol ogi cal Wt er shedl nageFi | ter[Di st ancel mageType, | nmageType]. New(maurer,
Level =60, Mar kWt er shedLi ne=Fal se)

mask = itk.Maskl mageFilter[lmageType, |nmageType, |nmageType]. New(watershed, otsu)

9.5 A full python example 30

Figure 5: The segmented nuclei. The too small objects andribe on the border have been excluded.

And now switch to the label map representation, and compatattribute values

stats = itk.Label | mageToStatisticsLabel MapFilter[|mageType, |nmageType, Label MapType]. New(mask,
nucl ei)

drop the objects too small to be a nucleus, and the ones orother

size = itk. ShapeQpeni ngLabel MapFi | ter[Label MapType]. New(stats, Attribute='Si ze’,
Lanbda=100)

border = itk. ShapeQpeni ngLabel MapFi |l ter[Label MapType]. New(si ze, Attribute="SizeOnBorder’,
Lanbda=10, ReverseOrdering=True)

Reoder the labels. The objects with the highest mean arerghefies.
rel abel = itk.StatisticsRel abel Label MapFilter[Label MapType]. New(border, Attribute="Mean')
for visual validation:

overlay = itk.Label MapQverl ayl nageFilter[Label MapType, |nmageType, RGBI mageType]. New(rel abel,
nucl ei)
itk.wite(overlay, "nuclei-overlay.png")

Now, the spots:
spots = itk.lnageFileReader[| nageType]. New Fi | eNane="i nages/ spots. png")

Mask the spot image to keep only the nucleus zone. The relseafrtage is cropped, excepted a border of 2 pixels

31

maskSpots = itk. Label MapMaskl mageFi | t er [Label MapType, |nageType]. New(rel abel, spots, Label =1,
Crop=True, CropBorder=2)

A simple thresholding:
th = itk.BinaryThreshol dl mageFilter[lmageType, |mageType].New(maskSpots, Lower Threshol d=110)

Now swith to the label map representation, and compute thibw@te values. This time, the input image is not a label
image, but a binary one.

sstats = itk.Binaryl mgeToStatisticsLabel MapFilter[lmageType, |mageType, Label MapType]. New(t h,
nucl ei)

we know there are 4 spots in the nubleus, so keep the 4 biggetst sThe other attributes are also usable - we may
have chosen to keep the 4 brightest spots for example.

skeep = itk. ShapeKeepNChj ect sLabel MapFi | t er [Label MapType] . New(sstats, Attribute="Size’,
Nunber OF Qbj ect s=4)

Reoder the labels. The bigger objects first.
srelabel = itk.StatisticsRel abel Label MapFilter[Label MapType]. New skeep, Attribute="Size')

Finally, display the values we are interested in:

e the nucleus number,
e the spot position,

e the mean value in the nucleus in the spot zone.

n

pr'nt "nUCI e| n’ nxn’ nyn, un.ean

for nl in range(l, relabel.GetQutput().CGetNunber Of Label Qbj ects()+1):
maskSpot s. Set Label (nl)
srel abel . Updat eLar gest Possi bl eRegi on()
| abeCol | ection = srel abel . Get Qut put ()

for | in range(l, |abeCollection.CetNunberOf Label Objects()+1):
o = I abeCol | ection. Get Label Cbj ect (1)
print nl, lo.CGetCentroid()[0], lo.GetCentroid()[1], Io0.CetMean()

10 Threading support

When possible, the filters provided with that contributiaavé been multithreaded. Some of them however, are not
(easily) threadable (theeepNObjectandRelabefilters), or shouldn’t get any performance improvementihraaded
version (theOpeningfilters).

The itk::BinarylmageToLabelMapFilter class is a slight modification of the Richard Beare's
itk::ConnectedComponentimageFilteand have also been threaded to get the best of the perfoemant a
multicore system.

32

nucleus

X

y

mean

=Y

WWWWNNNNRE R PR

117.925925926
154.25
107.666666667
95.2380952381
417.631578947
431.277777778
390.117647059
396.8
251.148148148
189.333333333
293.72
239.888888889

146.111111111
87.4166666667
155.125
78.2857142857
158.736842105
177.388888889
207.588235294
113.666666667
358.814814815
407.888888889
454.8
411.111111111

188.185185185
126.416666667
122.0
121.0

132.894736842
131.222222222
96.8235294118

113.2
105.037037037
111.074074074

95.48

135.222222222

Table 1: Output of the python example.

The classical thread architecture is used when the inpugénsanitk::Image the image is splitted in several regions
(one per thread), and each thread work on its own region.

Because thék::LabelMapimage is not an array of pixels, it can’'t be splitted that whystead, several threads are
created, and try to take an object in the collection. If theyane, they process that object individually, and try to get
another one when the object is processed. If no object carthehg thread ends. Ak::FastMutexLockis used to
ensure that only one thread take an object at a time.

For the developer, the usage of the threading support is maesimple, by subclassinigk::LabelMapFilter, or
itk::InPlaceLabelMapFilter and implementing the methadrtual void ThreadedGenerateData(LabelObjectType *
labelObject)in the new class. This method only has to process the labet®passed in parameter. All the threading
code and mutex lock management is already implemented. Titexrtock remain accessible if the subclass need to
use it, as then_LabelObjectContainerLodkar.

11 In place filtering

All the filters which are taking #@k::LabelMapas input, and are producingtk::LabelMapas output, are implemented
as a subclass dfiPlaceLabelMapFilteand thus are running in place by default.

The use can modify this behavior with tisetinPlace(bool,)InPlaceOn() andInPlaceOff()methods, as with the
usuallnPlacelmageFilter

To use that feature, a developer only have to subdfe3scelLabelMapFilteand implement theirtual void Thread-
edGenerateData(LabelObjectType * labelObjgdb)get easy thread suppértor thevirtual void GenerateDatay
the filter is not threadable. In that last case, the only intageanipulate is the one get with tietOutput(method,
which is the input image if the filter runs in place, or a copytad input image if the filter is not running in place.

12 Wrappers support

All the classes provided with that article, excepted the thgemeric ones made to help the developer to implement
some new features, can be used with both stable and unstabf@ W, and have been fully tested with python.

6see the previous section

33

13 Known bugs and future work

To fit the ITK style, some iterators should be implementedd@ble to iterate over all the

e Objects,
e lines,

e Or pixels
of an image, starting from

e animage,
e an object,

e oraline.

Doing that require a good knowledge of the iterator desigmy Aelp on that point is welcome.

It may be useful to implement the most commonly used operkiegp N objects and relabel transforms in a more
efficient way, by using aitk:: AttributeLabelObjecinstead of atk::ShapelLabelObjedr aitk::StatisticsLabelObject

The converters from/to image are provided, but it may beuldefhave the converters from/to other objects represen-
tations:

e spatial objects,

e meshs,

e structuring elements.

Finally, all the binary and label filters should be implenezhas a subclass ik::InPlacelmageFilter

Note that some names have been changed in revision 3. To fixspouces, the following commands can be used in
your source directory (order is important):

perl -e ’s/Label Collectionl nmage/ Label Map/g’ -pi *

perl -e s/ Get Nunber Of Obj ect s/ Get Nunber Of Label Qbj ects/ g’ -pi *

perl -e 's/Printojects/PrintlLabel Ojects/g -pi *

perl -e 's/Label MapToMaskl mageFi |t er/ Label MapMaskl mageFilter/g -pi *

14 Conclusion

ITK is currently lacking a good way to manipulate the binabjexts. With that contribution | hope to have mostly
filled that lack.

15 Acknowledgments

| thank Richard Beare for his suggestion to use the run leagtioding to represent the binary objects, and Julien
Jomier for his help for the choice twtuse thdtk::SpatialObjectclass as base class of title:LabelObjectclass.

| thank Dr Pierre Adenot and MIMA2 confocal facilitiebt({ p: // m ma2. j ouy. i nra. fr) for providing the 3D test
image. | thank Dr Maria Ballester for providing the image digethe python example.

http://mima2.jouy.inra.fr

References 34

References

[1] L. Ibanez and W. Schroeder. The ITK Software Guide Kitware, Inc. ISBN 1-930934-10-6,
http://www.itk.org/ItkSoftwareGuide.pdf, 2003.

	Introduction
	Definitions
	Label
	Label image
	Binary image
	Attribute

	Existing classes and naming convention in ITK
	Data representation
	itk::LabelMap
	itk::LabelObject and its specializations
	itk::ShapeLabelObject attributes
	itk::StatisticsLabelObject attributes

	itk::LabelObjectLine

	General view of the usage
	Generating the itk::LabelMap
	Valuating the attributes
	Manipulating the itk::LabelMap
	Generating an itk::Image from the itk::LabelMap

	Prebuilt mini-pipeline filters
	Binary filters
	Label filters

	Binary and label specialization of mathematical morphology filters
	Computation details
	Binary image moments
	Roundness
	Pixel's neighborhood

	Usage examples
	Prebuilt pipelines
	Binary shape opening
	Statistics relabel
	Label shape keep N obejcts
	Binary fill holes

	LabelObject and LabelMap manipulation
	AttributeLabelObject
	Custom attribute accessor

	Reading attribute values
	The mask features
	A full python example

	Threading support
	In place filtering
	Wrappers support
	Known bugs and future work
	Conclusion
	Acknowledgments

