
Label object representation and manipulation
with ITK

Gaëtan Lehmann1

August 4, 2008

1INRA, UMR 1198; ENVA; CNRS, FRE 2857, Biologie du Développement et Reproduction, Jouy en
Josas, F-78350, France.

Abstract

Richard Beare has recently introduced a new filter to efficiently labelize the connected components
with ITK, and has also proposed to use therun-length encodingused in that filter to implement some
of the most useful binary mathematical morphology operators: the opening by attribute. Following that
idea, and after have searched a way to use the ITK’s spatial objects for this task, a new set of classes have
been developed to represent and manipulate the label imagesand the objects within them in ITK. Those
new classes have been used to implement several label imagesmanipulation based on object attributes,
as well as the binary and label specialization of some mathematical morphology filters based on the
morphological reconstruction. This contribution comes with 65 new classes, and should greatly enhance
the binary mathematical morphology in ITK.

All the source codes are provided, as well as a full set of tests and several usage examples of the new
classes.

Contents

1 Introduction 2

2 Definitions 3
2.1 Label . 3
2.2 Label image. 3
2.3 Binary image . 3
2.4 Attribute . 4

3 Existing classes and naming convention in ITK 4

4 Data representation 5
4.1 itk::LabelMap . 5
4.2 itk::LabelObject and its specializations. 5

itk::ShapeLabelObject attributes. 6
itk::StatisticsLabelObject attributes. 7

4.3 itk::LabelObjectLine . 8

2

5 General view of the usage 8
5.1 Generating the itk::LabelMap. 8
5.2 Valuating the attributes. 9
5.3 Manipulating the itk::LabelMap. 9
5.4 Generating an itk::Image from the itk::LabelMap. 9

6 Prebuilt mini-pipeline filters 11
6.1 Binary filters . 12
6.2 Label filters . 12

7 Binary and label specialization of mathematical morphology filters 13

8 Computation details 13
8.1 Binary image moments. 13
8.2 Roundness. 15
8.3 Pixel’s neighborhood. 16

9 Usage examples 16
9.1 Prebuilt pipelines. 16

Binary shape opening. 16
Statistics relabel. 17
Label shape keep N obejcts. 18
Binary fill holes . 19

9.2 LabelObject and LabelMap manipulation. 20
AttributeLabelObject . 20
Custom attribute accessor. 23

9.3 Reading attribute values. 25
9.4 The mask features. 27
9.5 A full python example . 28

10 Threading support 31

11 In place filtering 32

12 Wrappers support 32

13 Known bugs and future work 33

14 Conclusion 33

15 Acknowledgments 33

1 Introduction

Identifying the objects in an image is a very common task, often realized by producing an image of the same
size with a single pixel value per object. This image is called a label image. There are several way to create

3

such image. It can be done by searching the connected components in a binary image, it can be produced
directly by some algorithms, like the watershed transform,it can even be simply done by hand, etc.

2 Definitions

In that article, some terms will be cited very frequently. I will try to define them, in the context of the image
analysis.

2.1 Label

A label is an identifier of something with the same caracteristics in the image. Those caracteristics can be
whatever you want, for example, the range of pixel values, the same object in sense of connected component,
etc. A label can be represented by anything and only need to beunique in the image. It doesn’t even
require to be ordered. In practice, we choose to use the integral number types, for several reasons: they are
commonly used in image analysis, they efficiently reprensent the label in memory, and its easy to find the
next label by adding 1.

2.2 Label image

A label image is an image which contains several label pixels. Often, the labels are representing some
objects placed on a background, and so the label image may usea particular label for the background.

(a) A label Image. (b) The same image with colored labels

Figure 1: (a) the label image of connected components in Figure2. (b) is the same image with labels colored
with itk::LabelToRGBImageFilter.

2.3 Binary image

A binary image is an image with two labels: a foreground labeland a background label. In practice, the
binary images are using a pixel type able to store more than those two values. The foreground is thus defined

2.4 Attribute 4

with a particular label, and the other label in the image are considered as the background. A side effect of
that is that a label image can be considered as a binary image,and so, it let us manipulate a single object in
a label image.

(a) A simple binary image. (b) A binary image, or a label image?

Figure 2: (a) is a simple binary image. Usually, the white pixel have the value 255, and the background the
value 0. (b) contains 3 values (0, 100 and 200). The foreground value must be defined by the user, either 0,
100 or 200, and the values which are not the foreground are in the background.

2.4 Attribute

An attribute is a value of any type associated with a label. Itcan be for example the size of an object, the
mean of its pixels intensities, etc.

3 Existing classes and naming convention in ITK

In ITK, the label and the binary images are implemented as a simple itk::Image. The pixel types used are
most of the time integral, signed or unsigned, but may be of other types. Several definitions of a binary
image or used in ITK. Depending of the class which implement it, a binary image can be:

• All the pixels with a given value are in the foreground. The others are in the background. That’s the
definition proposed in that article.

• All the pixels with a given value are in the background. The others are in the foreground.

• All the pixels greater than a value (zero by default, or the mean of the maximum value in the im-
age and the minimum value in the image) are in the foreground.The other are in the background.
This definition is often used in the levelset framework, where a border can be defined at a subpixel
resolution.

All those definitions should be uniformized to enhance user experience with ITK. In that article (and all the
others from the same author), the first one is the only one used.

5

The filters which are manipulating binary images are often prefixed with the word ”Binary”, to differenciate
the grayscale versions which don’t have a prefix. It seem to bea quite good practice which have been kept
in that article.

The filter dedicated to the manipulation of label images havethe word ”Label” somewhere in there name.
Again, it seem to be a good practice which have been kept in that article.

4 Data representation

The label images are often used to represent the connected components of an image. In this contribution,
another representation has been chosen.

The objects contained in the image, as connected component,can be efficiently stored in memory as a set
of lines, using the run-length encoding: a starting point for each line, and the length of the line on a given
dimension (by convention, the dimension 0).

The image is a collection of those objects, and it also store some values of the image, like its size, its spacing,
etc.

4.1 itk::LabelMap

The itk::LabelMap class is in charge of managing the collection of label objects of the image, as well as
storing the metadata associated with the image like the spacing, the physical position - all the metadata found
in itk::Image. It has been chosen, to simplify the implementation and the tests, and because the feature is
rarely useful in practice, to not implement the conditionalbackground in theitk::LabelMapclass1. All the
images represented by aitk::LabelMap object have a background. If the user want to manipulate suchan
image with no background, he/she has to avoid the backgroundlabel, for example by using a larger label
type.

Theitk::LabelMapprovide a part of the API of theitk::Imageclass, and so can be manipulated as an image2

in many cases. The performance can be very different however, because of the very different data structure
used.

The itk::LabelMap is a templated class, which take a single parameter: the typeof label objectstored by
that class. The dimension of the image is took from thelabel objectclass, and thus don’t need to be defined
as template parameter of that class. The pixel type of the image also comes from thelabel objectclass.

4.2 itk::LabelObject and its specializations

The itk::LabelObjectclass represent the label objects. It has two main features:

• It manage the set pixels which compose the object. The pixelsare stored using the run-length encod-
ing.

• It has a label.
1The classes before therevision 4were implemented with the conditional background feature.All the related code has been

removed bitween revision 3 and revision 4.
2It doesn’t support the itk::Image iterators though

4.2 itk::LabelObject and its specializations 6

No attribute – excepted the label – are stored in this class, which can thus be seen as the base class for the
objects with attributes, or which can be used when no attributes are required.

The itk::LabelObjectclass is templated and takes two required template parameters:

• the type of the label;

• the dimension of the image.

Several subclasses are provided with that contribution, tocover the most common usages of the label objects
manipulation:

• itk::AttributeLabelObjectis able to store a generic attribute. It is generic in the sense that its type is
given in template parameter.

• itk::ShapeLabelObjectcontains numerous attribute related to the shape of the label object. Computing
the values of those attributes does not require a feature image.

• itk::StatisticsLabelObjectcontains numerous statistics about the grey values of a feature image in
the same place than the label object. Computing the values ofthose attributesdoesrequire a feature
image.

The classesitk::ShapeLabelObjectand itk::StatisticsLabelObjecthave been created to reduce the number
of filters made to manipulate the attributes, and to make the computation of all the set of attributes much
efficient3.

The scalar values of the attributes of theitk::ShapeLabelObjectand theitk::StatisticsLabelObjectclasses
are often given both in pixel and in physical units, in order to be able to give some parameter independant
of the image spacing.

The position in the images are given in index position when the position is the exact position of a pixel
(for example, the position of the maximum value in the feature image) or in physical position when the
position is given at a subpixel resolution (for example, thecentroid). In both case, the position can eas-
ily be converted to the other representation with theitk::LabelMap::TransformPhysicalPointToIndex()and
itk::LabelMap::TransformIndexToPhysicalPoint()methods.

Both itk::ShapeLabelObjectand itk::StatisticsLabelObjectare templated classes. They take the same
template parameters than theitk::LabelObject class. The two first template parameters of the
itk::AttributeLabelObjectclass or the same than the ones of theitk::LabelObject class. The third one is
the attribute type.

itk::ShapeLabelObject attributes

• Sizeis the size of the object in number of pixels. Its type isunsigned long.

• PhysicalSizeis the size of the object in physical unit. It is equal to theSizemultiplicated by the
physical pixel size. Its type isdouble.

3In the early stage of development, all the attributes were managed as initk::AttributeLabelObject, and a set of 8 classes made
to manipulate a single attribute were provided, leading to ahuge number of classes.

4.2 itk::LabelObject and its specializations 7

• Centroid is the position of the center of the shape in physical coordinates. It is not constrained to
be in the object, and thus can be outside if the object is not convex. Its type isitk::Point¡ double,
ImageDimension ¿.

• Regionis the bounding box of the object given in the pixel coordinates. The physical coordinate can
easily be computed from it. Its type isitk::ImageRegion¡ ImageDimension ¿.

• RegionElongationis the ratio of the longest physical size of the region on one dimension and its
smallest physical size. This descriptor is not robust, and in particular is sensitive to rotation. Its type
is double.

• SizeRegionRatiois the ratio of the size of the object region (the bounding box) and the real size of the
object. Its type isdouble.

• SizeOnBorderis the number of pixels in the objects which are on the border of the image. A pixel on
several borders (a pixel in a corner) is counted only one time, so the size on border can’t be greater
than the size of the object. This attribute is particulary useful to remove the objects which are touching
too much the border. Its type isunsigned long.

• PhysicalSizeOnBorderis the physical size of the objects which are on the border of the image. In 2D,
it is a distance, in 3D, a surface, etc. Contrary to thePhysicalSizeattribute which is directly linked to
theSize, this attribute is not directly linked to theSizeOnBorderattribute. This attribute is particulary
useful to remove the objects which are touching too much the border. Its type isdouble.

• FeretDiameteris the diameter in physical units of the sphere which includeall the object. The feret
diameter is not computed by default, because of its high computation. Its type isdouble.

• BinaryPrincipalMomentscontains the principal moments. Its type isitk::Vector¡ double, ImageDi-
mension ¿.

• BinaryPrincipalAxescontains the principal axes of the object. Its type isitk::Matrix¡ double, Im-
ageDimension, ImageDimension ¿.

• BinaryElongationis the elongation of the shape, computed as the ratio of the largest principal moment
by the smallest principal moment. Its value is greater or equal to 1. Its type isdouble.

• EquivalentRadiusis the equivalent radius of the hypersphere of the same size than the label object.
The value depends on the image spacing. Its type isdouble.

• EquivalentPerimeteris the equivalent perimeter of the hypersphere of the same size than the label
object. The value depends on the image spacing. Its type isdouble.

• EquivalentEllipsoidPerimeteris the size of the ellipsoid of the same size and the same ratioon all the
axes than the label object. The value depends on the image spacing. Its type isitk::Vector¡ double,
ImageDimension ¿.

itk::StatisticsLabelObject attributes

• Minimumis the minimum value in the feature image for the object. Its type is the feature image pixel
type.

4.3 itk::LabelObjectLine 8

• MinimumIndexis the index position in the image where the first minimum was found. Its type
isitk::Index¡ ImageDimension ¿.

• Maximumis the maximum value in the feature image for the object. Its type is the feature image pixel
type.

• MaximumIndexis the index position in the image where the first maximum was found. Its type
isitk::Index¡ ImageDimension ¿.

• Meanis the mean of the pixel values in the object. Its type isdouble.

• Sumis the sum of all the pixel values in the objects. Its type isdouble.

• Sigmais the standard deviation of the pixels values in the objects. Its type isdouble.

• Varianceis the variance of the pixels values in the objects. Its type isdouble.

• Medianis the median of the pixels values in the obejct. Its type isdouble

• CenterOfGravityis the center of gravity of the object. Its type isitk::Point¡ double ¿.

• Kurtosisis the kurtosis of the pixel values in the objects. Its type isdouble.

• Skewnessis the skewness of the pixel values in the objects. Its type isdouble.

• PrincipalMomentscontains the principal moments. Its type isitk::Vector¡ double, ImageDimension
¿.

• PrincipalAxescontains the principal axes of the object. Its type isitk::Matrix¡ double, ImageDimen-
sion, ImageDimension ¿.

• Elongationis the elongation of the shape, computed as the ratio of the largest principal moment by
the smallest principal moment. Its value is greater or equalto 1 Its type sidouble.

• Histogramis the histogram of the pixels covered by the label object in the feature image. Its type is
itk::Histogram¡ double ¿ *.

4.3 itk::LabelObjectLine

itk::LabelObjectLineis the object used to store the position and the size of a single line.

5 General view of the usage

5.1 Generating the itk::LabelMap

Theitk::LabelMapclass provide some methods to fill the image ”by hand”, like the usualSetPixel()method.
However, the most efficient way is to convert a label image or abinary image stored in anitk::Image to a
itk::LabelMap, by usingitk::BinaryImageToLabelMapFilteror itk::LabelImageToLabelMapFilter.

5.2 Valuating the attributes 9

5.2 Valuating the attributes

The label objects produced by those filters have no attributevalue set, and thus, the attributes must be
valuated. Some filters are provided for the most common used ones:

• itk::ShapeLabelMapFilterto fill the attributes of theitk::ShapeLabelObjects,

• anditk::StatisticsLabelMapFilterto fill the attributes of theitk::StatisticsLabelObjects.

For theitk::AttributeLabelObjectclass or other classes, the user must set the value by himself, for example
by implementing a subclass ofitk::InPlaceLabelMapFilter.

5.3 Manipulating the itk::LabelMap

Once created and, optionally, valuated, several filters areprovided to manipulate theitk::LabelMap:

• An opening can be performed with theOpeningLabelMapFilterclasses. Those classes will remove
all the objects with an attribute value lower or greater thana given value. Because we often can use
some criteria which have not been used during the segmentation procedure, like the size of the object,
the mean value of its pixels, etc., the attribute opening is often a very efficient way to enhance a
segmentation. For example, after a thresholding of a grayscale image, the objects too small or too
big to be of interest can be removed that way. The classAttributeSelectionLabelMapFilterand its
subclassLabelSelectionLabelMapFiltercan be used to remove some objects based on their attribute
value, even if the attribute type has no ordering property.

• A fixed number of objects can be kept, with theKeepNObjectsLabelMapFilterclasses. They are
chosen according to the value of their attribute. The user can choose to keep the ones with the highest,
or with the lowest attribute values.

• The objects can be relabeled, with theRelabelLabelMapFilterclasses. The order of the label is de-
pendant of the value of the attribute. Again, the user can choose to have the objects with the highest
attribute value in the first labels, or to have the objects with the lowest attribute values in the first
labels.

• The region covered by theitk::LabelMapcan be changed withitk::ChangeRegionLabelMapFilterand
its subclasses (itk::CropLabelMapFilter, itk::PadLabelMapFilter, RegionFromReferenceLabelMap-
Filter anditk::AutoCropLabelMapFilter).

It can also be useful to simply get the attribute values associated with the objects. In that case, the classes
provided in with that article can be used in place ofitk::LabelStatisticsImageFilter, or to get some data about
the shape or the position of the object.

5.4 Generating an itk::Image from the itk::LabelMap

Once the manipulation of the objects is done, it can be usefulto go back to a more classicitk::Image. Several
classes are provided to do that:

5.4 Generating an itk::Image from the itk::LabelMap 10

(a) A label image (b) All the objects smaller than 1000 pixels re-
moved

(c) All the objects greater than 1000 pixels re-
moved

(d) All the objects with roundness smaller than 0.8
removed

(e) All the objects with elongation smaller than 10
removed

(f) All the objects with perimeter smaller than 100
removed

Figure 3: Some example of opening with different attribute and parameters. Note that the labels are kept
unchanged in the output image.

11

• The itk::LabelMapToLabelImageFilterclass simply convert aitk::LabelMap to a label image stored
in a itk::Image.

• The itk::LabelMapToBinaryImageFilterput all the objects in the foreground of a binary im-
age stored in a itk::Image. It is intended to be used with an image produced by the
itk::BinaryImageToLabelMapFilter. The background values of the original image can also be restored
by this filter.

• The itk::LabelMapMaskImageFilterclass can be used to mask an image with the objects of the
itk::LabelMap. With that filter, the image can be cropped to contain only thenon-masked zone4 ,
or the non-masked zone padded by a user defined number of pixels.

• The itk::LabelMapToAttributeImageFilterproduce anitk::Imagewith the value of the attribute of the
objects of theitk::LabelMap. This filter is mostly useful to have a global view of the attribute values
in the image.

• TheLabelMapToRGBImageFilterproduce a coloritk::Image with itk::RGBPixelas pixel type. The
label objects are in color, as in Figure1. This class is mostly useful for a quick visual validation
without going outside ITK.

• Finally, theLabelMapOvelayImageFilterproduce a coloritk::Imagewith itk::RGBPixelas pixel type.
The label objects are in color on top of a grayscale image, as in Figure5. This class is mostly useful
for a quick visual validation without going outside ITK.

6 Prebuilt mini-pipeline filters

The general view of the previous section show a very common way to use those classes. To make them
easier to use, some prebuilt classes have been made, to perform the mini-pipeline:

• creation of theitk::LabelMap from anitk::Image,

• valuation of the attribute(s) of the objects,

• filtering of theitk::LabelMap,

• creation of anitk::Image from the filtereditk::LabelMap,

with a specific attribute.

Also, when using theitk::ShapeLabelObjector the itk::StatisticsLabelObjectclass, we usually want them
to be valuated. Some classes are provided to perform the mini-pipeline:

• creation of theitk::LabelMap from anitk::Image,

• valuation of the attributes of the objects

with the itk::ShapeLabelObjector theitk::StatisticsLabelObject.

Because the objects are often get from a label image or from a binary image, those filters have been made
for binary, and label images.

4 The code used to produce the output region based on the content of the image is partially copied from a contribution of Peter
Cechhttp://www.vision.ee.ethz.ch/∼pcech/itkAutoCropImageFilter/.

http://www.vision.ee.ethz.ch/~pcech/itkAutoCropImageFilter/

6.1 Binary filters 12

6.1 Binary filters

The filters to produce valuated attributes:

• itk::BinaryImageToShapeLabelMapFilter

• itk::BinaryImageToStatisticsLabelMapFilter

The filters to fully hide the usage of the label objects:

• itk::BinaryAttributeKeepNObjectsImageFilter

• itk::BinaryAttributeOpeningImageFilter

• itk::BinaryShapeKeepNObjectsImageFilter

• itk::BinaryShapeOpeningImageFilter

• itk::BinaryStatisticsKeepNObjectsImageFilter

• itk::BinaryStatisticsOpeningImageFilter

6.2 Label filters

The filters to produce valuated attributes:

• itk::LabelImageToShapeLabelMapFilter

• itk::LabelImageToStatisticsLabelMapFilter

The filters to fully hide the usage of the label objects:

• itk::LabelAttributeKeepNObjectsImageFilter

• itk::LabelAttributeOpeningImageFilter

• itk::LabelShapeKeepNObjectsImageFilter

• itk::LabelShapeOpeningImageFilter

• itk::LabelStatisticsKeepNObjectsImageFilter

• itk::LabelStatisticsOpeningImageFilter

• itk::ShapeRelabelImageFilter

• itk::StatisticsRelabelImageFilter

13

7 Binary and label specialization of mathematical morphology filters

All the following filters are using a morphological reconstruction, implemented internally as an attribute
opening with theitk::AttributeLabelObjectclass. Some binary filters are implemented:

• itk::BinaryClosingByReconstructionImageFilter

• itk::BinaryFillholeImageFilter

• itk::BinaryGrindPeakImageFilter

• itk::BinaryOpeningByReconstructionImageFilter

• itk::BinaryReconstructionByDilationImageFilter

• itk::BinaryReconstructionByErosionImageFilter

and some label filters, useful when the label objects are connected, or when we want to avoid loosing the
label by using a binary filter. Because the notion of reconstruction by erosion is difficult with labels, only a
few filters are implemented:

• itk::LabelReconstructionByDilationImageFilter

8 Computation details

8.1 Binary image moments

Central image moments for grayscale images are usually computed as

Cmi, j =
Si, j

M
−Cgi.Cgj (1)

Si, j = ∑
p∈D

(I(p).pi .p j) (2)

whereSi, j is the central moment,D is the domain of definition of the imageI , I(p) is the pixel value of the
image at the positionp, 0≤ i < n, 0≤ i < n, n is the image dimension,pi is the physical position on the
axis i, M is the total mass,Cg is the center of gravity. With binary images,I(p) is either 0 ifp is outside the
object, or 1 ifp is inside.

The complexity isO(NPI), whereNPI is the number of pixels in the image.

With the run-length encoding of the binary objects, the complexity can be decreased toO(NLO), whereNLO

is the number of lines in the object.

Si, j = ∑
p∈D

(I(p).pi .p j) (3)

= ∑
p∈O

(pi .p j)

= ∑
L∈O

∑
p∈L

(pi .p j)

8.1 Binary image moments 14

WhereO is a binary object in the image, andL is a line of the objectO, encoded with the run-length
encoding. In a line,pi is a constant ifi > 0, so,Si, j can be written:

Si, j =











































∑
L∈O

(lL.pi .p j) if i > 0 and j > 0,

∑
L∈O

(

pi . ∑
p∈L

p0

)

if i > 0 and j = 0,

∑
L∈O

(

p j . ∑
p∈L

p0

)

if i = 0 and j > 0,

∑
L∈O

∑
p∈L

p2
0 if i = j = 0.

(4)

It is known that

n

∑
x=0

x =
n(n+1)

2
(5)

n

∑
x=0

x2 =
n(n+1)(2n+1)

6
(6)

In order to use those formulae in the computation ofSi, j , the physical position has to be expanded in:

p j = o j +sj i j (7)

whereo j is the origin of the line on the axisj, sj is the spacing on the axisj, andi j is the index on the axis
j.

With equations7, 5 and6, it is easy to remove the loop in the computation of the sum of physical positions
of the axis 0:

∑
p∈L

p0 =
lL−1

∑
i0=0

(o0 +s0i0) (8)

= lL.o0 +s0

lL−1

∑
i0=0

i0

= lL.o0 +s0

(

(lL −1)lL
2

)

= lL

(

o0 +
s0(lL −1)

2

)

wherelL is the length of the line (in pixels), and in the sum of the square of the physical positions of the axis
0:

8.2 Roundness 15

∑
p∈L

p2
0 =

lL−1

∑
i0=0

(o0 +s0i0)
2 (9)

=
lL−1

∑
i0=0

(o2
0 +s2

0i20 +2o0s0i0)

= lL.o
2
0 +s2

0

lL−1

∑
i0=0

i20 +2o0s0

lL−1

∑
i0=0

i0

= lL.o
2
0 +s2

0

(

(lL −1)lL(2lL −1)

6

)

+2o0s0

(

(lL −1)lL
2

)

= lL

(

o2
0 +s0(lL −1)

(

s0(2lL −1)

6
+o0

))

Finally, Si, j , used in the computation of the central moments, is computedas:

Si, j =







































∑
L∈O

(lL.pi .p j) if i > 0 and j > 0,

∑
L∈O

(

pi .lL
(

o0 + s0(lL−1)
2

))

if i > 0 and j = 0,

∑
L∈O

(

p j .lL
(

o0 + s0(lL−1)
2

))

if i = 0 and j > 0,

∑
L∈O

(

lL
(

o2
0 +s0(lL −1)

(

s0(2lL−1)
6 +o0

)))

if i = j = 0.

(10)

8.2 Roundness

The computation works with any image dimension, and so use the definition of volume and area of an
hypersphere in any dimension.

Vn(r) =
π

n
2 rn

Γ(n
2 +1)

(11)

whereVn is the volume of the hyperspheren is the image dimension, andr is the radius of the hypersphere.

Γ
(n

2
+1

)

=

{

(

n
2

)

! if n is even,
√

π n!!
2(n+1)/2 if n is odd.

(12)

n!! is the double factorial, defined as:

n!! =

{

1 if n < 2,

n(n−2)!! if n≥ 2.
(13)

An(r) =
nVn

r
(14)

8.3 Pixel’s neighborhood 16

whereAn is the area of the hypersphere.

R=
An(r)

a
(15)

whereR is the roundness,a is the measured area of the object5, and ther is the radius of an hypersphere
with the same volume than the object, computed using equation 11.

8.3 Pixel’s neighborhood

The run-length encoding does not allow an easy access to the neighbors of a given pixel. If the neighborhood
of all the pixels must be accessed, it is much easier to convert the itk::LabelMap to aitk::Image with
the itk::LabelMapToLabelImageFilter, and use that image to access the neighbors. That’s what is done
in itk::ShapeLabelMapFilterto compute the maximum Feret diameter, and the perimeter estimation.

9 Usage examples

9.1 Prebuilt pipelines

Binary shape opening

The source code is available in the filebinary shape opening.cxx.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkSimpleFilterWatcher.h"

#include "itkBinaryShapeOpeningImageFilter.h"

int main(int argc, char * argv[])
{

if(argc != 9)
{
std::cerr << "usage: " << argv[0] << " input output foreground background lambda reverseOrdering connectivity
// std::cerr << " : " << std::endl;
exit(1);
}

const int dim = 3;

typedef itk::Image< unsigned char, dim > IType;

typedef itk::ImageFileReader< IType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();

5More details about perimeter estimation will be published in another article.

9.1 Prebuilt pipelines 17

reader->SetFileName(argv[1]);

typedef itk::BinaryShapeOpeningImageFilter< IType > BinaryOpeningType;
BinaryOpeningType::Pointer opening = BinaryOpeningType::New();
opening->SetInput(reader->GetOutput());
opening->SetForegroundValue(atoi(argv[3]));
opening->SetBackgroundValue(atoi(argv[4]));
opening->SetLambda(atof(argv[5]));
opening->SetReverseOrdering(atoi(argv[6]));
opening->SetFullyConnected(atoi(argv[7]));
opening->SetAttribute(argv[8]);
itk::SimpleFilterWatcher watcher(opening, "filter");

typedef itk::ImageFileWriter< IType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput(opening->GetOutput());
writer->SetFileName(argv[2]);
writer->Update();
return 0;

}

Statistics relabel

The source code is available in the filestatistics relabel.cxx.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkSimpleFilterWatcher.h"

#include "itkStatisticsRelabelImageFilter.h"

int main(int argc, char * argv[])
{

if(argc != 8)
{
std::cerr << "usage: " << argv[0] << " input input output background useBg reverseOrdering attribute"
// std::cerr << " : " << std::endl;
exit(1);
}

const int dim = 3;

typedef itk::Image< unsigned char, dim > IType;

typedef itk::ImageFileReader< IType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);

ReaderType::Pointer reader2 = ReaderType::New();
reader2->SetFileName(argv[2]);

9.1 Prebuilt pipelines 18

typedef itk::StatisticsRelabelImageFilter< IType, IType > RelabelType;
RelabelType::Pointer relabel = RelabelType::New();
relabel->SetInput(reader->GetOutput());
relabel->SetFeatureImage(reader2->GetOutput());
relabel->SetBackgroundValue(atoi(argv[4]));
relabel->SetReverseOrdering(atoi(argv[6]));
relabel->SetAttribute(argv[7]);
itk::SimpleFilterWatcher watcher(relabel, "filter");

typedef itk::ImageFileWriter< IType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput(relabel->GetOutput());
writer->SetFileName(argv[3]);
writer->Update();
return 0;

}

Label shape keep N obejcts

The source code is available in the filelabel shape keep n objects.cxx.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkSimpleFilterWatcher.h"

#include "itkLabelShapeKeepNObjectsImageFilter.h"

int main(int argc, char * argv[])
{

if(argc != 7)
{
std::cerr << "usage: " << argv[0] << " input output background nb reverseOrdering attribute" << std::endl;
// std::cerr << " : " << std::endl;
exit(1);
}

const int dim = 3;

typedef itk::Image< unsigned char, dim > IType;

typedef itk::ImageFileReader< IType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);

typedef itk::LabelShapeKeepNObjectsImageFilter< IType > LabelOpeningType;
LabelOpeningType::Pointer opening = LabelOpeningType::New();
opening->SetInput(reader->GetOutput());
opening->SetBackgroundValue(atoi(argv[3]));
opening->SetNumberOfObjects(atoi(argv[4]));
opening->SetReverseOrdering(atoi(argv[5]));

9.1 Prebuilt pipelines 19

opening->SetAttribute(argv[6]);
itk::SimpleFilterWatcher watcher(opening, "filter");

typedef itk::ImageFileWriter< IType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput(opening->GetOutput());
writer->SetFileName(argv[2]);
writer->Update();
return 0;

}

Binary fill holes

The source code is available in the filebinary fillhole.cxx.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkCommand.h"
#include "itkSimpleFilterWatcher.h"

#include "itkLabelObject.h"
#include "itkLabelMap.h"
#include "itkBinaryFillholeImageFilter.h"

int main(int argc, char * argv[])
{

if(argc != 5)
{
std::cerr << "usage: " << argv[0] << " input output conn fg" << std::endl;
// std::cerr << " : " << std::endl;
exit(1);
}

const int dim = 2;

typedef itk::Image< unsigned char, dim > IType;

typedef itk::ImageFileReader< IType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);
reader->Update();

typedef itk::BinaryFillholeImageFilter< IType > I2LType;
I2LType::Pointer reconstruction = I2LType::New();
reconstruction->SetInput(reader->GetOutput());
reconstruction->SetFullyConnected(atoi(argv[3]));
reconstruction->SetForegroundValue(atoi(argv[4]));

// reconstruction->SetBackgroundValue(atoi(argv[5]));
itk::SimpleFilterWatcher watcher(reconstruction, "filter");

typedef itk::ImageFileWriter< IType > WriterType;

9.2 LabelObject and LabelMap manipulation 20

WriterType::Pointer writer = WriterType::New();
writer->SetInput(reconstruction->GetOutput());
writer->SetFileName(argv[2]);
writer->Update();
return 0;

}

9.2 LabelObject and LabelMap manipulation

AttributeLabelObject

The itk::AttributeLabelObjectlet the user specify the type of the attribute he wants to use,and thus is the good choice
to implement a new attribute.

The source code is available in the filegeneric attribute.cxx.

First we include the headers of the class we will use, and parse the command line.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

#include "itkAttributeLabelObject.h"
#include "itkLabelMap.h"

#include "itkLabelImageToLabelMapFilter.h"

#include "itkAttributeKeepNObjectsLabelMapFilter.h"
#include "itkAttributeOpeningLabelMapFilter.h"
#include "itkAttributeRelabelLabelMapFilter.h"

#include "itkLabelMapToAttributeImageFilter.h"
#include "itkLabelMapToLabelImageFilter.h"

int main(int argc, char * argv[])
{

if(argc != 10)
{
std::cerr << "usage: " << argv[0] << " label input attr keep open relabel bg lambda nb" << std::endl;
// std::cerr << " : " << std::endl;
exit(1);
}

Declare the dimension used, and the type of the image for input and output.

const int dim = 2;
typedef unsigned char PType;
typedef itk::Image< PType, dim > IType;

The AttributeLabelObject class take 3 template parameters: the 2 ones from the LabelObject class, and the type of the
attribute associated with each node. Here we have chosen a double. We then declares the type of the LabelMap with
the type of the label object.

9.2 LabelObject and LabelMap manipulation 21

typedef itk::AttributeLabelObject< unsigned long, dim, double > LabelObjectType;
typedef itk::LabelMap< LabelObjectType > LabelMapType;

We read the input images.

typedef itk::ImageFileReader< IType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);

ReaderType::Pointer reader2 = ReaderType::New();
reader2->SetFileName(argv[2]);

And convert the label image to a LabelMap.

typedef itk::LabelImageToLabelMapFilter< IType, LabelMapType > I2LType;
I2LType::Pointer i2l = I2LType::New();
i2l->SetInput(reader->GetOutput());
i2l->SetBackgroundValue(atoi(argv[7]));

The next step is made outside the pipeline model, so we call Update() now.

i2l->Update();
reader2->Update();

Now we will valuate the attribute. The attribute will be the mean of the pixels values in the 2nd image. Note that the
StatisticsLabelObject can give us that value, without having to code that by hand - that’s an example.

Lets begin by declaring the iterator for the objects in the image, and get the object container, to reuse it later.

LabelMapType::LabelObjectContainerType::const_iterator it;
LabelMapType::Pointer labelMap = i2l->GetOutput();
const LabelMapType::LabelObjectContainerType & labelObjectContainer = labelMap->GetLabelObjectContaine

Now iterate over all the objects in the image.

for(it = labelObjectContainer.begin(); it != labelObjectContainer.end(); it++)
{

The label is there if we need it, but it can also be found at labelObject-¿GetLabel().

const PType & label = it->first;
LabelObjectType * labelObject = it->second;

Init the variables used for the computation.

double mean = 0;
unsigned long size = 0;

Create the iterator for the lines, and iterate over them

9.2 LabelObject and LabelMap manipulation 22

LabelObjectType::LineContainerType::const_iterator lit;
LabelObjectType::LineContainerType lineContainer = labelObject->GetLineContainer();

for(lit = lineContainer.begin(); lit != lineContainer.end(); lit++)
{
const LabelMapType::IndexType & firstIdx = lit->GetIndex();
const unsigned long & length = lit->GetLength();

size += length;

Then iterate over all the pixels in the line, and get the pixelvalues in the feature image to compute their mean.

long endIdx0 = firstIdx[0] + length;
for(LabelMapType::IndexType idx = firstIdx; idx[0]<endIdx0; idx[0]++)

{
mean += reader2->GetOutput()->GetPixel(idx);
}

}

Complete the compuation of the mean, and set it as attibute value for the current object.

mean /= size;
labelObject->SetAttribute(mean);

The LabelObject class provides a Print() method to display its ivars.

labelObject->Print(std::cout);

}

Now that the objects have their attribute, we are free to manipulate them with the common filters, or by hand. The
default accessor (AttributeLabelObject) is the wright onewhen using AttributeLabelObject so we don’t have to specify
it. A different one can be used if needed though.

typedef itk::AttributeKeepNObjectsLabelMapFilter< LabelMapType > KeepType;
KeepType::Pointer keep = KeepType::New();
keep->SetInput(labelMap);
keep->SetReverseOrdering(true);
keep->SetNumberOfObjects(atoi(argv[9]));

Prevent the filter to run in place, so the input image is not modified.

keep->SetInPlace(false);

typedef itk::AttributeOpeningLabelMapFilter< LabelMapType > OpeningType;
OpeningType::Pointer opening = OpeningType::New();
opening->SetInput(labelMap);
opening->SetLambda(atof(argv[8]));
opening->SetInPlace(false);

typedef itk::AttributeRelabelLabelMapFilter< LabelMapType > RelabelType;
RelabelType::Pointer relabel = RelabelType::New();
relabel->SetInput(labelMap);
relabel->SetInPlace(false);

9.2 LabelObject and LabelMap manipulation 23

The attribute values can be put directly in a classic image.

typedef itk::LabelMapToAttributeImageFilter< LabelMapType, IType > A2IType;
A2IType::Pointer a2i = A2IType::New();
a2i->SetInput(labelMap);

Or the label collection can be converted back to an label image, or to a binary image (not shown here)

typedef itk::LabelMapToLabelImageFilter< LabelMapType, IType > L2IType;
L2IType::Pointer l2i = L2IType::New();

Finally, write the results

typedef itk::ImageFileWriter< IType > WriterType;
WriterType::Pointer writer = WriterType::New();

writer->SetInput(a2i->GetOutput());
writer->SetFileName(argv[3]);
writer->Update();

writer->SetInput(l2i->GetOutput());

l2i->SetInput(keep->GetOutput());
writer->SetFileName(argv[4]);
writer->Update();

l2i->SetInput(opening->GetOutput());
writer->SetFileName(argv[5]);
writer->Update();

l2i->SetInput(relabel->GetOutput());
writer->SetFileName(argv[6]);
writer->Update();

return 0;
}

Custom attribute accessor

This example shows how to use the LabelMap classes to remove all the object with a bounding size smaller (or greater)
than a given value on the z axis. The attribute we are interested is already computed byShapeLabelMapFilterand
stored inShapeLabelObject. It is not usable as is however, because it is part of a multicomponent attribute:Region.

To be able to use it with the standard classes, we have to provide an accessor which can be used by the opening filter.

The source code is available in the filesimple generic attribute.cxx.

First include the classes we’ll use

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkSimpleFilterWatcher.h"

#include "itkLabelImageToShapeLabelMapFilter.h"

9.2 LabelObject and LabelMap manipulation 24

#include "itkAttributeOpeningLabelMapFilter.h"
#include "itkLabelMapToLabelImageFilter.h"

Now we can declare the custom accessor type, which will be used by the opening filter.

template< class TLabelObject >
class ITK_EXPORT LastDimesionRegionSizeObjectAccessor
{
public:

The declaration ofAttributeValueTypeis mandatory. It is used internally in the opening filter to define the type of the
lambda value.AttributeValueTypeshould be the same as the type returned by the operator() method.

typedef unsigned long AttributeValueType;

operator()is the core of the accessor. It takes a label object as parameter, and return the attribute of interest. Some
computations can be done inside the accessor method, but they should be as fast as possible, becauseoperator()may
be called many time by some filters. If an attribute value takes time to compute, it should rather be computed once
for all and stored in a new attribute. In that case, there is nocomputation at all, only an access to a value hidden in a
multicomponent attribute, so things are very fast.

inline const AttributeValueType operator()(const TLabelObject * labelObject)
{
return labelObject->GetRegion().GetSize()[TLabelObject::ImageDimension-1];
}

};

Now the main program. First the usual validation of the number of arguments.

int main(int argc, char * argv[])
{

if(argc != 6)
{
std::cerr << "usage: " << argv[0] << " input output bg lambda reverse" << std::endl;
// std::cerr << " : " << std::endl;
exit(1);
}

Let’s declare the dimension used, and the type of the input image

const int dim = 3;
typedef unsigned char PType;
typedef itk::Image< PType, dim > IType;

We read the input image.

typedef itk::ImageFileReader< IType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);

And convert it to aLabelMap, with the shape attributes computed. We use the default label object type provided by
LabelImageToShapeLabelMapFilter.

9.3 Reading attribute values 25

typedef itk::LabelImageToShapeLabelMapFilter< IType > I2LType;
I2LType::Pointer i2l = I2LType::New();
i2l->SetInput(reader->GetOutput());
i2l->SetBackgroundValue(atoi(argv[3]));

The opening filter is declared with our custom accessor type as second template argument, so it will be able to user
our custom attribute to make the opening.

typedef LastDimesionRegionSizeObjectAccessor< I2LType::LabelObjectType > AccessorType;
typedef itk::AttributeOpeningLabelMapFilter< I2LType::OutputImageType, AccessorType > OpeningType;
OpeningType::Pointer opening = OpeningType::New();
opening->SetInput(i2l->GetOutput());
opening->SetLambda(atof(argv[4]));
opening->SetReverseOrdering(atof(argv[5]));
itk::SimpleFilterWatcher watcher(opening, "filter");

The label map is then converted back to an label image.

typedef itk::LabelMapToLabelImageFilter< I2LType::OutputImageType, IType > L2IType;
L2IType::Pointer l2i = L2IType::New();
l2i->SetInput(opening->GetOutput());

Write the result to the disk.

typedef itk::ImageFileWriter< IType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput(l2i->GetOutput());
writer->SetFileName(argv[2]);
writer->Update();

Finally, print all the label objects after the opening, to check everything has been done right.

opening->GetOutput()->PrintLabelObjects();
std::cout << "Number of objects after the opening: " << opening->GetOutput()->GetNumberOfLabelObjects(

return 0;
}

9.3 Reading attribute values

In that example, we will read a binary image, and get some of attributes about the obejcts contained in that image. The
source code is available in the fileattribute values.cxx.

First include the classes we’ll use

#include "itkImageFileReader.h"
#include "itkShapeLabelObject.h"
#include "itkLabelMap.h"
#include "itkBinaryImageToLabelMapFilter.h"
#include "itkShapeLabelMapFilter.h"

int main(int, char * argv[])
{

const int dim = 2;

9.3 Reading attribute values 26

then declare the type of the input image

typedef unsigned char PixelType;
typedef itk::Image< PixelType, dim > ImageType;

read the input image

typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);

define the object type. Here the ShapeLabelObject type is chosen in order to read some attribute related to the shape
of the objects (by opposition to the content of the object, with the StatisticsLabelObejct).

typedef unsigned long LabelType;
typedef itk::ShapeLabelObject< LabelType, dim > LabelObjectType;
typedef itk::LabelMap< LabelObjectType > LabelMapType;

convert the image in a collection of objects

typedef itk::BinaryImageToLabelMapFilter< ImageType, LabelMapType > ConverterType;
ConverterType::Pointer converter = ConverterType::New();
converter->SetInput(reader->GetOutput());
converter->SetForegroundValue(200);

and valuate the attributes with the dedicated filter: ShapeLabelMapFilter

typedef itk::ShapeLabelMapFilter< LabelMapType > ShapeFilterType;
ShapeFilterType::Pointer shape = ShapeFilterType::New();
shape->SetInput(converter->GetOutput());

update the shape filter, so its output will be up to date

shape->Update();

then we can read the attribute values we’re interested in.itk::BinaryImageToLabelMapFilterproduces consecutives
labels, so a simplefor loop will do the job.

LabelMapType::Pointer labelMap = converter->GetOutput();
for(unsigned int label=1; label<=labelMap->GetNumberOfLabelObjects(); label++)
{
// we don’t need a SmartPointer of the label object here, because the reference is kept in
// in the label map.
const LabelObjectType * labelObject = labelMap->GetLabelObject(label);
std::cout << label << "\t" << labelObject->GetPhysicalSize() << "\t" << labelObject->GetCentroid()
}

return 0;
}

9.4 The mask features 27

9.4 The mask features

Theitk::LabelMapMaskImageFilterclass let the user mask a part of anitk::Imagewith the objects of aitk::LabelMap.
It can also crop the image to contain only the masked region.

The source code is available in the filemask.cxx.

First we include the headers of the class we will use, and parse the command line.

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkSimpleFilterWatcher.h"

#include "itkLabelObject.h"
#include "itkLabelMap.h"
#include "itkLabelImageToLabelMapFilter.h"
#include "itkLabelMapMaskImageFilter.h"

int main(int argc, char * argv[])
{

if(argc != 9)
{
std::cerr << "usage: " << argv[0] << " labelImage input output label bg neg crop cropBorder" << std::endl;
// std::cerr << " : " << std::endl;
exit(1);
}

the filters are able to work in any dimension. Lets choose 3, sothe program can be tested on 2D and 2D image.

const int dim = 3;

declare the input image type

typedef itk::Image< unsigned char, dim > ImageType;

and the label object type to use. The input image is a label image, so the type of the label can be the same type than
the pixel type. itk::LabelObject is chosen, because only the mask feature is tested here, so we don’t need any attribute.

typedef itk::LabelObject< unsigned char, dim > LabelObjectType;
typedef itk::LabelMap< LabelObjectType > LabelMapType;

read the label image and the input image to be masked.

typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(argv[1]);

ReaderType::Pointer reader2 = ReaderType::New();
reader2->SetFileName(argv[2]);

convert the label image to a label collection image.

9.5 A full python example 28

typedef itk::LabelImageToLabelMapFilter< ImageType, LabelMapType> I2LType;
I2LType::Pointer i2l = I2LType::New();
i2l->SetInput(reader->GetOutput());

then mask the image. Two inputs are required (the label collection image, and the image to be masked). The label
used to mask the image is passed with theSetLabel()method. The background in the output image, where the image
is masked, is passed withSetBackground(). The user can choose to mask the image outside the label object (that’s the
default behavior), or inside the label object with the chosen label, by callingSetNegated(). Finally, the image can be
cropped to the masked region, by callingSetCrop(true), or to a region padded by a border, by calling bothSetCrop()
andSetCropBorder(). The crop border defaults to 0, and the image is not cropped bydefault.

typedef itk::LabelMapMaskImageFilter< LabelMapType, ImageType > MaskType;
MaskType::Pointer mask = MaskType::New();
mask->SetInput(i2l->GetOutput());
mask->SetFeatureImage(reader2->GetOutput());
mask->SetLabel(atoi(argv[4]));
mask->SetBackgroundValue(atoi(argv[5]));
mask->SetNegated(atoi(argv[6]));
mask->SetCrop(atoi(argv[7]));
MaskType::SizeType border;
border.Fill(atoi(argv[8]));
mask->SetCropBorder(border);
itk::SimpleFilterWatcher watcher6(mask, "filter");

Finally, save the output image.

typedef itk::ImageFileWriter< ImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput(mask->GetOutput());
writer->SetFileName(argv[3]);
writer->Update();

return 0;
}

9.5 A full python example

In that example, we want to:

• find the nuclei in the first image

• find the spots insice the nucleus in the second image

• get the mean value in the nucleus, in the zone of each spot.

The source code is available in example.py.

Lets begin with the usualimports.

import itk, sys
itk.auto_progress()

Then declare the type we will use, as inC++ .

9.5 A full python example 29

(a) Nucleus (b) Spots

Figure 4: The input images.

Dimension = 2
PixelType = itk.UC
ImageType = itk.Image[PixelType, Dimension]

DistancePixelType = itk.F
DistanceImageType = itk.Image[DistancePixelType, Dimension]

RGBPixelType = itk.RGBPixel[PixelType]
RGBImageType = itk.Image[RGBPixelType, Dimension]

LabelObjectType = itk.StatisticsLabelObject[itk.UL, Dimension]
LabelMapType = itk.LabelMap[LabelObjectType]

read the image of the nucleus

nuclei = itk.ImageFileReader[ImageType].New(FileName="images/noyaux.png")

perform a simple binarization. Note that the Otsu filter doesnot use the same convention as usual: the white part is
outside.

otsu = itk.OtsuThresholdImageFilter[ImageType, ImageType].New(nuclei, OutsideValue=255,
InsideValue=0)

The nuclei are not separated. We split them with a watershed.

maurer = itk.SignedMaurerDistanceMapImageFilter[ImageType, DistanceImageType].New(otsu)
watershed = itk.MorphologicalWatershedImageFilter[DistanceImageType, ImageType].New(maurer,

Level=60, MarkWatershedLine=False)
mask = itk.MaskImageFilter[ImageType, ImageType, ImageType].New(watershed, otsu)

9.5 A full python example 30

Figure 5: The segmented nuclei. The too small objects and theones on the border have been excluded.

And now switch to the label map representation, and compute the attribute values

stats = itk.LabelImageToStatisticsLabelMapFilter[ImageType, ImageType, LabelMapType].New(mask,
nuclei)

drop the objects too small to be a nucleus, and the ones on the border

size = itk.ShapeOpeningLabelMapFilter[LabelMapType].New(stats,Attribute=’Size’,
Lambda=100)

border = itk.ShapeOpeningLabelMapFilter[LabelMapType].New(size, Attribute=’SizeOnBorder’,
Lambda=10, ReverseOrdering=True)

Reoder the labels. The objects with the highest mean are the first ones.

relabel = itk.StatisticsRelabelLabelMapFilter[LabelMapType].New(border, Attribute=’Mean’)

for visual validation:

overlay = itk.LabelMapOverlayImageFilter[LabelMapType, ImageType, RGBImageType].New(relabel,
nuclei)

itk.write(overlay, "nuclei-overlay.png")

Now, the spots:

spots = itk.ImageFileReader[ImageType].New(FileName="images/spots.png")

Mask the spot image to keep only the nucleus zone. The rest of the image is cropped, excepted a border of 2 pixels

31

maskSpots = itk.LabelMapMaskImageFilter[LabelMapType, ImageType].New(relabel, spots, Label=1,
Crop=True, CropBorder=2)

A simple thresholding:

th = itk.BinaryThresholdImageFilter[ImageType, ImageType].New(maskSpots, LowerThreshold=110)

Now swith to the label map representation, and compute the attribute values. This time, the input image is not a label
image, but a binary one.

sstats = itk.BinaryImageToStatisticsLabelMapFilter[ImageType, ImageType, LabelMapType].New(th,
nuclei)

we know there are 4 spots in the nubleus, so keep the 4 biggest spots. The other attributes are also usable - we may
have chosen to keep the 4 brightest spots for example.

skeep = itk.ShapeKeepNObjectsLabelMapFilter[LabelMapType].New(sstats, Attribute=’Size’,
NumberOfObjects=4)

Reoder the labels. The bigger objects first.

srelabel = itk.StatisticsRelabelLabelMapFilter[LabelMapType].New(skeep, Attribute=’Size’)

Finally, display the values we are interested in:

• the nucleus number,

• the spot position,

• the mean value in the nucleus in the spot zone.

print "nuclei", "x", "y", "mean"

for nl in range(1, relabel.GetOutput().GetNumberOfLabelObjects()+1):
maskSpots.SetLabel(nl)
srelabel.UpdateLargestPossibleRegion()
labeCollection = srelabel.GetOutput()

for l in range(1, labeCollection.GetNumberOfLabelObjects()+1):
lo = labeCollection.GetLabelObject(l)
print nl, lo.GetCentroid()[0], lo.GetCentroid()[1], lo.GetMean()

10 Threading support

When possible, the filters provided with that contribution have been multithreaded. Some of them however, are not
(easily) threadable (theKeepNObjectsandRelabelfilters), or shouldn’t get any performance improvement in a threaded
version (theOpeningfilters).

The itk::BinaryImageToLabelMapFilter class is a slight modification of the Richard Beare’s
itk::ConnectedComponentImageFilter, and have also been threaded to get the best of the performances on a
multicore system.

32

nucleus x y mean
1 117.925925926 146.111111111 188.185185185
1 154.25 87.4166666667 126.416666667
1 107.666666667 155.125 122.0
1 95.2380952381 78.2857142857 121.0
2 417.631578947 158.736842105 132.894736842
2 431.277777778 177.388888889 131.222222222
2 390.117647059 207.588235294 96.8235294118
2 396.8 113.666666667 113.2
3 251.148148148 358.814814815 105.037037037
3 189.333333333 407.888888889 111.074074074
3 293.72 454.8 95.48
3 239.888888889 411.111111111 135.222222222

Table 1: Output of the python example.

The classical thread architecture is used when the input image is anitk::Image: the image is splitted in several regions
(one per thread), and each thread work on its own region.

Because theitk::LabelMap image is not an array of pixels, it can’t be splitted that way.Instead, several threads are
created, and try to take an object in the collection. If they get one, they process that object individually, and try to get
another one when the object is processed. If no object can be get, the thread ends. Aitk::FastMutexLockis used to
ensure that only one thread take an object at a time.

For the developer, the usage of the threading support is madevery simple, by subclassingitk::LabelMapFilter, or
itk::InPlaceLabelMapFilter, and implementing the methodvirtual void ThreadedGenerateData(LabelObjectType *
labelObject)in the new class. This method only has to process the labelObject passed in parameter. All the threading
code and mutex lock management is already implemented. The mutex lock remain accessible if the subclass need to
use it, as them LabelObjectContainerLockivar.

11 In place filtering

All the filters which are taking aitk::LabelMapas input, and are producing aitk::LabelMapas output, are implemented
as a subclass ofInPlaceLabelMapFilterand thus are running in place by default.

The use can modify this behavior with theSetInPlace(bool), InPlaceOn(), andInPlaceOff()methods, as with the
usualInPlaceImageFilter.

To use that feature, a developer only have to subclassInPlaceLabelMapFilterand implement thevirtual void Thread-
edGenerateData(LabelObjectType * labelObject), to get easy thread support6, or thevirtual void GenerateData()if
the filter is not threadable. In that last case, the only imageto manipulate is the one get with theGetOutput()method,
which is the input image if the filter runs in place, or a copy ofthe input image if the filter is not running in place.

12 Wrappers support

All the classes provided with that article, excepted the most generic ones made to help the developer to implement
some new features, can be used with both stable and unstable WrapITK, and have been fully tested with python.

6see the previous section

33

13 Known bugs and future work

To fit the ITK style, some iterators should be implemented to be able to iterate over all the

• objects,

• lines,

• or pixels

of an image, starting from

• an image,

• an object,

• or a line.

Doing that require a good knowledge of the iterator design. Any help on that point is welcome.

It may be useful to implement the most commonly used opening,keep N objects and relabel transforms in a more
efficient way, by using anitk::AttributeLabelObjectinstead of aitk::ShapeLabelObjector a itk::StatisticsLabelObject.

The converters from/to image are provided, but it may be useful to have the converters from/to other objects represen-
tations:

• spatial objects,

• meshs,

• structuring elements.

Finally, all the binary and label filters should be implemented as a subclass ofitk::InPlaceImageFilter.

Note that some names have been changed in revision 3. To fix your sources, the following commands can be used in
your source directory (order is important):

perl -e ’s/LabelCollectionImage/LabelMap/g’ -pi *
perl -e ’s/GetNumberOfObjects/GetNumberOfLabelObjects/g’ -pi *
perl -e ’s/PrintObjects/PrintLabelObjects/g’ -pi *
perl -e ’s/LabelMapToMaskImageFilter/LabelMapMaskImageFilter/g’ -pi *

14 Conclusion

ITK is currently lacking a good way to manipulate the binary objects. With that contribution I hope to have mostly
filled that lack.

15 Acknowledgments

I thank Richard Beare for his suggestion to use the run lengthencoding to represent the binary objects, and Julien
Jomier for his help for the choice tonotuse theitk::SpatialObjectclass as base class of theitk::LabelObjectclass.

I thank Dr Pierre Adenot and MIMA2 confocal facilities (http://mima2.jouy.inra.fr) for providing the 3D test
image. I thank Dr Maria Ballester for providing the image used in the python example.

http://mima2.jouy.inra.fr

References 34

References

[1] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,
http://www.itk.org/ItkSoftwareGuide.pdf, 2003.

	Introduction
	Definitions
	Label
	Label image
	Binary image
	Attribute

	Existing classes and naming convention in ITK
	Data representation
	itk::LabelMap
	itk::LabelObject and its specializations
	itk::ShapeLabelObject attributes
	itk::StatisticsLabelObject attributes

	itk::LabelObjectLine

	General view of the usage
	Generating the itk::LabelMap
	Valuating the attributes
	Manipulating the itk::LabelMap
	Generating an itk::Image from the itk::LabelMap

	Prebuilt mini-pipeline filters
	Binary filters
	Label filters

	Binary and label specialization of mathematical morphology filters
	Computation details
	Binary image moments
	Roundness
	Pixel's neighborhood

	Usage examples
	Prebuilt pipelines
	Binary shape opening
	Statistics relabel
	Label shape keep N obejcts
	Binary fill holes

	LabelObject and LabelMap manipulation
	AttributeLabelObject
	Custom attribute accessor

	Reading attribute values
	The mask features
	A full python example

	Threading support
	In place filtering
	Wrappers support
	Known bugs and future work
	Conclusion
	Acknowledgments

