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Abstract

Computation of local image derivatives is an important operation in many image processing tasks that
involve feature detection and extraction, such as edges, corners or more complicated features. How-
ever, derivative computation in discrete images is an ill-posed problem and derivative operators without
any prior smoothing are known to enhance noise. Here we present a new convolution operator, the
GaussianDerivativeOperator , that allows to calculate locally Gaussian derivatives of N order. Fur-
thermore, we present some useful classes and examples that make use of this new operator.
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1 Principles of Gaussian Derivative Computation

1.1 Scale-space and Gaussian Derivatives

Computation of local imagéerivativesis an important operation in many image processing tasks that
involve feature detection and extraction, such as edges, corners or more complicated features.

Usually derivatives are calculated esnvolutionsof the image with some predefiné&drnelsor operators

that try to approximate the derivatives (such as Sobel, Prewitt, Roberts or Laplacian operators). However,
derivative computation in discrete images is an ill-posed problem and derivative operators without any prior
smoothing are known to enhance noise.

On the other hand, real world entities are only meaningful at a certain range of scalescaldspace
representation of an image, first introduced by?], is a methodology to obtain a meaningful representation
of an image at multiples scales.

Given a continuous signal inrdimensionsf : R" — R, its scale-space representationR"XR; — R is
defined by the convolution operation

L(x,t) = g(x,t) * f(X) Q)

wheret is thescale-space parametandg : R"XR, \{0} — R is thecontinuous Gaussian kerngiven by

2
X
L

|
g(x,t) = We 2 (2)

Here the scale-parametet is 62 whereo is the standard deviation of the Gaussian function. For simplicity
and without loss of generality we will focus only on 2D signals with a continuous Gaussian kernel

7X2+y2

1
g(xayvt) = ﬁe il (3)

Spatial derivatives of this scale-space representation can be defined at different levels of scale as

inyj (Xv yat) = axiyi L(X) yvt) (4)

Due to the special properties of the Gaussian kernel, the derivative operation commutes with the Gaussian
kernel satisfying

axiyi L= axiyj (g« f) = (axiyi g)xf=gx (axiyj f) (5)

The direct implication is that we can pre-compute the convolution of the Gaussian operator with the deriv-
ative operator in order to speed-up the computations. This way we will convolve our signal with a single
kernel that represent ttgaussian derivative
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1.2 Gaussian Derivatives for Discrete Signals

A problem arises when we want to apply these operators to our real images whitibaetesignals. In
the case of the Gaussian kernel, a direct discretizatigampled Gaussian kernebuld be an initial ap-
proximation but, as pointed out by LindebeHj, [scale-space conditions are not guaranteed to be preserved
and may lead to undesired effects, specially when calculating higher order derivatives in noisy data.

Several approaches have been taken in order to address this problem (see for eGpfopk lprief de-
scription of some of them). For example, DericBgUses recursive filters in order to approximate Gaussian
derivatives. This approach is currently implemented in ITK for calculating scale-space derivatives (see
for example itk::RecursiveGaussianimageFilter ). The implementation is fast and accurate enough

for some cases, specially when performing operations over the whole input image. However, the current
implementation is not suitable to calculate derivatives only at some speaifitidatepoints of the input

image (itk::RecursiveGaussianimageFilter requires all the input image) and is less precise than other
approaches, specially at finer scales.

When calculating several local derivatives at the same tMagf) or when we are interested only in some
set of candidate points of the image, a good approach is to use convolution wilis¢hete analogue of the
Gaussian kernedindsmall-support difference operators

Lindeberg #] showed that the natural way to construct a scale-space representation for discrete signal was
by convolution with thediscrete analogue of the Gaussian kergeen by

T(n7t> = _tln(t) (6)

wherel, are the modified Bessel functions of integer order.

Lindeberg demonstrates that, with this approach, scale-space properties hold after discretization. For exam-
ple operators such as finite difference operators commute with the discrete Gaussian kernel and convolution
is separable in each direction. This way, a family of kernels that constitlitegete analogue of the contin-

uous Gaussian derivativese derived. Currently ITK provides an implementation for the discrete Gaussian
kernel (seeitk::GaussianOperator ) but not for its derivatives.

2 Implementation of Discrete Gaussian Derivative Kernel

The class itk::GaussianDerivativeOperator provides an implementation of separable discrete
Gaussian derivative kernelThe interface of the class is very similar itk::GaussianOperator with
the main difference that it provides the mett8aOrder()  that allows to specify the order of the Gaussian
derivative stored in the new memberOrder . Derivatives can be calculated for virtually any order.

The implementation uses two approaches to generate the filter coeffici€baseateCoefficients()

The first approach calculates the coefficients of a polynomial that is multiplied by the Gaussian kernel, thus
calculating the final derivative Gaussian kernel the same way we would calankdtécally the derivatives

of a Gaussian function. This is possible because the discrete Gaussian kernel represents an analogue of the
continuous Gaussian kernel and the linear properties are kept.

The second approach calculates the convolution of aiitk::GaussianOperator with a
itk::DerivativeOperator to set up the final Gaussian derivative operator. This mode is set when
the flagm_UseDerivativeOperator is set toOn.
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The analytical approach results in increased accuracy and speed with respect to convolution with the
itk::DerivativeOperator , Which can lead to numerical problems with large valuessofHowever,

in the analytical approach it takes more time to set up the kernel, for example when the scale changes. In
general, it is better to calculate the desired derivatives at all points at a given scale before moving to the next
scale.

Like the classitk::GaussianOperator , this new class provides the meth@isMaximumKernelWidth()
andSetMaximumError()  that allow to specify the desired precision of the Gaussian kernel.

Image spacing can be taken into account when calculating Gaussian derivatives [8etpagng() to

set the spacing in the direction of the kernel (by defaud}. The operator automatically adjusts the variance

to bem_Variance /= m _Spacing * m _Spacing and uses also the spacing in the derivative calculation.
Thus, at the time of creating image functions that use this operator and have into account image spacing, the
variance must not be adjusted. Instead we will simply 8etfbpacing()  for the kernel in each direction.

Figure 1 illustrates plots of the Gaussian derivative kernels of different order obtained using the analytical
approach with varying = 2.0 and maximum error. It can be seen that the kernel width augments\aiti
decreases with the maximum error. For large values thfere is a considerable attenuation factor of high
order derivatives, which can be compensated by normalization of derivatives across scale-space by calling
the methodsetNormalizeAcrossScale() (see Figurele) and f) )

Figure 2 shows a comparison between the analytical and convolution-based kernel computation. It can be
seen that for small values of (Figure 2 a) and 2 b) ) the kernels are very similar but for largeand high
order of derivatives (Figure a) and 2 b) ) the convolution implementation gets numerically unstable.

The previous experiments correspond to the provided example
GaussianDerivativeOperatorCoefficients

2.1 Implementation Details for the Analytical Approach

The one-dimensional normalized continuous Gaussian kernel is given by

XZ
l N
Xt)=——e 2 7
a(xt) ot ()
and its first order derivative
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and so on. In the current implementation, the coefficients of the polynomial in the numerator are calculated
and stored in the temporal variakjelyCoeffs , where the polynomial index coincides with the order of
thex variable. For example for the third order derivative we have

0); /I coefficient for x°0
3); Il coefficient for x1
0); /I coefficient for x2
-1); /I coefficient for x"3

polyCoeffs.push_back
polyCoeffs.push_back
polyCoeffs.push_back
polyCoeffs.push_back

A A A

We can also calculate the order toin the derivative expressions. Lbt be the order of the numerator
polynomial with respect t& andn the current coefficient. Then

e The order ot in the numerator polynomial is alwayhl —n)/2.

e The order ot in the denominator coincides with the order of the polynomial.

For low order derivatives coefficients are stored directly inphigCoeffs  vector but for higher orderX 3)
these are computed recursively.

3 Image Functions and Filters Using Gaussian Derivative Operator

Once theitk::GaussianDerivativeOperator is implemented, many image functions and filters can be
defined to calculate N-dimensional derivatives or other interesting features. Here we present tmagew
functionsand dfilter that make use of this new operator.

3.1 DiscreteGaussianDerivativelmageFunction

The class itk::DiscreteGaussianDerivativelmageFunction is used to calculate local Gaussian
derivatives of any order in N-dimensional images. It distinguishes from the already existing
itk::GaussianDerivativelmageFunction in that the measurement is calculated by means of a convolu-
tion with a itk::GaussianDerivativeOperator instead of making use of a spatial function.

The class provides the metho8stMaximumKernelWidth() andSetMaximumError()  to specify the pre-
cision of the operators used internally.

The methodSetOrder()  is used to specify the order of derivatives in each direction. For example, if we
want to calculate a second order partial derivative fior a volumetric image we would type

int order[3];
order[0] = O;
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order[1] = 2;
order[2] = 0;
imageFunction->SetOrder( order );

or, since the vector for storing order of derivatives is by default initialized to zero (only Gaussian smoothing
for each direction)

imageFunction->SetOrder( 1, 2 );

Internally the class calculates a N-dimensional kernel that will be convolved with the neighborhood of the
current image index. This is done in the mettREtomputeGaussianKernel() . The 1D operators used

to calculate this final kernel are of typtk::GaussianDerivativeOperator and are kept in the member
m_OperatorArray . There is an operator for each direction with the specified order for the derivative.

To calculate the final N-dimensional kernel a small pipeline is configured. First a small image is created
which has the same radius as the kernels. The center point is initialized to 1 in order to have an impulse at
the center. Then, this small image is convolved N times with each of the 1D Gaussian derivative operators
using anitk::NeighborhoodOperatorimageFilter . This is done in the following lines of code

for( unsigned int direction = 0; direction<itkGetStaticConstMacro(ImageDimension2); ++direction )

{

convolutionFilter->Setinput( kernellmage );
convolutionFilter->SetOperator( m_OperatorArray[direction] );
convolutionFilter->Update();

kernellmage = convolutionFilter->GetOutput();
kernellmage->DisconnectPipeline();

Finally the resulting output image is copied in the final N-dimensional operator stored in
m_DerivativeKernel . This operator is convolved with the neighborhood of the local index in
EvaluateAtindex() whenever we want to calculate the Gaussian derivatives at a point.

3.2 DiscreteHessianGaussianimageFunction

The clas®iscreteHessianGaussianimageFuncion is used to calculate the local Hessian matrix at points
of N-dimensional images. For a volumetric image, the Hessian matrix is given by

alxx alxy alxz
aIZX alzy aIZZ

which is a symmetric matrix so only 6 components need to be calculated in this case.

The behavior of this class is very similar tiit::DiscreteGaussianDerivativelmageFunction but the
implementation of the methdgecomputeGaussianKernel() is a bit more complicated. The reason is we

are working with a number df1x3 kernels due to the fact that, for each direction, zero, first and second order
derivatives kernels must be stored to calculate the components of the Hessian matrix. As before, these are
stored in the memben_OperatorArray
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3.3 DiscreteGaussianDerivativelmageFilter

The classitk::DiscreteGaussianDerivativelmageFilter calculates Gaussian derivatives for whole
images in the form of anitk::ImageTolmageFilter . It is very similar in conception and implemen-
tation to the already existing clasik::DiscreteGaussianimageFilter . It uses internally the class

itk::GaussianDerivativeOperator . The order of the derivatives to be calculated is set using the method
SetOrder()

4 Sample Programs
Here we present a set of programs used to demonstrate the capabilities of the newly implemented classes.

4.1 GaussianDerivativeOperatorCoefficients

The test progranGaussianDerivativeOperatorCoefficients can be used to generate Gaussian deriva-
tive kernels and dump them to file. The parameters are the following (parameters in parenthesis are optional):

outputTextFile : output ASCII text file name

order : order of the derivatives

sigma : standard deviatioo of the Gaussian derivative

(normalize)  : setto 1 to use normalization across scale-space, otherwise 0
e (max _error) : maximum error for Gaussian kernel calculation (typical values 0.02 or less)

e (use _derivative  _operator) : setto 1 if we want to use the convolution implementation

Example :

GaussianDerivativeOperatorCoefficients GaussianOp_01 s2 0 err0 005.txt 1 2.0 0 0.005 0

The results are displayed in Figurésand 2 and commented in Sectiod.

4.2 GaussianlmageDerivatives

The test prograrGaussianimageDerivatives uses the classk::NeighborhoodOperatorimageFilter
to perform convolution with two operators of typitk::GaussianDerivativeOperator , one for each
directionx andy, over a Gaussian image created with:GaussianimageSource

The parameters are the following

e outputSourcelmage : the generated Gaussian image vath- 5
e outputFilteredimage : the resulting Derivative of Gaussian image

e orderX : order of derivative irx direction
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orderY : order of derivative iry direction

operator _sigma : value ofco (scale) for the derivative operator

(maximum _error) : maximum error for gaussian kernel calculation (typical values 0.02 or less)

(maximum _kernel _width) : if specified it sets a maximum width for the calculated kernel

For example, to calculate a second order derivative &md first order derivative iy, with 0 = 3.0 and
max_error = 0.005we would set the following parameters

GaussianimageDerivatives sourcelmage.png DOG_021 s3 0 005.png 2 1 3.0 0.005

Figure 3 shows the result of using this program to calculate the N-jet (up to order 5) of a 2D Gaussian
function.

4.3 GaussianimageDerivatives3D
This is the 3D version obaussianimageDerivatives . There is a new argument that specifies the deriva-
tive order for directiorz.

Example:

GaussianimageDerivatives3D sourcelmage.png DOG_0222 s3 0 _005.png 2
2 2 3.0 0.005

Figure 4 illustrates a volume rendering of the partial derivatiyg. .G, whereG is a 3D Gaussian function.

4.4 DiscreteGaussianDerivativelmageFunction

The test program  DiscreteGaussianDerivativelmageFunction uses the class
itk::DiscreteGaussianDerivativelmageFunction to locally calculate derivatives at non-zero
points of a source Gaussian image. This could be easily replaced by any other image, for example using
itk::ImageFileReader

The parameters are the following

e outputFileName : the resulting output image file name

orderX :order of derivative irx direction

orderY : order of derivative iry direction

sigma : value ofo (scale) for the derivative operator
e (maximum _error) : maximum error for gaussian kernel calculation (typical values 0.02 or less)

e (maximum _kernel _width) : if specified it sets a maximum width for the calculated kernel

For example, to calculate a first order derivativeximnd first order derivative iy, with o = 3.0 and
max_error = 0.005we would set the following parameters

DiscreteGaussianDerivativelmageFunction DOGImageFunc_011 s3 0 005.png 1 1 3.0 0.005
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4.5 DiscreteHessianGaussianimageFunction

The test program  DiscreteHessianGaussianimageFunction uses the class
itk::DiscreteHessianGaussianimageFunction to locally calculate Hessian matrix at non-zero
points of a source Gaussian image. A totalof (D + 1)/2 output images are written on output, one for
each Hessian matrix component.

Parameters

outputFileName : resulting output image. The program renames this fifdetmme _x.ext where
x is the current Hessian components.

sigma : value ofo (scale) for the derivative operator

(maximum _error)  : maximum error for gaussian kernel calculation (typical values 0.02 or less)

(maximum _kernel _width) : if specified it sets a maximum width for the calculated kernel

For example, to calculate the Hessian matrix of the Gaussian functiorowitB.0 andmax_error = 0.005
we would use

DiscreteHessianGaussianimageFunction HessianimageFunc_s3_0_005.png 3.0 0.005

4.6 ImageHessianEigenvalues3D

The test progranmageHessianEigenvalues3D uses the class

itk::DiscreteHessianGaussianimageFunction to locally calculate Hessian matrix eigenvalues at non-

zero points of a 3D input image. The six Hessian component images and three corresponding eigenvalue
images are written on output.

This example is for demonstrative purposes but, in general, it is not a good idea to use these image functions
to calculate values over the whole input image. For that purpose it is recommended to use faster approaches,
such as recursive Gaussian filters.

Parameters

inputFileName  : input 3D image

sigma : value ofo (scale) for the derivative operator

(maximum _error) : maximum error for gaussian kernel calculation (typical values 0.02 or less)

(maximum _kernel _width) : if specified sets a maximum width for the calculated kernel

For example, to calculate a first order derivativeximnd first order derivative iy, with ¢ = 3.0 and
max_error = 0.005we would set the following parameters

ImageHessianEigenvalues3D inputimage.mhd 3.0 0.005
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Figure 1:Resulting Gaussian derivative kernels for different values of @ and maximum error.
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Figure 3:Gaussian derivatives up to order 5 (N-jet) of the 2D Gaussian function depicted in 3a with ¢ = 5. Parameters
for derivative calculation: 0 = 3.0, max_error = 0.001, normalized.
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Figure 4:Volume render of derivative of Gaussian 0,2y2,2G, 0(G) = 5.0, Oscale= 3.0, max_error = 0.001



