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Abstract

Computation of local image derivatives is an important operation in many image processing tasks that
involve feature detection and extraction, such as edges, corners or more complicated features. How-
ever, derivative computation in discrete images is an ill-posed problem and derivative operators without
any prior smoothing are known to enhance noise. Here we present a new convolution operator, the
GaussianDerivativeOperator , that allows to calculate locally Gaussian derivatives of N order. Fur-
thermore, we present some useful classes and examples that make use of this new operator.
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1 Principles of Gaussian Derivative Computation

1.1 Scale-space and Gaussian Derivatives

Computation of local imagederivativesis an important operation in many image processing tasks that
involve feature detection and extraction, such as edges, corners or more complicated features.

Usually derivatives are calculated asconvolutionsof the image with some predefinedkernelsor operators
that try to approximate the derivatives (such as Sobel, Prewitt, Roberts or Laplacian operators). However,
derivative computation in discrete images is an ill-posed problem and derivative operators without any prior
smoothing are known to enhance noise.

On the other hand, real world entities are only meaningful at a certain range of scales. Thescale-space
representation of an image, first introduced by [1, 2], is a methodology to obtain a meaningful representation
of an image at multiples scales.

Given a continuous signal inn-dimensionsf : Rn → R, its scale-space representationL : RnXR+ → R is
defined by the convolution operation

L(x, t) = g(x, t)∗ f (x) (1)

wheret is thescale-space parameterandg : RnXR+\{0}→ R is thecontinuous Gaussian kernelgiven by

g(x, t) =
1

(
√

2πt)n
e
−
||x||2

2t (2)

Here the scale-parameter ist = σ2 whereσ is the standard deviation of the Gaussian function. For simplicity
and without loss of generality we will focus only on 2D signals with a continuous Gaussian kernel

g(x,y, t) =
1

2πt
e
−

x2 +y2

2t (3)

Spatial derivatives of this scale-space representation can be defined at different levels of scale as

Lxiy j (x,y, t) = ∂xiy j L(x,y, t) (4)

Due to the special properties of the Gaussian kernel, the derivative operation commutes with the Gaussian
kernel satisfying

∂xiy j L = ∂xiy j (g∗ f ) = (∂xiy j g)∗ f = g∗ (∂xiy j f ) (5)

The direct implication is that we can pre-compute the convolution of the Gaussian operator with the deriv-
ative operator in order to speed-up the computations. This way we will convolve our signal with a single
kernel that represent theGaussian derivative.
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1.2 Gaussian Derivatives for Discrete Signals

A problem arises when we want to apply these operators to our real images which arediscretesignals. In
the case of the Gaussian kernel, a direct discretization orsampled Gaussian kernelcould be an initial ap-
proximation but, as pointed out by Lindeberg [5], scale-space conditions are not guaranteed to be preserved
and may lead to undesired effects, specially when calculating higher order derivatives in noisy data.

Several approaches have been taken in order to address this problem (see for example [6] for a brief de-
scription of some of them). For example, Deriche [3] uses recursive filters in order to approximate Gaussian
derivatives. This approach is currently implemented in ITK for calculating scale-space derivatives (see
for example itk::RecursiveGaussianImageFilter ). The implementation is fast and accurate enough
for some cases, specially when performing operations over the whole input image. However, the current
implementation is not suitable to calculate derivatives only at some specificcandidatepoints of the input
image (itk::RecursiveGaussianImageFilter requires all the input image) and is less precise than other
approaches, specially at finer scales.

When calculating several local derivatives at the same time (N-jet) or when we are interested only in some
set of candidate points of the image, a good approach is to use convolution with thediscrete analogue of the
Gaussian kernelandsmall-support difference operators.

Lindeberg [4] showed that the natural way to construct a scale-space representation for discrete signal was
by convolution with thediscrete analogue of the Gaussian kernelgiven by

T(n, t) = e−t In(t) (6)

whereIn are the modified Bessel functions of integer order.

Lindeberg demonstrates that, with this approach, scale-space properties hold after discretization. For exam-
ple operators such as finite difference operators commute with the discrete Gaussian kernel and convolution
is separable in each direction. This way, a family of kernels that constitute adiscrete analogue of the contin-
uous Gaussian derivativesare derived. Currently ITK provides an implementation for the discrete Gaussian
kernel (seeitk::GaussianOperator ) but not for its derivatives.

2 Implementation of Discrete Gaussian Derivative Kernel

The class itk::GaussianDerivativeOperator provides an implementation of aseparable discrete
Gaussian derivative kernel. The interface of the class is very similar toitk::GaussianOperator with
the main difference that it provides the methodSetOrder() that allows to specify the order of the Gaussian
derivative stored in the new memberm Order . Derivatives can be calculated for virtually any order.

The implementation uses two approaches to generate the filter coefficients inGenerateCoefficients() .
The first approach calculates the coefficients of a polynomial that is multiplied by the Gaussian kernel, thus
calculating the final derivative Gaussian kernel the same way we would calculateanalitically the derivatives
of a Gaussian function. This is possible because the discrete Gaussian kernel represents an analogue of the
continuous Gaussian kernel and the linear properties are kept.

The second approach calculates the convolution of anitk::GaussianOperator with a
itk::DerivativeOperator to set up the final Gaussian derivative operator. This mode is set when
the flagm UseDerivativeOperator is set toOn.
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The analytical approach results in increased accuracy and speed with respect to convolution with the
itk::DerivativeOperator , which can lead to numerical problems with large values ofσ. However,
in the analytical approach it takes more time to set up the kernel, for example when the scale changes. In
general, it is better to calculate the desired derivatives at all points at a given scale before moving to the next
scale.

Like the classitk::GaussianOperator , this new class provides the methodsSetMaximumKernelWidth()
andSetMaximumError() that allow to specify the desired precision of the Gaussian kernel.

Image spacing can be taken into account when calculating Gaussian derivatives by usingSetSpacing() to
set the spacing in the direction of the kernel (by default1.0). The operator automatically adjusts the variance
to bem Variance /= m Spacing * m Spacing and uses also the spacing in the derivative calculation.
Thus, at the time of creating image functions that use this operator and have into account image spacing, the
variance must not be adjusted. Instead we will simply callSetSpacing() for the kernel in each direction.

Figure 1 illustrates plots of the Gaussian derivative kernels of different order obtained using the analytical
approach with varyingσ = 2.0 and maximum error. It can be seen that the kernel width augments withσ and
decreases with the maximum error. For large values ofσ there is a considerable attenuation factor of high
order derivatives, which can be compensated by normalization of derivatives across scale-space by calling
the methodSetNormalizeAcrossScale() (see Figure1 e) and f) )

Figure 2 shows a comparison between the analytical and convolution-based kernel computation. It can be
seen that for small values ofσ (Figure 2 a) and 2 b) ) the kernels are very similar but for largeσ and high
order of derivatives (Figure2 a) and 2 b) ) the convolution implementation gets numerically unstable.

The previous experiments correspond to the provided example
GaussianDerivativeOperatorCoefficients .

2.1 Implementation Details for the Analytical Approach

The one-dimensional normalized continuous Gaussian kernel is given by

g(x, t) =
1√
2πt

e
−

x2

2t (7)

and its first order derivative

∂
∂x

g(x, t) =
−x

t
√

2πt
e
−

x2

2t =
−x
t

g(x, t) (8)

We can recursively calculate higher order derivatives

∂g
∂x2 =

∂
∂x

(−x
t

g

)
=

∂
∂x

(−x
t

)
g− x

t
∂g
∂x

=
−g
t

+
x2

t2 g =
x2− t

t2 g (9)

∂g
∂x3 =

∂
∂x

(
x2− t

t2 g

)
=

∂
∂x

(
x2− t

t2

)
g+

x2− t
t2

∂g
∂x

=
2x
t2 g+

−x3 + tx
t3 g =

−x3 +3xt
t3 g (10)
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∂g
∂x4 =

∂
∂x

(−x3 +3xt
t3 g

)
=
−3x2 +3t

t3 g+
x4−3x2t

t4 g =
x4−6x2t +3t2

t4 g (11)

∂g
∂x5 =

4x3−12xt
t4 g+

−x5 +6tx3−3t2x
t5 g =

−x5 +10tx3−15t2x+3t3

t5 g (12)

and so on. In the current implementation, the coefficients of the polynomial in the numerator are calculated
and stored in the temporal variablepolyCoeffs , where the polynomial index coincides with the order of
thex variable. For example for the third order derivative we have

polyCoeffs.push_back(0); // coefficient for xˆ0
polyCoeffs.push_back(3); // coefficient for xˆ1
polyCoeffs.push_back(0); // coefficient for xˆ2
polyCoeffs.push_back(-1); // coefficient for xˆ3

We can also calculate the order oft in the derivative expressions. LetN be the order of the numerator
polynomial with respect tox andn the current coefficient. Then

• The order oft in the numerator polynomial is always(N−n)/2.

• The order oft in the denominator coincides with the order of the polynomial.

For low order derivatives coefficients are stored directly in thepolyCoeffs vector but for higher order (> 3)
these are computed recursively.

3 Image Functions and Filters Using Gaussian Derivative Operator

Once the itk::GaussianDerivativeOperator is implemented, many image functions and filters can be
defined to calculate N-dimensional derivatives or other interesting features. Here we present two newimage
functionsand afilter that make use of this new operator.

3.1 DiscreteGaussianDerivativeImageFunction

The class itk::DiscreteGaussianDerivativeImageFunction is used to calculate local Gaussian
derivatives of any order in N-dimensional images. It distinguishes from the already existing
itk::GaussianDerivativeImageFunction in that the measurement is calculated by means of a convolu-
tion with a itk::GaussianDerivativeOperator instead of making use of a spatial function.

The class provides the methodsSetMaximumKernelWidth() andSetMaximumError() to specify the pre-
cision of the operators used internally.

The methodSetOrder() is used to specify the order of derivatives in each direction. For example, if we
want to calculate a second order partial derivative iny for a volumetric image we would type

int order[3];
order[0] = 0;
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order[1] = 2;
order[2] = 0;
imageFunction->SetOrder( order );

or, since the vector for storing order of derivatives is by default initialized to zero (only Gaussian smoothing
for each direction)

imageFunction->SetOrder( 1, 2 );

Internally the class calculates a N-dimensional kernel that will be convolved with the neighborhood of the
current image index. This is done in the methodRecomputeGaussianKernel() . The 1D operators used
to calculate this final kernel are of typeitk::GaussianDerivativeOperator and are kept in the member
m OperatorArray . There is an operator for each direction with the specified order for the derivative.

To calculate the final N-dimensional kernel a small pipeline is configured. First a small image is created
which has the same radius as the kernels. The center point is initialized to 1 in order to have an impulse at
the center. Then, this small image is convolved N times with each of the 1D Gaussian derivative operators
using an itk::NeighborhoodOperatorImageFilter . This is done in the following lines of code

for( unsigned int direction = 0; direction<itkGetStaticConstMacro(ImageDimension2); ++direction )
{

convolutionFilter->SetInput( kernelImage );
convolutionFilter->SetOperator( m_OperatorArray[direction] );
convolutionFilter->Update();
kernelImage = convolutionFilter->GetOutput();
kernelImage->DisconnectPipeline();

}

Finally the resulting output image is copied in the final N-dimensional operator stored in
m DerivativeKernel . This operator is convolved with the neighborhood of the local index in
EvaluateAtIndex() whenever we want to calculate the Gaussian derivatives at a point.

3.2 DiscreteHessianGaussianImageFunction

The classDiscreteHessianGaussianImageFuncion is used to calculate the local Hessian matrix at points
of N-dimensional images. For a volumetric image, the Hessian matrix is given by




∂Ixx ∂Ixy ∂Ixz

∂Iyx ∂Iyy ∂Iyz

∂Izx ∂Izy ∂Izz


 (13)

which is a symmetric matrix so only 6 components need to be calculated in this case.

The behavior of this class is very similar toitk::DiscreteGaussianDerivativeImageFunction but the
implementation of the methodRecomputeGaussianKernel() is a bit more complicated. The reason is we
are working with a number ofNx3 kernels due to the fact that, for each direction, zero, first and second order
derivatives kernels must be stored to calculate the components of the Hessian matrix. As before, these are
stored in the memberm OperatorArray .
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3.3 DiscreteGaussianDerivativeImageFilter

The class itk::DiscreteGaussianDerivativeImageFilter calculates Gaussian derivatives for whole
images in the form of anitk::ImageToImageFilter . It is very similar in conception and implemen-
tation to the already existing classitk::DiscreteGaussianImageFilter . It uses internally the class
itk::GaussianDerivativeOperator . The order of the derivatives to be calculated is set using the method
SetOrder() .

4 Sample Programs

Here we present a set of programs used to demonstrate the capabilities of the newly implemented classes.

4.1 GaussianDerivativeOperatorCoefficients

The test programGaussianDerivativeOperatorCoefficients can be used to generate Gaussian deriva-
tive kernels and dump them to file. The parameters are the following (parameters in parenthesis are optional):

• outputTextFile : output ASCII text file name

• order : order of the derivatives

• sigma : standard deviationσ of the Gaussian derivative

• (normalize) : set to 1 to use normalization across scale-space, otherwise 0

• (max error) : maximum error for Gaussian kernel calculation (typical values 0.02 or less)

• (use derivative operator) : set to 1 if we want to use the convolution implementation

Example :

GaussianDerivativeOperatorCoefficients GaussianOp_O1_s2_0_err0_005.txt 1 2.0 0 0.005 0

The results are displayed in Figures1 and 2 and commented in Section2.

4.2 GaussianImageDerivatives

The test programGaussianImageDerivatives uses the classitk::NeighborhoodOperatorImageFilter
to perform convolution with two operators of typeitk::GaussianDerivativeOperator , one for each
directionx andy, over a Gaussian image created withitk::GaussianImageSource .

The parameters are the following

• outputSourceImage : the generated Gaussian image withσ = 5

• outputFilteredImage : the resulting Derivative of Gaussian image

• orderX : order of derivative inx direction
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• orderY : order of derivative iny direction

• operator sigma : value ofσ (scale) for the derivative operator

• (maximum error) : maximum error for gaussian kernel calculation (typical values 0.02 or less)

• (maximum kernel width) : if specified it sets a maximum width for the calculated kernel

For example, to calculate a second order derivative inx and first order derivative iny, with σ = 3.0 and
max error = 0.005we would set the following parameters

GaussianImageDerivatives sourceImage.png DOG_O21_s3_0_005.png 2 1 3.0 0.005

Figure 3 shows the result of using this program to calculate the N-jet (up to order 5) of a 2D Gaussian
function.

4.3 GaussianImageDerivatives3D

This is the 3D version ofGaussianImageDerivatives . There is a new argument that specifies the deriva-
tive order for directionz.

Example:

GaussianImageDerivatives3D sourceImage.png DOG_O222_s3_0_005.png 2
2 2 3.0 0.005

Figure 4 illustrates a volume rendering of the partial derivative∂x2y2z2G, whereG is a 3D Gaussian function.

4.4 DiscreteGaussianDerivativeImageFunction

The test program DiscreteGaussianDerivativeImageFunction uses the class
itk::DiscreteGaussianDerivativeImageFunction to locally calculate derivatives at non-zero
points of a source Gaussian image. This could be easily replaced by any other image, for example using
itk::ImageFileReader .

The parameters are the following

• outputFileName : the resulting output image file name

• orderX : order of derivative inx direction

• orderY : order of derivative iny direction

• sigma : value ofσ (scale) for the derivative operator

• (maximum error) : maximum error for gaussian kernel calculation (typical values 0.02 or less)

• (maximum kernel width) : if specified it sets a maximum width for the calculated kernel

For example, to calculate a first order derivative inx and first order derivative iny, with σ = 3.0 and
max error = 0.005we would set the following parameters

DiscreteGaussianDerivativeImageFunction DOGImageFunc_O11_s3_0_005.png 1 1 3.0 0.005
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4.5 DiscreteHessianGaussianImageFunction

The test program DiscreteHessianGaussianImageFunction uses the class
itk::DiscreteHessianGaussianImageFunction to locally calculate Hessian matrix at non-zero
points of a source Gaussian image. A total ofD ∗ (D + 1)/2 output images are written on output, one for
each Hessian matrix component.

Parameters

• outputFileName : resulting output image. The program renames this file tofilename x.ext where
x is the current Hessian components.

• sigma : value ofσ (scale) for the derivative operator

• (maximum error) : maximum error for gaussian kernel calculation (typical values 0.02 or less)

• (maximum kernel width) : if specified it sets a maximum width for the calculated kernel

For example, to calculate the Hessian matrix of the Gaussian function withσ = 3.0 andmax error = 0.005
we would use

DiscreteHessianGaussianImageFunction HessianImageFunc_s3_0_005.png 3.0 0.005

4.6 ImageHessianEigenvalues3D

The test programImageHessianEigenvalues3D uses the class
itk::DiscreteHessianGaussianImageFunction to locally calculate Hessian matrix eigenvalues at non-
zero points of a 3D input image. The six Hessian component images and three corresponding eigenvalue
images are written on output.

This example is for demonstrative purposes but, in general, it is not a good idea to use these image functions
to calculate values over the whole input image. For that purpose it is recommended to use faster approaches,
such as recursive Gaussian filters.

Parameters

• inputFileName : input 3D image

• sigma : value ofσ (scale) for the derivative operator

• (maximum error) : maximum error for gaussian kernel calculation (typical values 0.02 or less)

• (maximum kernel width) : if specified sets a maximum width for the calculated kernel

For example, to calculate a first order derivative inx and first order derivative iny, with σ = 3.0 and
max error = 0.005we would set the following parameters

ImageHessianEigenvalues3D inputImage.mhd 3.0 0.005
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(c) σ = 5.0, max err = 0.005
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(d) σ = 5.0, max err = 0.02
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(e) σ = 5.0, max err = 0.005, normalized
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(f) σ = 5.0, max err = 0.02, normalized

Figure 1:Resulting Gaussian derivative kernels for different values of σ and maximum error.
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(a) σ = 2.0, max err = 0.005, analytical
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(b) σ = 2.0, max err = 0.005, convolution
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(c) σ = 5.0, max err = 0.005, analytical
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(d) σ = 5.0, max err = 0.005, convolution

Figure 2:Resulting Gaussian derivative kernels for different values of σ and maximum error with derivatives calculated

2a, 2c analytically and 2b, 2d by convolution.
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(a)G(x,y)

(b) ∂xG (c) ∂yG

(d) ∂x2G (e) ∂y2G (f) ∂xyG

(g) ∂x3G (h) ∂y3G (i) ∂x2yG (j) ∂xy2G

(k) ∂x4I (l) ∂y4I (m) ∂x3yI (n) ∂xy3I (o) ∂x2y2I

(p) ∂x5I (q) ∂y5I (r) ∂x4yI (s) ∂xy4I (t) ∂x3y2I (u) ∂x2y3I

Figure 3:Gaussian derivatives up to order 5 (N-jet) of the 2D Gaussian function depicted in 3a with σ = 5. Parameters

for derivative calculation: σ = 3.0, max error = 0.001, normalized.



References 14

Figure 4:Volume render of derivative of Gaussian ∂x2y2z2G, σ(G) = 5.0, σscale= 3.0, max error = 0.001


