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Abstract

The original design of the ITK registration framework was based around the itk::Image class, which
assumed that the pixel axes were aligned with the coordinate system axes. The itk::OrientedImage
was added later as a subclass, but problems remain with its gradient calculations. Furthermore, general
code that uses the itk::OrientedImage will suffer an unnecessary penalty when the image is oriented
parallel to the image axes. We propose a new itk::FastOrientedImage class that alleviates these
performance problems, and a change to the design of itk::ImageToImageMetric that resolves the
gradient issue, and adds a number of additional capacities to the image metrics.
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1 Introduction

The registration framework in ITK was originally designed around the class itk::Image, which defines
an image as a lattice of pixels oriented parallel to the coordinate system axes. A more general definition of
image, however, is to allow the directions of each pixel axis to be arbitrary orthogonal directions in space.
This is achieved by storing a transformation matrix, or direction cosines, for each axis. In ITK, this was
implemented in the itk::OrientedImage class.

However, there are two problems with this approach. One is that, inevitably, computing the coordinate
system to pixel and pixel to coordinate system conversions takes more time in the more general, oriented,
case. Since this calculation must be performed thousands or millions of times in the registration framework,
the itk::OrientedImage incurs a significant performance penalty.

Secondly, and more seriously, this leads to an ambiguity in the definition of derivative. The registration
framework requires the image derivative relative to the world coordinate system. With the itk::Image
class the world coordinate system was aligned with the image coordinate system. Thus what was re-
quired, and was computed, were image derivatives relative to the pixel axes, scaled by the pixel spacing.
In the case of an oriented image, the derivative with respect to the pixel directions must be transformed to
get the derivative with respect to the coordinate system axes. However, the ITK design keeps the image
gradient separate from the image definition itself. Thus the gradient is computed by a number of image
filters, including the itk::GradientImageFilter, itk::GradientRecursiveGaussianImageFilter,
and itk::CentralDifferencingImageFilter as well as others. Changing the definition of image gradi-
ent to support the registration framework will be time consuming and difficult to correctly implement. It is
also possible that existing work would be broken by making major changes to how derivatives are calculated
on itk::OrientedImage. 1

2 Background

2.1 Pixel coordinates to world coordinates

An image has a natural pixel coordinate system. This coordinate system is anchored in a world coordinate
system by three components. The origin,O, is the location of the pixel 0̄ in world coordinates. The spacing,
S, is a vector of distances between pixel centers. Finally the directions are an orthogonal transformation
matrix, D.

The world coordinates, Xw, of a particular pixel, Xp, are given by

Xw = O+D ·diag(S) ·Xp (1)

where diag(S) is matrix whose diagonal entries are the elements of S, and whose off-diagonal entries are
zero. Similarly, the pixel coordinates of a particular world pixel are given by

Xp = diag(S)−1 ·D−1 · (Xw−O) (2)

These conversions are handled by four methods of the itk::Image class and sub-
classes, specifically TransformPhysicalPointToIndex, TransformIndexToPhysicalPoint,

1As this document was being written, the ITK working group came to a decision that the image gradient issue should be resolved
by adding a method to the itk::Image base class and correcting all the filters which calculate derivatives [1]. We think it would
still be of interest to generalize the method for calculating derivatives in the image metrics, as this would add considerable versatility
to the system.
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TransformPhysicalPointToContinuousIndex, and, TransformContinuousIndexToPhysicalPoint.
We will refer to these four methods in this document as the Pixel-World Relationship methods (PWR
methods).

2.2 Image and spatial gradients

Since these coordinate conversions are one-to-one and differentiable, the derivative of any function defined
in the space can be taken with respect to either set of coordinates. In particular, considering an image as a
function f (X), the derivative of an image in world space can be related to the derivative of an image in pixel
space by:

∂ f (X)
∂Xw

=
∂ f (X)

∂Xp
·

∂Xp

∂Xw

From Equation 2 we obtain that,
∂Xp

∂Xw
= diag(S)−1 ·D−1

In the case of the current implementation, what is computed is

∂ f (X)
∂Xw

=
∂ f (X)

∂Xp
·diag(S)−1

When the spatial coordinates are aligned with the pixel coordinate axes this is correct. However, in the
general case handled by itk::OrientedImage, this is not the derivative that is needed.

3 Proposed Method

3.1 Pixel coordinates to image coordinates

The original itk::Image case is a special case of the itk::OrientedImage calculation. Thus, a
itk::OrientedImage can be used in place of an itk::Image as is. Unfortunately, there are significantly
more operations to perform the general calculation, than there are to perform the simpler calculation used in
itk::Image. Thus general code suffers a significant performance deterioration.

It is clear that the authors of the itk::OrientedImage class have considered the performance issues. The
spacing and direction matrices are premultiplied and inverted, and the multiplication loops are unrolled
using a template metaprogramming technique. Nevertheless, the PWR methods run much slower in the
itk::OrientedImage class. Ideally, when the image axes are aligned with the world coordinate axes, it
would be nice to be able to use the more efficient calculation used in itk::Image. In fact, there are a
number of special cases, which can be calculated more efficiently (Table 1). Which case applies can be
determined once the image coordinate system is known, meaning it must be selected at run time. It does
not have to be determined inside the PWR method themselves, however, but can be determined when the
coordinate system is set.

The method that we propose to do this is to use function pointers to control which function is
used for the evaluation of the PWR methods. When the coordinate system permits, the effi-
cient functions will be used, and when it does not, the generic calculation will be used. When
the coordinate system is updated, the PWR function pointers will be changed accordingly. It is
worth noting that the calculation TransformPhysicalPointToIndex is identical to the calculation for
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Condition Calculation
O = 0,S = 1,D = I Xw = Xp

O 6= 0,S = 1,D = I Xw = Xp +O
O = 0,S 6= 1,D = I Xw = ST Xp

O = 0,any S,D not diagonal Xw = [D ·diag(S)] ·Xp

O 6= 0,S 6= 1,D = I Xw = ST Xp +O
O 6= 0,S = 1,D not diagonal Xw = [D ·diag(S)] ·Xp +O

Table 1: Special cases of the PWR functions that can be calculated efficiently

Condition Calculation
O = 0,anyS,D = I Gw = Gi

O = 0,any S,D not diagonal Gw = Gi ·D−1

Table 2: Special cases of the gradient correction functions that can be calculated efficiently. Here Gw is the
gradient with respect to world coordinates, and Gi is the gradient as currently calculated.

TransformPhysicalPointToContinuousIndex followed by a cast to the index type. Thus there is no
point implementing a set of functions for TransformPhysicalPointToIndex. The converse is not true
however, in the case of TransformIndexToPhysicalPoint.

Function pointers can lead to somewhat obscure code, however, this was judged to be the best approach
available. Alternatives would be to use a naive approach of checking for the special cases on each evaluation,
but this would add almost as many checks as operations saved, and save very little time in the end. A more
reasonable alternative method would be to create subclasses of the itk::OrientedImage for each special
case. However, if these are chosen at compile time, then the resulting code is not general. If these are chosen
at runtime, then a separate filter chain would have to be declared for every possible case. A filter template
instantiated using the general class as its type would accept one of the specific efficient classes as input but
would always produce the generic, inefficient, class as output.

3.2 Image Gradient

The image derivative problem inevitably requires a deeper refactoring of the ITK system. To correct the
definition of derivative throughout the code, any derivative or Hessian based filter would have to be modified
to reflect the new interpretation of derivative. This could affect a lot of legacy code, to fix a problem which
seems to be specific to one element of ITK. As it is the image registration framework which requires this
change, we argue the change should be implemented in that framework.

In principle, the change is simple. A method can be added to the itk::OrientedImage class to correct the
image gradient from pixel space to world space. Like the PWR methods, this method can be implemented
very efficiently in special cases. By locating this method in the itk::OrientedImage, efficient versions
of this function can implemented, and the choice controlled using function pointers (Table 2).

However, this may seem to just push the burden of managing the derivative problem to the
itk::ImageToImageMetric framework. Each metric would have to be modified to perform this adjust-
ment when computing the derivative of the moving image. However, there are other issues relating to
derivatives in the image registration framework which could make this worthwhile.

A number of different methods can be used for computing the image derivative in these metrics, each of
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which has different advantages and disadvantages. We propose to add a versatile method for handling
derivatives to the ImageToImageMetric base class, which can then be inherited by all subclasses. In this
paper, we have implemented a subclass of ImageToImageMetric which contains this general approach, and
implemented three of the most commonly used image metrics in this framework.

There are at least three methods in current use in the registration framework for computing deriva-
tives. The first, default method, used by at least the itk::MeanSquaresImageToImageMetric and the
itk::NormalizedCorrelationImageToImageMetric is to compute and store the gradient image of the
moving image, and then to compute the required gradient by nearest neighbor interpolation during the
registration process. In contrast, the itk::MattesMutualInformationImageToImageMetric uses two
different methods of computing the gradient. If a B–Spline image interpolator is being used, then it is ex-
ploited to compute the gradient. In the general case, a finite differencing approach is used to compute the
gradient.

Each method has its advantages and disadvantages. The first method is fastest when the gradient is required
on all pixels. However, its memory requirements can be burdensome. The second and third methods trade
speed for memory efficiency, and arguably, slightly more accuracy. When not all the pixels are being utilized
- something proposed as a general approach in [7] and [2], this can be more efficient.

Furthermore, there are alternative image gradient computation methods in the literature, for example the
inverse compositional method [3, 4], which it may be of interest to incorporate in ITK. If the this calculation
is in the base class, adding new methods of computing the image gradient to all metrics becomes greatly
simplified.

4 Implementation

This submission contains 5 classes:

• itk::FastOrientedImage

• itk::ModImageToImageMetric

• itk::MeanSquaresModImageToImageMetric

• itk::NormalizedCorrelationModImageToImageMetric

• itk::MattesMutualInformationModImageToImageMetric

The implementation of itk::FastOrientedImage is straightforward. A function pointer variable is added
to the class for each of the four PWR functions, and the gradient correction function. The callable part of
these methods is implemented as a simple wrapper function which calls the function pointed to by the cor-
responding variable, and contains any code common to all methods. Upon instantiation, the constructor sets
these to point to the most generic function, and the SetOrigin(), SetDirection)( and SetSpacing()
methods are modified to call a method, SetIndexFunctions(), that chooses and sets the appropriate func-
tion pointers.

itk::OrientedImage used the itk::ImageTransformHelper to inline and unroll loops. As our approach
has created several specialized loops numerous helper classes would be needed. Loops have been manually
unrolled for the two and three dimensional case, which seems to help the efficiency significantly. This
unrolling comes at the expense of some code clarity. However, as these functions are used extremely heavily
by the registration framework, this is considered worthwhile.
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The itk::ModImageToImageMetric class adds a ComputeImageGradient() method, and a
m GradientMethod variable with corresponding methods for setting it. The ComputeImageGradient()
method is based on the one in itk::MattesMutualInformationMetric. When an image gradient is
needed in the metric calculation, this method should be used to get it. This approach is implemented for
three of the most commonly used image metrics.

5 Testing

Testing can be performed by comparing against the results from the original implementations
of the classes in question. For the itk::FastOrientedImage class, this is implemented in
itkFastOrientedImageTest which tests both performance and accuracy for image dimensions 2,3 and
4. Results are identical, up to numerical accuracy. Timing results for optimized code on two compilers are
shown in Table 3. For the continuous index methods, the calculation in the new class is more efficient than
itk::OrientedImage, even when the full calculation must be done. In many cases this implementation
cannot achieve the efficiency of the itk::Image, even when doing the same calculation. This is due to the
inlining of these function calls in itk::Image, something that the function pointer approach does not al-
low. However, the TransformPhysicalPointToContinuousIndex() method is faster than either existing
image class. Overall, these methods minimize the performance penalty incurred by writing general code
using itk::OrientedImage.

The TransformPhysicalPointToIndex methods are startlingly slow in all implementations. This is due to
the notoriously slow conversion between floating point and integer on Intel processors [5]. It would probably
be necessary to write an assembly optimized version to overcome this problem, which would be inherently
platform and compiler dependent. As this particular function is not critical to registration speed, we have
ignored its slowness.

Testing of the image metric classes is performed by comparing to the original implementation for the par-
ticular derivative case that is used in the original implementation. Results should be numerically identical
in those cases. This test is performed by the ModImageToImageMetricTest test program. Performance is
difficult to evaluate but can be roughly examined by performing registrations in both cases and comparing
the time required. When the image is rotated 90 degrees the registration takes the same steps as when rotated
zero degrees, thus these runs may be compared. Selected results are shown in Table 4. It is difficult to draw
conclusions from these limited examples, but it can be concluded that the use of this derivative correction
imposes at worst a small performance penalty when D = I. There is however a time increase when the gra-
dient correction must be performed. This time difference is more noticeable using Visual C++, and is likely
due to differences in compiler optimizations. This underscores the importance of switching to an efficient
evaluation when the data permits rather than using the general method at all times.

The derivative calculation must be tested by registering images oriented at various angles. The test program
tests the registration process with the images rotated by 0, 90, ±30, and ±120 degrees. In the original
implementation the rotated case usually fails. However, with the new derivative calculation, it succeeds in
all orientations.

6 Conclusion and future work

In this paper, we have addressed two issues with the use of the itk::OrientedImage in the registration
framework. We suggest creating a general gradient calculation method in the itk::ImageToImageMetric
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Case Method Time VC++ 2003 Time GCC 4.0.3
FOI OI I FOI OI I

O = 0,S = 1,D = I TCITPP 0.593 4.438 0.516 0.46 3.79 0.63
O = 0,S = 1,D = I TITPP 0.625 1.64 0.781 0.48 1.12 0.79
O = 0,S = 1,D = I TPPTI 4.079 5 5.062 1.73 1.95 2.77
O = 0,S = 1,D = I TPPTCI 0.688 6.062 1.797 0.9 4.59 1.95
O = 0,S 6= 1,D = I TCITPP 0.641 4.734 0.656 0.62 3.8 0.64
O = 0,S 6= 1,D = I TITPP 0.641 1.265 0.547 0.66 1.14 0.79
O = 0,S 6= 1,D = I TPPTI 4.5 5 5.063 1.79 1.95 2.78
O = 0,S 6= 1,D = I TPPTCI 0.719 6.031 1.781 0.99 4.6 1.95
O 6= 0,S 6= 1,D = I TCITPP 0.656 4.86 0.531 0.74 3.8 0.64
O 6= 0,S 6= 1,D = I TITPP 0.687 1.266 0.547 0.8 1.12 0.81
O 6= 0,S 6= 1,D = I TPPTI 5.484 6.063 5.422 1.86 1.94 2.97
O 6= 0,S 6= 1,D = I TPPTCI 0.812 6.391 1.906 1.16 4.56 2.13
O 6= 0,S = 1,D = I TCITPP 0.656 4.422 0.531 0.62 3.8 0.63
O 6= 0,S = 1,D = I TITPP 0.641 1.266 0.547 0.64 1.13 0.78
O 6= 0,S = 1,D = I TPPTI 5.921 5.563 5.891 1.81 1.94 2.99
O 6= 0,S = 1,D = I TPPTCI 0.703 6.062 1.906 0.99 4.58 2.14
O 6= 0,S = 1,D 6= I TCITPP 1.563 4.859 0.532* 1.8 3.8 0.64*
O 6= 0,S = 1,D 6= I TITPP 1.625 1.265 0.547* 1.68 1.13 0.8*
O 6= 0,S = 1,D 6= I TPPTI 10.078 5.5 5.438* 2.43 1.95 2.97*
O 6= 0,S = 1,D 6= I TPPTCI 3.203 6.062 1.891* 1.89 4.58 2.14*
O = 0,S = 1,D 6= I TCITPP 1.344 4.859 0.531* 1.21 3.82 0.63*
O = 0,S = 1,D 6= I TITPP 1.375 1.266 0.547* 1.19 1.13 0.78*
O = 0,S = 1,D 6= I TPPTI 8.906 6.063 4.578* 2.44 1.94 2.78*
O = 0,S = 1,D 6= I TPPTCI 1.234 6.406 1.797* 1.82 4.58 1.95*
O = 0,S 6= 1,D 6= I TCITPP 1.328 4.438 0.531* 1.22 3.8 0.64*
O = 0,S 6= 1,D 6= I TITPP 1.359 1.438 0.922* 1.18 1.13 0.79*
O = 0,S 6= 1,D 6= I TPPTI 8.969 6.062 4.594* 2.43 1.94 2.78*
O = 0,S 6= 1,D 6= I TPPTCI 1.234 6.047 1.891* 1.82 4.58 1.95*
O 6= 0,S 6= 1,D 6= I TCITPP 1.562 4.438 0.531* 1.79 3.81 0.63*
O 6= 0,S 6= 1,D 6= I TITPP 1.625 1.266 0.546* 1.69 1.12 0.81*
O 6= 0,S 6= 1,D 6= I TPPTI 10.016 5.484 5.594* 2.42 1.95 2.96*
O 6= 0,S 6= 1,D 6= I TPPTCI 2.797 6.047 1.922* 1.9 4.6 2.13*

Table 3: Timing results for itk::FastOrientedImage. Times reported are for 50 million evaluations of each
function in the 3 dimensional case. The tests were performed on two platforms: (1) with code compiled on
Visual C++ 2003 and run on a 3.2 GHz Pentium 4 under Windows XP Pro SP2q, and (2) compiled with GCC
4.0.3 and run on a 3.2 GHz Pentium 4 under Ubuntu Linux. All code was compiled using the “Release”
settings for the ITK distribution. Timing results must be considered approximate as they can vary from run
to run. The cases marked with a * give erroneous results using itk::Image.
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Case Metric Time VC++ 2003 Time GCC 4.0.3
ModMetric Metric ModMetric Metric

No Rotation MSD .328 .297 0.38 0.34
No Rotation NCC .266 .265 0.3 0.28
No Rotation MI .782 .781 0.98 0.96
90 degrees MSD 0.515 (157% of no rotation) Fail 0.38 (100% of no rotation) Fail
90 degrees NCC 0.375 (141% of no rotation) Fail 0.32 (107% of no rotation) Fail
90 degrees MI 0.812 (103% of no rotation) Fail 1 (102% of no rotation) Fail

Table 4: Timing results for itk::FastOrientedImage. Compilation and machine details as in Table 3. All
Metrics used the FastOrientedImage class, differences are due solely to the gradient calculation. Timing
results must be considered approximate as they can vary from run to run.

class, which can be reused in its subclasses. This will make the subclasses more flexible, and reduce the
amount of duplicated code. We propose to correct the image gradient calculation problem by putting a gradi-
ent correction method in itk::OrientedImage, but placing the responsibility for applying it in the image
metrics. This is not overly different from the solution recently proposed in the issue tracking system [1].

We have addressed the performance issues with the use of itk::OrientedImage by using function pointers
to efficiently switch between efficient versions of the pixel to world functions when they are appropriate,
and the general versions when they must be used. The original version of itk::OrientedImage used a
metaprogramming technique to unroll the loops for efficiency. We have manually unrolled the loops for the
critical 2 and 3 dimensional cases.

We conclude that with these modifications, it is feasible to create general image registration code using
itk::OrientedImage without sacrificing much performance on images aligned with the coordinate axes.
Indeed, we achieve superior performance to both the itk::OrientedImage and the itk::Image classes
with the TransformPhysicalPointToContinuousIndex() method.
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