

Kenneth Johnson  
Open Source Software Practice

## Technical Report

### Experiment

#### Input Data:

Normal007-T2.mha (from MIDAS - Kitware)

#### Process:

For this assignment, we had to do the following:

- Obtain realistic medical data from a data repository
- Select an ITK image segmentation method
- Implement a minimal segmentation application
- Run the application on the data and experiment with parameter selection
- Write a reproducible report on your findings and post it to the Insight Journal

#### Motivation:

This project was oriented to expose students to the concepts of

- Open Data
- Open Source
- Open Access

That are the three pillars of Open Science.

It also exposes students to the characteristics of medical image segmentation and how it is applied to clinical problems.

### Method

The segmentation method I chose was Confidence Connected, a Region Growing Method. My first reference (listed below) gives a nice description of the Region Growing approach:

The fundamental drawback of histogram-based region detection is that histograms provide no spatial information (only the distribution of gray levels). Region-growing approaches exploit the important fact that pixels which are close together have similar gray values.

Start with a single pixel (seed) and add new pixels slowly

- (1) Choose the seed pixel
- (2) Check the neighboring pixels and add them to the region if they are similar to the seed
- (3) Repeat step 2 for each of the newly added pixels; stop if no more pixels can be added.

Specifically, Confidence Connected does this with Standard Deviation and an X Multiplier, as described in the class notes.

#### References:

[www.cse.unr.edu/~bebis/CS791E/Notes/RegionGrowing.pdf](http://www.cse.unr.edu/~bebis/CS791E/Notes/RegionGrowing.pdf)

<http://public.kitware.com/OpenSourceSoftwarePractice/images/7/72/InsightToolkit-II.pdf>

## Instructions

### To Replicate:

- Build ConfidenceConnected in CMake using ConfidenceConnected.cxx and CMakeLists.txt
- Build ALL\_BUILD in Microsoft Visual Studio .NET 2003
- Download Normal007-T2.mha (from MIDAS – Kitware)
- Find ConfidenceConnected.exe
- With ConfidenceConnected.exe and Normal007-T2.mha in the same directory, Run:

```
> ConfidenceConnected.exe Normal007-T2.mha Output.mha 97.0 122.0 64.0
```

## Results

- A file, Output.mha will be created, which you can view in ImageViewer (as seen below)
- The Ventricle is clearly visible on and around Z-Slice 64!

