
Fast Marching Minimal Path Extraction in ITK
Release 1.0

Dan Mueller1

March 4, 2008
1Queensland University of Technology, Brisbane, Australia

Abstract

This paper describes the ITK implementation of a minimal path extraction framework based
on Fast Marching arrival functions. The method requires the user to provide three inputs: 1.
a meaningful speed function to generate an arrival function, 2. path information in the form
of start, end, and way-points (which the path must pass near), and 3. an optimizer which
steps along the resultant arrival function perpendicular to the Fast Marching front. A number of
perspectives for choosing speed functions and optimizers are given, as well as examples using
synthetic and real images.

Keywords: minimal path, centerline, vessel segmentation, ITK

Contents

1 Background 2

2 Implementation 3
2.1 Overview . 3
2.2 Path Information . 4
2.3 Speed Function . 4
2.4 Optimizer . 6

3 Examples 7
3.1 Using the Gradient Descent Optimizer . 7
3.2 Using the Regular Step Gradient Descent Optimizer 7

4 Conclusion 8

Fast Marching Minimal Path Extraction in ITK 2

1 Background

Minimal path extraction is useful for a range of application domains including medical image analy-
sis, robot navigation, and artificial intelligence (eg. emulating human behaviour in computer games).
A number of optimisation approaches have been employed within these problem domains, such as
tracking methods [3, 6], minimal cost methods (ie. Dijkstra’s algorithm) [7], and A* (pronounced A
star) [1].

Sethian [5, pp. 284-312] and Andrews et al. [2] explored the use of Fast Marching arrival functions
to extract minimal paths. This method relies on the fact that the gradient of the Fast Marching arrival
function T is orthogonal to the wave front. Furthermore, T has only one local minimum, with is
guaranteed to be the global minimum (see [4, pp.17]). Therefore the minimal path can be extracted
by back-propagating from a given seed (corresponding to the end point of the desired path) to the
starting point implicitly embedded in T (see Figure 1). The back-propagation can be accomplished
using the existing ITK optimizer framework (see Section 2.4).

The advantages of Fast Marching minimal path extraction are three-fold:

1. Fast Marching is computationally efficient with O(n log n) complexity.

2. The resultant path is continuous and directed (compare with skeletonization methods which
return a set of unordered discrete points).

3. To the best of this author’s knowledge, the generic method is not covered by any patents
(however, please note that the framework can be used to implement vessel extraction meth-
ods which are covered by patents, as demonstrated in Section 2.3).

(a) Path (b) Arrival

Figure 1: The minimal path is extracted by back-propagating from an end point to a start point
embedded in the arrival function. Because the Fast Marching front moves orthogonal to itself,
tracking perpendicular to the arrival function is guaranteed to follow the geodesic (minimal) path.

Fast Marching Minimal Path Extraction in ITK 3

2 Implementation

2.1 Overview

This project implements a number of auxiliary functions, however the main filter expected to
be employed by the user is itk::SpeedFunctionToPathFilter. This filter is a subclass of
itk::ArrivalFunctionToPathFilter, which provides the basic functionality to convert an ar-
rival function to a path. The main filter provides the added functionality of computing appropriate
arrival functions from a given speed function, which are then feed to the subclass for processing.
Figure 2 depicts an overview of itk::SpeedFunctionToPathFilter.

itk::SpeedFunctionToPathFilter expects path information (consisting of start, end, and op-
tional way-points) and a speed function (a real-valued image in the range [0,1]). Starting with the
first way-point (or end point if there are no way-points) a front is propagated in the typical Fast March-
ing manner (each point from which a front is propagated is called a Trial point). The front terminates
when both the previous and next points in the path have been reached (this is accomplished using
the itk::FastMarchingUpwindGradientImageFilter). The resultant arrival function is viewed
as a cost function using a new class called itk::SingleImageCostFunction, and is optimized
using an appropriate itk::SingleValuedNonLinearOptimizer. The optimizer is initialised with
the next point in the path list, and at each step the cost function (ie. arrival function) is minimised to
step closer to the local (and global) minimum (ie. the Trial point).

itk::SpeedFunctionToPathFilter monitors the optimizer Iteration event, and saves each
position to the current path. This means the filter only supports step-based optimizers, such as
itk::GradientDescentOptimizer. Once the minimum of the current arrival function has been
reached, the process is repeated with the next point in the list of path information. Once the path list
has been exhausted, the process is repeated for each path (start, end, way-points) specified by the
user. An extracted path is stored in a separate filter output (ie. specifying multiple path information
objects generates multiple outputs).

At the moment paths are represented using itk::PolyLineParametricPath, which stores each
point as an itk::ContinuousIndex. This situation is perhaps not ideal because the path points
should really be stored in physical space (ie. using itk::Points). Additionally, the itk::Path
framework does not support input/output operations (the user is required to implement reading and
writing to files manually).

Figure 2: An overview of the internal workings of itk::SpeedFunctionToPathFilter.

Fast Marching Minimal Path Extraction in ITK 4

2.2 Path Information

Fast Marching minimal path extraction is a semi-autonomous segmentation method — the user is
required to provide start and end points. This is accomplished using an internal class PathInfo
(see itkSpeedFunctionToPathFilter.h). The following code fragment demonstrates how the
set the start and end points, and how to add a single way-point which the path must pass near.

1 // Typedefs
2 const unsigned int Dimension = 2;
3 typedef float PixelType;
4 typedef itk::Image < PixelType , Dimension > ImageType;
5 typedef itk::PolyLineParametricPath < Dimension > PathType;
6 typedef itk::SpeedFunctionToPathFilter < ImageType , PathType > PathFilterType;
7
8 // Setup path points
9 PathFilterType::PointType start , end , way1;

10 start[0] = 10; start[1] = 100;
11 end[0] = 100; end[1] = 10;
12 way1[0] = 10; way1[1] = 10;
13
14 // Add path information
15 PathFilterType::PathInfo info;
16 info.SetStartPoint(start);
17 info.SetEndPoint(end);
18 info.AddWayPoint(way1);
19 pathFilter ->AddPathInfo(info);

Multiple PathInfo objects can be added to the itk::SpeedFunctionToPathFilter instance
using the AddPathInfo() method. Previously added path information objects added to the filter
can be cleared using the ClearPathInfo() method.

Because the user can not be expected to exactly specify points on the path, the TerminationValue
parameter provides a configurable buffer which protects against the path needing to directly pass
through each point. The optimizer is terminated when the current arrival value is less than
TerminationValue; the smaller the value, the closer the path will get to each user specified point.
The default value is 1.0 (note the parameter is specified in arrival time units, not physical spacing).
To prevent oscillations, it is recommended that the specified optimizer has a small step size when
TerminationValue is small.

2.3 Speed Function

Choosing an appropriate speed function is the most difficult part of the entire process (similar to
choosing a speed function when performing active contour segmentation). Recall that the speed
function must be a real-valued image (ie. float or double) in the range [0,1]. For computational
efficiency it is desirable to have the speed function as close to 1.0 near the desired path, and 0.0
elsewhere. In some situations this may not be possible, in which case there will be a computational
penalty because the Fast Marching front will visit most (if not all) of the speed function.

Fast Marching Minimal Path Extraction in ITK 5

TODO: Discuss efficient method for generating speed function for vessel segmentation.

When using the framework to extract the medial axis of a vessel, it may be necessary to use a
method to center the path. Deschamps [4] proposed one such method which firstly used the method
to extract a rough centerline, performed segmentation using the rough centerline, then computed a
speed function using the signed distance transform of the resultant binary volume, and repeated the
minimal path extraction. This method is depicted in Figure 3. It should be noted that this method (ie.
extracting centered paths using a distance transform) may be covered by a patent. As can be seen,
because the minimal path extraction framework described in this paper is capable of implementing a
range of methods, care must be taken to ensure the framework is not used to implement a patented
method.

(a) Uncentered Speed (b) Centered Speed

(c) Overlay

Figure 3: A digital subtraction angiography (DSA) image of the cerebral vessels. The resultant
paths have been laid over the original image: the minimal path (green) and centered path (yellow).
Original image courtesy of Wikipedia.

http://math.lbl.gov/~deschamp/html/publications.html#SECT3
http://upload.wikimedia.org/wikipedia/en/6/63/Cerebral_Angiogram_Lateral.jpg

Fast Marching Minimal Path Extraction in ITK 6

2.4 Optimizer

At present there are three step-wise optimizers which function together with the given mini-
mal path framework: GradientDescentOptimizer, RegularStepGradientDescentOptimizer,
and IterateNeighborhoodOptimizer. IterateNeighborhoodOptimizer is a new optimizer
which operates by iterating the neighbors of the current position, and moving to the minimum value.

The gradient descent methods are suitable for minimizing continuous cost functions (ie. functions
without discontinuities). In comparison, the neighborhood method is suitable for minimizing cost
functions with large discontinuities (ie. when pixels visited by the arrival function are directly adja-
cent to non-visited pixels). The gradient descent optimizers are not suitable for discontinuous cost
functions because the step vector, which is computed using the gradient, is skewed in regions direct
adjacently to non-visited pixels. Examples of continuous and discontinuous cost functions are de-
picted in Figure 4. It is anticipated that for most medical imaging applications — in which the speed
function is continuous — the gradient descent optimizers will be most suitable.

(a) Continuous Arrival (b) Paths

(c) Discontinuous Arrival (d) Paths

Figure 4: The top images (a and b) depict a continuous arrival function and extracted paths us-
ing the gradient descent (blue) and iterate neighborhood (red) optimizers for a synthetic dataset
(Data/Synthetic-02). The bottom image (c) depicts a discontinuous arrival function (note that
visited pixels are directly adjacent to non-visited pixels). The maze image (Data/Synthetic-03)
is courtesy of Wikipedia.

http://en.wikipedia.org/wiki/Image:Cg_pp_maze.png

Fast Marching Minimal Path Extraction in ITK 7

3 Examples

The code from these examples can be found in Source/examples.cxx.

3.1 Using the Gradient Descent Optimizer

The first step for using the proposed framework is to setup the relevant type definitions:

1 const unsigned int Dimension = 2;
2 typedef float PixelType;
3 typedef itk::Image < PixelType , Dimension > ImageType;
4 typedef itk::PolyLineParametricPath < Dimension > PathType;
5 typedef itk::SpeedFunctionToPathFilter < ImageType , PathType > PathFilterType;

Next create a cost function:

1 PathFilterType::CostFunctionType::Pointer cost =
2 PathFilterType::CostFunctionType::New();

Now we create and setup the desired optimizer, noting that the LearningRate parameter will de-
fault to 1.0:

1 typedef itk::GradientDescentOptimizer OptimizerType;
2 OptimizerType::Pointer optimizer = OptimizerType::New();
3 optimizer ->SetNumberOfIterations(1000);

Finally, we plug the cost function and optimizer into a newly created path filter object:

1 PathFilterType::Pointer pathFilter = PathFilterType::New();
2 pathFilter ->SetInput(speed);
3 pathFilter ->SetCostFunction(cost);
4 pathFilter ->SetOptimizer(optimizer);
5 pathFilter ->SetTerminationValue(2.0);

The path information is specified as described in Section 2.2 and the filter updated to compute the
path.

3.2 Using the Regular Step Gradient Descent Optimizer

The regular step gradient descent optimizer gives the user more control over the step size, via the
SetMaximumStepLength, SetMinimumStepLength, and SetRelaxationFactor methods. In the
following example, the step length is configured to be roughly 0.5 but can vary as small as 0.1:

1 typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
2 OptimizerType::Pointer optimizer = OptimizerType::New();
3 optimizer ->SetNumberOfIterations(1000);
4 optimizer ->SetMaximumStepLength(0.5);
5 optimizer ->SetMinimumStepLength(0.1);
6 optimizer ->SetRelaxationFactor(0.5);

Fast Marching Minimal Path Extraction in ITK 8

4 Conclusion

This paper has described the implementation of Fast Marching minimal path extraction for ITK. The
framework allows users to specify a speed function, from which a Fast Marching arrival function
is computed and the geodesic (minimal) path between a number of points is extracted. The pro-
posed implementation uses the existing optimizer framework within ITK to perform the minimal path
extraction. For suggestions or bugs, feel free to contact the author1.

1Corresponding author: Dan Mueller: d.mueller@qut.edu.au or dan.muel@gmail.com.

mailto:d.mueller@qut.edu.au
mailto:dan.muel@gmail.com

Fast Marching Minimal Path Extraction in ITK 9

References

[1] . A* search algorithm. Technical report, Wikipedia, the free encyclopedia, 2007,
Available online: http://en.wikipedia.org/wiki/A*_search1

[2] J. Andrews and J. Sethian. Fast marching methods for the continuous traveling salesman prob-
lem. Proceedings of the National Academy of Sciences (PNAS), 104(4):1118–1123, 2007. 1

[3] S. Aylward and E. Bullitt. Initialization, noise, singularities, and scale in height ridge traversal for
tubular object centerline extraction. IEEE Transactions on Medical Imaging, 21(2):61–75, 2002.
1

[4] Thomas Deschamps. Curve and Shape Extraction with Minimal Path and Level-Sets tech-
niques: Applications to 3D Medical Imaging. PhD dissertation, University of Paris Dauphine,
2001, Available online: http://math.lbl.gov/˜deschamp/html/phdthesis.html1, 2.3

[5] J. Sethian. Level Set Methods and Fast Marching Methods. Cambridge Press, 2nd edition,
1999. 1

[6] O. Wink, W. Niessen, and M. Viergever. Fast delineation and visualization of vessels in 3-D
angiographic images. IEEE Transactions on Medical Imaging, 19(4):337–346, 2000. 1

[7] O. Wink, W. Niessen, and M. Viergever. Multiscale vessel tracking. IEEE Transactions on
Medical Imaging, 23(1):130–133, 2004. 1

http://en.wikipedia.org/wiki/A*_search
http://math.lbl.gov/~deschamp/html/phdthesis.html

	1 Background
	2 Implementation
	2.1 Overview
	2.2 Path Information
	2.3 Speed Function
	2.4 Optimizer

	3 Examples
	3.1 Using the Gradient Descent Optimizer
	3.2 Using the Regular Step Gradient Descent Optimizer

	4 Conclusion

