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Abstract

Semi-automatic image segmentation algorithms depend on interaction with the user to accurately define
a region of interest within an image. Once such method is a dynamic programming approach called
Intelligent Scissors developed by Mortenson and Barret [5, 4, 1, 2]. Standard interaction involves the
user-placement of a seed point on or near the boundary of the object to be extracted. Using a gradient-
based cost function, a live-wire image path from the seed point to a subsequently placed boundary point
is determined. As this free point is manipulated with the mouse cursor, the live-wire boundary, which
extends from the seed point to the varying free point, locks onto nearby edges within the image. Although
some applications do not require such user-interaction (e.g. [3]) warranting inclusion within the toolkit,
incorporating live-wire capabilities into ITK-SNAP [6] has been discussed and, therefore, we would like
to, as a preliminary step, vet the code within the ITK community.
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1 Intelligent Scissors: Theory

Mortensen formulated the boundary finding problem as a single-source shortest path problem on a weighted
graph [5]. Each pixel in the image constitutes a node in Mortensen’s graph and the edges of the graph are
the links between the pixel neighbors. The minimum weight path from a source pixel to a target pixel is the
path which minimizes a specified cost function determined by Dijkstra’s algorithm. This cost function is a
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combination of three components: the gradient of an image ( fg), the zero-crossings of an image ( fz), and
a boundary smoothness constraint associated with the gradient direction at each pixel ( fs). The directional
edge between any two neighboring pixels has an associated cost based on a weighted combination of each
of these quantities. Given two pixel neighbors p and q, the cost of the edge between the corresponding two
nodes in the graph is

Cp̄q = wg fg(q)+wz fz(q)+ws fs(p,q) (1)

where w represents the weight of the respective component.

The gradient of an image provides a measurement of local edge strength. If I represents the image, the
gradient G of a 2-D image is calculated to be

G =
√

I2
x + I2

y + I2
z . (2)

Since the goal is to associate large edge strength values with low cost and to maintain gradient values in the
range [0,1], we invert and scaled the gradient image such that

fg = 1− G
maxG

(3)

The second component of the cost function is the Laplacian zero crossing feature, fz, which is a binary
edge-feature image derived from I. It is calculated by convolving I with a Laplacian edge operator. The
binary edge features are calculated by looking for sign changes in the convolved image indicating an edge
so

fz(q) =
{

0 if q is an edge pixel
1 if q is not an edge pixel

(4)

The final component of the cost function, fs, promotes a smooth boundary by giving a high cost to edges
which deviate sharply from the boundary direction. This is calculated from

fs(p,q) = 1− 1
π

[arccos(dmin(p))+ arccos(dmin(q))] (5)

where

dmin(p) = min
(

∇I(p)
||∇I(p)||

· ~pq
||~pq||

,
∇I(p)
||∇I(p)||

· ~qp
||~qp||

)
(6)

and dmin(q) is calculated similarly. Readers will notice that this formulation is slightly different from that
prescribed in the original live-wire formulation. This is due to the fact that the original formulation was
limited to 2-D images and we wanted to allow the possibility of finding the minimum path through n-D
images which is accommodated by our modification.

2 Intelligent Scissors: Implementation

We realize that there are many implementations and variations of the original formulation. However, instead
of pursuing the difficult process of determining which implementation provides optimal performance over
all others, we decided to implement the original incarnation proposed by Mortensen and Barret [5, 4, 1, 2]
while making minimal changes. The two changes from the original algorithm are as follows:
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• we allow for finding the minimal path in n-D images and

• we use a priority queue (instead of a bucket heap) in the implementation of Dijkstra’s algorithm.

This allows other users to take the bare-bones implementation and incorporate whatever additional features
they choose.

Typical interaction is an input image is specified along with an anchor point presumably located on an
image. The livewire path can then be determined from any pixel within the region of interest. Therefore,
our implementation inherits from the itk::ImageFunction class which provides querying functionality
(e.g. EvaluateAtPoint() and EvaluateAtIndex()). In our case, what is returned is a smart pointer to a
itk::PolyLineParametricPath.

The various user-changeable parameters which are as follows:

• GradientMagnitudeWeight: see wg in Equation (1). Default value is 0.43.

• GradientDirectionWeight: see ws in Equation (1). Default value is 0.14.

• ZeroCrossingWeight: see wz in Equation (1). Default value is 0.43.

• ZeroCrossingImage: see fz in Equation (1). Defaults to the output of the filter
itk::ZeroCrossingBasedEdgeDetectionImageFilter.

• UseImageSpacing: determines the scaling factor for the neighborhood weighting. Default value is
true.

• UseFaceConnectedness: determines the local neighborhood. Default value is true.

• MaskImage: if specified it determines the region of interest. Default value is NULL.

• InsidePixelValue: determines the label value which designates the region of interest in the
MaskImage.

Setting up and using the class is relatively simple. Setting up and instantiation of the class
itk::LiveWireImageFunction is performed in the usual way: where the labelImage is used to hold
the resulting live-wire paths to be displayed in ITK-SNAP.

The following code snippet illustrates the setting of the anchor seed and subsequent extraction of the live-
wire path evaluated from the specified image index.

3 Sample Results

The first sample results are taken from a brain slice which is available in the ITK Data directory and are
illustrated in Figure 1. The output image is obtained with the function call

>> itkLiveWireImageFunctionTest BrainProtonDensitySlice256x256.nii
outputBrainProtonDensitySlice256x256.nii 67 52 46 127
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(a) (b)

Figure 1: Sample results from a brain slice image available in the Data directory. (a) Input brain slice. (b) The green
box denotes the anchor seed and the red image path represents the output value of evaluating the live-wire function at
the blue square.

where the anchor seed indices are (67,52) and the path returned is the evaluation performed at index
(46,127). The results can be visualized in snap where the label path image is superimposed over the original
image.

The second sample results are taken from a binary image (also available in the ITK Data directory). The
results are illustrated in Figure 2. The output image is obtained with the function call

>> itkLiveWireImageFunctionTest BinaryImage.nii outputBinaryImage.nii 24 113 161 39
maskBinaryImage.nii

where the anchor seed indices are (24,113) and the path returned is the evaluation performed at index
(161,39). For this example, a mask image is also used. The results can be visualized in snap where the label
path image is superimposed over the original image.
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Figure 2: Sample results from a brain slice image available in the Data directory. (a) Input binary image. (b) The
region of interest specified via a mask image. (c) The green box denotes the anchor seed and the red image path
represents the output value of evaluating the live-wire function at the blue square.
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