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Abstract

This document describes a suite of new multi-threaded classes for calculating magnetic resonance (MR)
T, and T; parameter maps implemented using the Insight Toolkit ITK (wwmv. i tk. org). Similar to MR
diffusion tensor imaging (DTI), MR T, and T; parameter maps provide a non-invasive means for quanti-
tatively measuring disease or pathology in-vivo. Included in the suite are classes for reading proprietary
Bruker 2dseq and Philips PAR/REC images and example programs and data for validating the new

classes.
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1 Background

Magnetic resonance imaging (MRI) is a powerful, non-invasive, medical imaging modality capable
of producing a wide variety of image contrasts. In addition to standard T;- and T,-weighted con-
trast images, MRI is also capable of producing quantitative measurements of magnetic resonance (MR)
specific or derived parameters. Typically these quantitative measurements are not acquired directly
from the MR scanner, but are calculated with multiple image volumes using a specific set of exper-
imental parameters. For example, the ITK itk::DiffusionTensor3DReconstructionlmageFilter
takes as input multiple MR image volumes acquired with varying gradient directions and strengths.
The itk::TensorFractional Ani sotropyl mageFilter converts its tensor output into the fractional
anisotropy scalar quantity, which is a measure of the shape of the diffusion of water (derived parameter).

Similar to diffusion tensor imaging (DTI), the T, and T; parameter maps or their inverses, R, and Ry, are
calculated using multiple image acquisitions with varying parameters. Whereas DTI indirectly measures
the directional distribution of the diffusion of water, T, and T; parameter maps are exponential relaxation
times specific to the tissue or sample that is being imaged. Increasingly whole brain MR parameter maps
are used to perform statistical parametric mapping studies to characterize and monitor neurodegenerative
disease or pathology. For example, this technique, termed voxel-based relaxometry (VBR), was applied to
studies of epilepsy to show increases in T, within the hippocampus, parahippocampal gyrus, and anterior
temporal lobe white matter, when compared with normal controls [13, 12]. A similar study was performed
for patients suffering from multiple-system atrophy of cerebellar type [15]. In this study, the inverse of T»,
R,, was shown to decrease in the cerebellum and brainstem and increase in the putamen. Also, preliminary
work in amyotrophic lateral sclerosis (ALS) demonstrated increases in T, within the subthalamic region
when compared with age-matched normal controls [1]. Statistical parametric maps require the brain images
to be registered to a reference brain atlas - a task well suited for ITK. However, currently ITK does not
provide classes for calculating T, and T; parameter maps.

1.1 Measuring T, Relaxation

T, is conventionally measured by acquiring multiple spin-echo images. The following equation describes
the signal for a voxel acquired using a spin-echo sequence:

50pel %) [1_e(TT1R)} (1)

where p is the proton density, TE is the time to echo, and TR is the time to repetition. To calculate T, TR
is set to a long value, > 5T;, and TE is varied over the multiple spin-echo image acquisitions. Since p is
assumed constant Equation 1 reduces to the following:

Si(t) =Spe ™ 2

—TR
where So =p|1— e( Ti ) and i refers to the ith image with echo time TE;. Because Si(t) and TE; are

known, Sy and T, can be estimated using a linear least squares or nonlinear fit. Although not described in
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detail in this paper, the estimation of T, is the same as T,. The difference is that the images are acquired
using a gradient echo sequence instead of a spin-echo sequence.

1.2 Measuring T; Relaxation

Many image acquisition methods exist for measuring T; [9]. The signal obtained when using the steady-state
or saturation recovery approach is the same as Equation 1. However to measure T;, TE is set as small as
possible and TR is varied. The nonlinear fitting in this case becomes:

Si(t) =So [l—e(%w 3)

where Sp = pe% and i refers to the ith image with repetition time TR;. T; may also be measured using the
inversion recovery sequence. The inversion recovery sequence is a spin-echo sequence with an additional
180 degree radiofrequency (RF) pulse at the beginning of the sequence. Again, the fit is nonlinear and
changes to the following:

5(1) =So [1 —2e(%)} )

where Sy = pe% and i refers to the ith image with inversion time Tl;. Both the steady-state and in-
version recovery methods require long TR or Tl times in order to obtain good estimates of T; and
therefore require long scan times. Since long scan times are not suitable for human studies, fast Ti-
mapping protocols have been developed to overcome this problem [10, 2, 5, 11, 17, 19, 3, 6, 7, 14, 16,
4, 18, 8]. Many fast methods are variants of the Look-Locker or TOMROP technique [10, 5]. The
i tk:: MRT1Par amet er Map3Dl mageFi | t er class described in the next section (2.2) provides an implemen-
tation of the Look-Locker method by Deichmann and Haase [2]. T is not measured directly, but a slightly
lower value T;". T is estimated after performing a fit for T;* (Equation 13).

2 Implementation

This section describes the multi-threaded ITK classes for calculating the parameter maps. Since the classes
are derived from the it k: : [ mageTol mageFi | t er, they can easily be integrated with a registration pipeline.
In addition to the classes for calculating T, and T, classes for reading proprietary Bruker 2dseq (2.3) and
Philips PAR/REC (2.4) MR image files are described. The examples outlined in the next section (3.1, 3.2,
3.3, and 3.4) use the new readers to calculate T, and T; parameter maps from the original proprietary image
data formats.

2.1 itk::MRT2ParameterMap3DImageFilter

The interface of itk::MRT2Parameter Map3Dl mageFilter was designed to be similar with
itk::DiffusionTensor3DReconstructionlmageFilter. As such, this filter is templated over the
input pixel type and the output pixel type. The input T,-weighted MR images must all have the same
size and dimensions. The 3D itk::Vectorlnage output will always have four components. The first
component of the output will be the T, time in seconds (R, in Hz if Per f or mfR2Mappi ngOn() is called),
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the second component will be the constant A as shown in the equations below, and the fourth component
will be the R-squared value from the curve fitting. The third component will vary depending on the type of
T, fitting selected using Set Al gori t hm(). For LINEAR and NON_LINEAR the third component will be
zero. For NON_LINEAR_WITH_CONSTANT the third component will be the value C as shown below.

e LINEAR (Linear least squares):
—TE
si(t) = Ael =) 5)

e NON_LINEAR (Non-linear least squares using Levenberg-Marquardt): Same as Equation 5.

e NON_LINEAR_WITH_CONSTANT (Non-linear least squares using Levenberg-Marquardt):

—TE

si(0) = Ael ™) ¢ ©)

There are two ways to use this class. When multiple T, or T, -weighted images are available the images are
added as follows:

filter->AddMREchol mage( echoTinel, imagel );
filter->AddVREchol mage( echoTine2, image2 );

When the ’n’ T, or T,-weighted images are stored in a single multi-component image (
itk::Vectorlmge), use Set MREchol mage() like this:

filter->Set MREchol mage( echoTi meCont ai ner, vectorlmage );

A number of Get/ Set methods are provided for controlling the output of the filter:

e Algorithm - Set/Get the T, fitting algorithm used (LINEAR, NON_LINEAR, and
NON_LINEAR_WITH_CONSTANT).

e MaxT2Ti ne - Set the maximum T, time (T, times greater than or equal to this value will be set to this
value).

e Perfor mR2Mappi ng - If On R, (in Hz) will be calculated instead of Ts.

Multi-threaded fitting is performed over every voxel in the output image region across the entire image
time series using the overridden voi d ThreadedGener at eDat a() function. Linear least squares fitting
provides starting parameters for the non-linear algorithms. However, the input time series image data must
be linearized first before a linear least squares fit is possible. voi d Fi t Li near Exponenti al () handles this
task:

tenpl ate< class TMREchol magePi xel Type, class TMRPar anet er Mapl nagePi xel Type >

voi d

MRT2Par anet er Map3Dl mageFi | t er <TMREchol magePi xel Type, TMRPar anet er Mapl magePi xel Type>

. FitLi near Exponenti al (Exponential Fit Type X, Exponential FitType Y, unsigned int num
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MRPar arret er MapPi xel Type &out put)

{
EchoTi meType Sunxy=0, Sunmx=0, Suny=0, Sumx2=0, Suny2=0, b=0, denom=0;

for(unsigned int i=0; i<num i++)
{
Sumxy += X[i]*log(Y[i]);
Sumx += X[i];
Suny += log(Y[i]);
Suny2 += Tog(Y[i])*log(Y[i]);
Sumk2 += X[i]*X[i];
}
denom = Sunx2- ( Sunx*Sunx/ st ati ¢c_cast <EchoTi meType>( nunm);
if( denom==20)
{
b = NunericTraits< EchoTi meType >::max() *
((Sumxy- ( Sumx* Suny/ static_cast <EchoTi neType>(nun))) < 0)?-1.0f: 1. 0f;

}

el se

{

b = (Sumxy- (Sumx*Suny/ static_cast <EchoTi meType>(nunj))/denom
}

if( b==0)

{

b = NunericTraits< EchoTi meType >::max();

}

output[0] = static_cast<typename MRParameter MapPi xel Type: : Val ueType>
(-b)y; 11 T2

output[1] = static_cast<typename MRParaneter MapPi xel Type: : Val ueType>
(exp((Sumy-b*Sunx)/static_cast <EchoTi neType>(num))); // Constant
output[3] = static_cast<typename MRParameter MapPi xel Type: : Val ueType>
((Sumxy*Sumxy)/ (Sumy2*Sunx2)); // R-squared

}

Non-linear fitting is accomplished using the vnl _| evenber g_mar quar dt class. See the included source
code for more details.

2.2 itk::MRT1ParameterMap3DImagekFilter

The interface to itk::MRT1Paraneter Map3Dl mageFilter is basically the same as
i tk:: MRT2Par anet er Map3Dl mageFilter (2.1). Like itk::MRT2Paranet er Map3Dl mageFi | t er
the 3D itk::Vectorlmage output will always have four components. The first component of the output
will be the T; time in seconds (R; in Hz if Per f or mRLMappi ngOn() is called), the second component will
be the constant A as shown in the functions below, and the fourth component will be the R-squared value
from the curve fitting. The third component will vary depending on the type of T; fitting selected. For all
of the 2 parameter models below the third component will be zero. For the remaining models the third
component will be the value B as shown below.

o IDEAL_STEADY _STATE (Non-linear least squares using Levenberg-Marquardt):

Si(1) = A [1 _e(%)} )
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e HYBRID_STEADY _STATE_3PARAM (Non-linear least squares using Levenberg-Marquardt):

(=)
Si(t):A[B—e K ] (®)
INVERSION_RECOVERY (Non-linear least squares using Levenberg-Marquardt):
()
Si(t):A[l—Ze T ] ©))
INVERSION_RECOVERY _3PARAM (Non-linear least squares using Levenberg-Marquardt):
()
Si(t)=A [1 —Be\ ™ } (10)
ABSOLUTE_INVERSION_RECOVERY (Non-linear least squares using Levenberg-Marquardt):
()
Si(t):'A[l—2e T H (11)

ABSOLUTE_INVERSION_RECOVERY _3PARAM (Non-linear least squares using Levenberg-
Marquardt):

Si(t) = ‘A [1 —Be(TT1Ii>” (12)

LOOK_LOCKER (Non-linear least squares using Levenberg-Marquardt):

=Tl

si(t)zA[1—Be<T>] T =T)B-1) (13)

ABSOLUTE_LOOK_LOCKER (Non-linear least squares using Levenberg-Marquardt):

Si(t) = |A 1—Be<%)] T =(T/)(B-1) (14)

The INVERSION_RECOVERY, INVERSION_RECOVERY_3PARAM, and LOOK_LOCKER algo-
rithms require the input data to be the real component of the complex reconstructed MRI. Usually, the
image provided by the MR scanner is the magnitude of the complex reconstructed image, which forces the
image data to be all positive. If the real image data is not available, the absolute versions of these algorithms
may be used instead. The absolute versions attempt to find the data point where the measured relaxation
curve goes from negative to positive. This should be the point where the gradient switches from negative to
positive as shown in the code below.

/1 Make function non absolute again. This is done by making sure the
/1 Y values are always increasing.

Yfixed =Y,

for(unsigned int i=0; i<num1l; i++)

{

/1 Negative slope
if( Y[i+1]-Y[i] <0)
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Yfixed[i] = -Yfixed[i];
3/ Positive slope

el se

{

br eak;

}

This code may fail if the image data is very noisy. In this case, smoothing of the input data will reduce
the noise and should eliminate the problem. However, in most instances it should correctly locate the point
where the measured relaxation curve goes from negative to positive without requiring smoothing.

Similar to itk::MRT2Paraneter Map3Dl mageFilter (2.1), there are two ways to use
i tk:: MRT1Par anmet er Map3Dl mageFi | t er. When multiple images are available the images are added as
follows:

filter->AddMRI mage( tinel, imagel );
filter->AddMRI mage( tine2, image2 );

When the ’'n’ images are stored in a single multi-component image ( itk::Vectorlmage), use
Set MRI mage() like this:

filter->Set MRl mage( tinmeContainer, vectorlmage );

Get/ Set methods are provided for controlling the output of the filter:

e Al gorithm- Set/Get the T, fitting algorithm used.

e MaxT1Ti ne - Set the maximum T time (T; times greater than or equal to this value will be set to this
value).

e PerfornR1Mappi ng - If On R; (in Hz) will be calculated instead of T;.

Multi-threaded non-linear fitting using the vnl _| evenber g_marquardt class is performed over ev-
ery voxel in the output image region across the entire image time series using the overridden voi d
ThreadedCGener at eDat a() function. Unlike it k: : MRT2Par anmet er Map3Dl mageFi | t er, the starting pa-
rameters are obtained by making a guess using the input data. The guess depends on the particular algorithm
chosen using the call to Set Al gorithm() (see the included source code).

2.3 itk::Bruker2DSEQImagelO

The Bruker image format is a very flexible and complex image format. A brief descrip-
tion is found at http://ww. nrc-cbu. cam ac. uk/ | magi ng/ Cormon/ br ukerformat. shtm .
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i tk::Bruker 2DSEQ magel O provides read-only access to most Bruker 2dseq binary image files via
virtual void Readl magel nformation() and virtual void Read(), which are pure virtual methods
declared in the parent class itk::|mgel OBase. A known limitation is the reading of 2dseq files that
contain slices with varying orientations, like a reference scan with three orthogonal slices. For these
images i tk:: Bruker 2DSEQ magel O will only read the first ’n’ slices that have the same orientation.
The other known limitation is that the class cannot handle 4D images. This is in spite of the fact that
Bruker 2dseq images can be 4D. The user must determine if the 3D volume read is 4D by examining
the parameters in the itk::MetaDataDictionary. virtual bool CanReadFile() is also defined
and may be used to determine if the Bruker 2dseq is readable. The implementation included with the
source code was designed using example images acquired at the Penn State Center for NMR Research
(http://www. hnt. psu. edu/ nnr | ab/ ), but has not undergone exhaustive testing using all possible Bruker
2dseq image types.

i tk::Bruker2DSEQ magel O provides access to important acquisition parameters via the
itk::MetaDataDictionary. The list of parameters is by no means complete, but other parame-
ters may be added as needed. The following code defines the names of the parameters stored in the
itk::MetaDataDictionary:

extern const char *const RECO BYTE ORDER

extern const char *const RECO FQV,

extern const char *const RECO Sl ZE;

extern const char *const RECO WORDTYPE;

extern const char *const RECO | MAGE TYPE;

extern const char *const RECO TRANSPOSI TI ON;

extern const char *const ACQ DIM

extern const char *const N /*IMND N SLI CES*/;

extern const char *const NR

extern const char *const ACQ SLICE THI CK/*I MND_SLI CE_THI CK*/ ;
extern const char *const NECHOES/ *I M\D N ECHO | MAGES*/;
extern const char *const ACQ SLICE SEPN *| MND_SLI CE_SEPN*/;
extern const char *const ACQ SLICE SEPN MODE;

extern const char *const ACQ ECHO Tl ME;

extern const char *const ACQ REPETI TI ON Tl ME;

extern const char *const ACQ | NVERSI ON TI ME;

Types are also defined for vector quantities stored in the itk:: MetaDataDi ctionary:

/** Special types used for Bruker neta data. */

typedef Vector Container< unsigned int, double > RECOFOVCont ai ner Type;

typedef VectorContainer< unsigned int, int > RECOTr ansposi t i onCont ai ner Type;
typedef Vector Container< unsigned int, double > ACQEchoTi meCont ai ner Type;

typedef Vector Container< unsigned int, double > ACQRepetitionTi neCont ai ner Type;
typedef Vector Contai ner< unsigned int, double > ACQ nversi onTi meCont ai ner Type;
typedef VectorContainer< unsigned int, double > ACQSliceSepnCont ai ner Type;

The examples in the next section (3.1 and 3.2) show how to use the types with the parameter names to
retrieve the values from the itk::MetaDataDi ctionary. Finally, i tk:: Bruker 2DSEQ nagel OFact ory
is also included with the source code for users who wish to use the object factory mechanisms of ITK.
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2.4 itk::PhilipsRECImagelO

Like i t k: : Bruker 2DSEQ magel O (2.3), i tk: : Phi | i psRECI magel Ois derived from itk:: | magel OBase
and implements read-only image access to Philips PAR/REC image data. The *.PAR file describes in
human readable text the binary image data stored in the * REC file. The actual parsing of the PAR
parameters is done using the functions defined in itkPhilipsPAR.h and itkPhilipsPAR.cxx. Currently
i tk::PhilipsRECI magel O supports reading PAR file versions 3 through 4.1, based on sample data
acquired at the Penn State Center for NMR Research (http://wwv. hre. psu. edu/ nnr | ab/ ). Unlike
i tk::Bruker 2DSEQ magel O itk:: PhilipsRECI magel O supports 4D images.

itk::PhilipsREC magel O also provides access to important acquisition parameters via the
itk::MetaDataDictionary. The following code defines the names of the parameters stored in the
itk::MetaDataDictionary:

extern const char *const PAR Version;

extern const char *const PAR SliceOientation;
extern const char *const PAR Exam nationNane;
extern const char *const PAR Protocol Nang;
extern const char *const PAR SeriesType;

extern const char *const PAR_AcquisitionNr;
extern const char *const PAR ReconstructionNr;
extern const char *const PAR ScanDuration;
extern const char *const PAR MaxNunber O Car di acPhases;
extern const char *const PAR TriggerTines;
extern const char *const PAR MaxNumber Of Echoes;
extern const char *const PAR EchoTi nes;

extern const char *const PAR MaxNumber Of Dynani cs;
extern const char *const PAR MaxNunmber O M xes;
extern const char *const PAR PatientPosition;
extern const char *const PAR PreparationDirection;
extern const char *const PAR Techni que;

extern const char *const PAR ScanMbde;

extern const char *const PAR Nunber Of Aver ages;
extern const char *const PAR ScanResol ution;
extern const char *const PAR RepetitionTines;
extern const char *const PAR_ScanPercent age;
extern const char *const PAR FOV,

extern const char *const PAR WaterFat ShiftPixels;
extern const char *const PAR Angul ationM dSlice;
extern const char *const PAR OfCentreM dSlice;
extern const char *const PAR_Fl owConpensation;
extern const char *const PAR Presaturation;
extern const char *const PAR Cardi acFrequency;
extern const char *const PAR M nRRInterval;
extern const char *const PAR MaxRRInterval;
extern const char *const PAR PhaseEncodi ngVel ocity;
extern const char *const PAR MIC,

extern const char *const PAR SPIR

extern const char *const PAR EPIFactor;

extern const char *const PAR TurboFactor;

extern const char *const PAR Dynani cScan;

extern const char *const PAR Diffusion;

extern const char *const PAR DiffusionEchoTi ne;
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extern const char *const PAR MaxNumber O Di f f usi onVal ues;

extern const char *const PAR G adi ent BVal ues;

extern const char *const PAR MaxNunmber O Gradi entOrients;

extern const char *const PAR GradientDirectionVal ues;

extern const char *const PAR_InversionDel ay;

extern const char *const PAR Nunmber Of | nageTypes;

extern const char *const PAR | nageTypes;

extern const char *const PAR Nunber O Scanni ngSequences;

extern const char *const PAR_Scanni ngSequences;

extern const char *const PAR_Scanni ngSequencel mageTypeRescal eVal ues;

Types are also defined for vector quantities stored in the itk:: MetaDataDi ctionary:

/** Special types used for Philips PAR neta data. */

typedef VectorContainer< unsigned int, double > EchoTi mesCont ai ner Type;

typedef VectorContainer< unsigned int, double > TriggerTi mesContai ner Type;

typedef Vector Container< unsigned int, double > RepetitionTi mesContainerType;
typedef vnl _vector_fixed< int, 2 > ScanResol uti onType;

typedef vnl vector fixed< float, 3 > FOVType;

typedef vnl vector fixed< double, 3 > Angul ati onM dSl i ceType;

typedef vnl _vector_fixed< double, 3 > O fCentreM dSli ceType;

typedef vnl _vector_fixed< float, 3 > PhaseEncodi ngVel oci t yType;

[** 1mage types: 0O=Magnitude, 1=Real, 2=Imaginary, 3=Phase, & 4=Special/Processed. */

typedef vnl _vector fixed< int, 8 > | mgeTypesType;

typedef vnl _vector fixed< int, 8 > Scanni ngSequencesType;

typedef std::vector< int > Sl i cel ndexType;

typedef vnl_vector_fixed< double, 3 > | mgeTypeRescal eVal uesType;

t ypedef Vector Cont ai ner< unsigned int, |nmageTypeRescal eVal uesType >

| mgeTypeRescal eVal uesCont ai ner Type;

t ypedef VectorContainer< unsigned int, InageTypeRescal eVal uesContai ner Type:: Pointer >
Scanni ngSequencel mageTypeRescal eVal uesCont ai ner Type;

t ypedef doubl e G adientBval ueType;

t ypedef VectorContai ner< unsigned int, GadientBval ueType > G adi ent Bval ueCont ai ner Type;
typedef vnl_vector_fixed< double, 3 > G adi ent Di recti onType;

t ypedef VectorContainer< unsigned int, GadientDrectionType >

G adi ent Di recti onCont ai ner Type;

The examples in the next section (3.3 and 3.4) show how to use the types with the parameter names to
retrieve the values from the itk:: MetaDataDictionary. Again, i tk:: PhilipsREC magel OFactory is
also included with the source code for users who wish to use the object factory mechanisms of ITK.

3 Examples

The examples that follow demonstrate how to use the classes described in the previous sections. The data and
source for these examples are included with this article. The Bruker data directory contains both a T, data set
and a T; saturation recovery data set. A phantom containing 14 test tubes with varied concentrations of agar
and gadopentetate dimeglumine (Gd-DPTA) was used for both data sets. Table 1 shows the concentrations
for each tube.

Two separate phantoms were used for the Philips T, and T; examples. The phantom for the T, example was
designed to mimic brain white matter (WM) and gray matter (GM). A cylindrical container was filled with


http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html

3.1 Bruker 2dseq T, Parameter Map 11

Table 1: Gd-DTPA and agar concentrations for phantom used in Bruker examples.
| Tube # | % Gd-DTPA | Agar (g/m)) |

1 0.0229 0.054560
2 0.0229 0.038265
3 0.0229 0.029345
4 0 0.019065
5 0.0103 0.025325
6 0.0153 0.025615
7 0.0229 0.023750
8 0.0084 0.033580
9 0.0154 0.035165
10 0.0280 0.030315
11 0.0510 0.010755
12 0.0084 0.027200
13 0.0084 0.022890
14 0.0084 0.019765

2.6224 x 1072 (g/ml) concentration agar doped with 0.024% Gd-DTPA (white matter) and embedded within
the container were 17 plastic spheres filled with 1.8382 x 1072 (g/ml) agar doped with 0.007% Gd-DTPA
(gray matter). The T; phantom contains 5 tubes with varying amounts of Gd-DTPA. Table 2 shows the
concentration of Gd-DTPA for each numbered tube.

Table 2: Gd-DTPA concentrations for phantom used in Philips T; example.
Tube # | % Gd-DTPA

1 0.043
2 0.024
3 0.014
4 0.008
5 0

3.1 Bruker 2dseq T, Parameter Map

In this example a T, parameter map is generated using a multi-echo spin-echo sequence acquired on a 3.0
T Bruker MedSpec MR system. The TR time was 1595.03 ms and 11 echo images were acquired with a
starting TE of 7.919 ms and an echo spacing of 7.919 ms (final echo time was 87.107 ms). A single 3
mm slice was acquired with a 256 x 256 matrix size and 20 cm x 20 cm field of view (FOV). The data
for this example is located in the DCB021304.0j1/3/pdata/1/ folder. The source code is located in the
BrukerT2Map.cxx file.

BrukerT2Map.cxx takes up to 9 arguments. The first 5 arguments are required and are used to specify the
full path of the input Bruker 2dseq, the output T, parameter map filename, the output exponential constant
(Sp) map filename , the output constant map (C) filename, and the output R-squared map filename. The
remaining 4 optional arguments are used to control the output, specifically whether or not to output T, or R,
(default is T;), the algorithm to use (default is LINEAR), the maximum T, time (default is 10 seconds), and
a baseline threshold value for masking the input image (default is 0). The optional parameters used for this
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example are O (output T), O (use LINEAR algorithm Equation 5), 2.0 (maximum T, time of 2.0 seconds),
and 1000 (every voxel less than 1000 set to zero).

After checking for the correct number of arguments and reading the arguments from the command line, the
program attempts to read the Bruker 2dseq and get the image information:

/I Create 2DSEQ reader and check the file if it can be read.
Br uker 2DSEQ magel OType: : Poi nter imagel O = Bruker 2DSEQ magel OType: : New() ;
i f( !linmagel O >CanReadFil e(input Fil enane) )
{
std::cerr << "Could not read 2dseq file" << std::endl;
return 1,

}

/1 Read the image infornation.
i magel O >Set Fi | eNane(i nput Fi | enane) ;

try

{
i magel O >Readl magel nf ormati on();

}

catch( itk::Exceptiontoject &err )

{

std::cerr << "Exceptionbject caught"”;
std::cerr << " : " << err.GetDescription();
return 1,

}

If the image is read without errors, the program will attempt to get the echo times from the
itk:: MetaDataDictionary:

/] Get the echo times in ns.

Br uker 2DSEQ magel OType: : ACQEchoTi neCont ai ner Type: : Poi nter ptrToEchoes = NULL;

if( litk::ExposeMet aDat a<Br uker 2DSEQ nagel OType: : ACQEchoTi meCont ai ner Type: : Poi nter >
(i magel O >Get Met aDat aDi ctionary(), itk::ACQ ECHO TIME, ptrToEchoes) )

{
std::cerr << "Could not get the echo tinmes" << std::endl;
return 1,

}

i f( !'ptrToEchoes )

{

std::cerr << "Received NULL echo tines pointer fromneta dictionary" << std::endl;
return 1,

}

unsi gned int number O EchoTi nes = ptrToEchoes->Si ze();

Instead of acquiring multiple spin-echo images with different TE times, typically a multi-echo spin-echo
image is acquired to measure T,. A spin-echo image is acquired using a 90 degree RF pulse followed by a
180 degree RF pulse. To acquire a multi-echo data set a series of 180 degree RF pulses follow the first 90 and
180 degree pulses. The application of a perfectly homogenous 180 RF pulse across a sample is difficult and
imperfections in the flip-angle lead to what are called stimulated echoes for the echo images acquired after
the first 180 degree RF pulse. Therefore in order to measure T, the first echo image without the stimulated


http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html

3.1 Bruker 2dseq T, Parameter Map 13

echo signal is usually thrown out. The following f or loop below will do that as well as convert the echo
times to seconds:

for(unsigned int i=1; i<(unsigned int)nunber O EchoTines; i++)
{
pt r ToEchoes- >Set El ement (i - 1, pt r ToEchoes- >El ement At (i)/1000. 0f); // convert to seconds
}
pt r ToEchoes- >Cast ToSTLCont ai ner (). pop_back();
- -nunber O EchoTi nes;
i f( nunberOf EchoTimes < 2 )
{
std::cerr << "Mist have at least 2 echo images to calculate T2" << std::endl;
return 1,

}

As already mentioned previously, i t K: : Bruker 2DSEQ magel O is limited to reading Bruker 2dseq images
in 3D only. For a multi-echo spin-echo image, the 2dseq is in reality a 4D image with the fourth dimension
being the echo time. The code segment below will convert the 3D image to a i tk:: Vect orl mage, which
will be supplied as an input to i t k: : MRT2Par anet er Map3DI mageFi | ter:

/] Get real nunber of slices and create vector inmage.
/1 Aso threshold the imge at the sane tine.

int real Slices = dins[2]/(nunmber Of EchoTi nes+1) ;

Vect or | mageType: : Regi onType region;

Vect or | mageType: : Si zeType si ze;

size[0] = dims[0];

size[1] = dims[1];

size[2] = real Slices;

Vect or | mageType: : | ndexType i ndex;
index[0] = 0;

index[1] = 0;

index[2] = 0;

regi on. Set Si ze(si ze) ;
regi on. Set I ndex(i ndex);
Vect or | mageType: : Poi nter vectorlmage = VectorlmageType:: New();
vect or | mage- >Set Regi ons(r egi on) ;
vect or | mage- >Set Vect or Lengt h( nunber O EchoTi nes) ;
Vect or | mageType: : Poi nt Type origin = basel i neReader->Get Qut put ()->Get Ori gin();
origin[2] = -baselineReader->CGet Qut put ()->Cet Spacing()[2]*size[2]/2.0f;
vector I mage->Set Ori gin(origin);
vect or | mage- >Set Spaci ng( basel i neReader - >Get Qut put () - >Get Spaci ng());
vect or I mage- >Set Di rect i on( basel i neReader - >Get Qut put ()->Cet Direction());
vect or | mage- >Al | ocat e();
| mgeType: : I ndexType echol ndex;
for(index[ 0] =0, echol ndex][ 0] =0;
i ndex[ 0] <(int)size[0];
i ndex[ 0] ++, echol ndex[ 0] ++)
{
for(index[ 1] =0, echol ndex] 1] =0;
i ndex[ 1] <(int)size[1];
i ndex[ 1] ++, echol ndex|[ 1] ++)

{
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for( index[2]=0;
i ndex[ 2] <(int)size[2];
i ndex[ 2] ++ )

Il Multi-echo Bruker images are stored as they are acquired. This
/1 means that the images are not stored as volunes. W need to put
Il each echo fromeach slice into the vector as foll ows:
echol ndex[ 2] = index[2]*(nunber O EchoTi mes+1) + 1; // Skip to next slice ignoring the first echo.
Vect or | mageType: : Pi xel Type echoVect or (number Of EchoTi nmes) ;
for(unsigned int echo=0; echo<nunber Of EchoTi nes; echo++)
{

| mageType: : Pi xel Type pi xel Val

= basel i neReader - >Get Qut put () - >CGet Pi xel (echol ndex) ;
echoVector[echo] = (pixel Val < threshol d)?0: pi xel Val ;

++echol ndex[ 2] ;

}
vect or | mage- >Set Pi xel (i ndex, echoVector);
}
}
}
The  fitting  options and itk:: Vectorlnmage input data are input into

i tk:: MRT2Par anet er Map3Dl mageFi | t er as follows:

/I Create T2 mapping class.
MRT2Par anet er Map3Dl mageFi | t er Type: : Poi nter t2Map
= MRT2Par anet er Map3Dl nageFi | t er Type: : New() ;
/1 Select the fit type.
switch(al gorithm
{
case MRT2Par anet er Map3Dl nageFi | t er Type: : LI NEAR
t 2Map- >Set Al gor i t hn{ MRT2Par anet er Map3DI nageFi | t er Type: : LI NEAR) ;
br eak;
case MRT2Par anet er Map3Dl nageFi | t er Type: : NON_LI NEAR:
t 2Map- >Set Al gor i t hn( MRT2Par anet er Map3DI mageFi | t er Type: : NON_LI NEAR) ;
br eak;
case MRT2Par anet er Map3Dl nageFi | t er Type: : NON_LI NEAR W TH_CONSTANT:
t 2Map- >Set Al gor i t hn{ MRT2Par anet er Map3DI nageFi | t er Type: : NON_LI NEAR W TH_CONSTANT) ;
br eak;
defaul t:
std::cerr << "In valid algorithm=
return 1,
}
t 2Map- >Set MaxT2Ti ne( maxT2Ti ne) ;
t 2Map- >Set MREchol mage( pt r ToEchoes, vectorl mage);
i f( r2Mapping )

<< algorithm << std::endl;

{
t 2Map- >Per f or tR2Mappi ngOn() ;
}
Finally, the itk::Vectorlmge output is  connected to  the  input  of

itk::VectorlndexSel ectionCast|mageFilter so that the extracted components may be written
to file with the file names supplied on the command line:
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Figure 1: Output from Bruker T, parameter map example. The image on the left is the T, parameter map, the middle
image is the constant ), and the right image is the R-squared map. The tube numbers from Table 1 are labeled in red
on the T, parameter map image. Note that some contrast exists in the constant image . This indicates that the TR of
1595.03 ms was not long enough to remove the contributions due to T; in Equation 1.

/1 Extract each output conponent and wite to disk.

Vect or | ndexSel ectionCast | mageFi | t er Type: : Poi nter extract Conp
= Vect or I ndexSel ecti onCast | mageFi | t er Type: : New() ;

ext ract Conp->Set | nput (t 2Map- >CGet Qut put () ) ;

WiterType::Pointer witer = WiterType:: New();

writer->Setlnput(extract Conp->Get Qut put ());

Figure 1 shows the T, exponent constant, and R-squared output images for this example and Table 3 contains
the average T, time, exponent constant, and R-squared value for each tube. To verify the fitted values, the
magnitude of the MR signal at the center of tube 1 was plotted for each echo image as a function of echo
time and the fitted function was added as an overlay in Figure 2. As can be seen in the figure, the fitted
values match the plotted MR signal values very well.

Table 3: Average T, &, and R-squared value for each tube in the Bruker T, phantom example.
‘ Tube # ‘ Average T, (ms) ‘ Average Sy ‘ Average R-squared ‘

1 38.147+£0.982 | 235671594 0.783 +£0.002
2 50.697£1.088 | 25385+690 0.799 £ 0.001
3 62.540+1.344 | 25083 +459 0.807£0.001
4 99.065+2.733 | 16889 +395 0.818£0.001
5 74704 £1.548 | 21102+£520 0.812+£0.001
6 72.822£1.442 | 23036454 0.811+£0.001
7 75.776 £2.633 | 24721 £2778 0.812+0.002
8 59.594£1.511 | 20244 +£513 0.804 £ 0.001
9 55.987+1.256 | 23424+613 0.802+0.001
10 61.708 £1.233 | 26303+ 693 0.806 £0.001
11 129.9204+4.652 | 31113 £1307 0.823£0.001
12 71.762£1.579 | 20737475 0.810£0.001
13 81.658£2.013 | 213334532 0.814£0.001
14 93.423 £2.056 | 21607 £471 0.817£0.000
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Figure 2: A plot of image instensity (S) as a function of TE for a pixel in the center of tube 1 with overlay of fitted
curve. Visually, the fitted curve matches the experimental data very well.

3.2 Bruker 2dseq T, Parameter Map

This example calculates a T; parameter map using the saturation recovery method acquired on a 3.0 T Bruker
MedSpec MR system. The TE time was 10 ms and 11 images were acquired with TR = 30, 50, 100, 200,
500, 1000, 2000, 3000, 4000, 6000, and 10000 ms. The single slice acquisition thickness was 10 mm.
The matrix size was 128 x 128 and the FOV 20 cm x 20 cm. The data for this example is located in the
DCB021304.0j1/5/pdata/1/ folder. The source code is located in the BrukerT1Map.cxx file.

The arguments to BrukerT1Map.cxx are essentially the same as BrukerT2Map.cxx (3.1). The optional pa-
rameters used for this example are O (output Ty), 5 (use HYBRID_STEADY _STATE_3PARAM algorithm
Equation 8), 5.0 (maximum T; time of 5.0 seconds), and 20546109 (every voxel less than 20546109 set to
Zero).

After checking for the correct number of arguments and reading the arguments from the command line, the
program attempts to read the Bruker 2dseq and get the image information - the same as in BrukerT2Map.cxx
(3.1). After successfully reading the image information the program will extract the repetition times or the
inversion times depending on the fit algorithm specified on the command line and convert the times to
seconds:

/] Extract repetition/inversion times depending on the algorithm
Br uker 2DSEQ magel OType: : ACQRepet i tionTi meCont ai ner Type: : Pointer ptrToTi mePoints = NULL;
if( (algorithm == MRT1Paraneter Map3Dl nageFi | t er Type: : | DEAL_STEADY_STATE) ||
(al gorithm == MRT1Par anet er Map3Dl mageFi | t er Type: : HYBRI D_STEADY_STATE 3PARAM )
{

/] Repetition times for the saturation recovery fit type.
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i f( litk::ExposeMet aDat a<Br uker 2DSEQ magel OType: : ACQRepet i ti onTi meCont ai ner Type: : Poi nter >
(i magel O >Get Met aDat abi ctionary(), itk::ACQ REPETITI ON_TI Mg, ptr ToTi nePoi nts) )
{
std::cerr << "Could not get the repetition times" << std::endl;
return 1,
}
}
el se
{
/] Inversion times for all others.
i f( litk::ExposeMet aDat a<Br uker 2DSEQ magel OType: : ACQRepet i ti onTi meCont ai ner Type: : Poi nt er>
(i magel O >Get Met aDat abi ctionary(), itk::ACQ |INVERSI ON TIME, ptrToTi mePoints) )
{
std::cerr << "Could not get the inversion times" << std::endl;
return 1,
}
}
if( !'ptrToTi nePoints )
{
std::cerr << "Received NULL repetition/inversion times pointer";
std::cerr << " fromneta dictionary" << std::endl;
return 1,
}
unsi gned int nunmber O Ti mePoi nts = ptrToTi nePoi nts->Si ze();
i f( nunber O Ti mePoints < 2 )
{
std::cerr << "Mist have at least 2 images to calculate T1" << std::endl;
return 1,

}

/!l Convert the times to seconds.
for(unsigned int i=0; i<(unsigned int)nunberO TinePoints; i++)
{
ptrToTi mePoi nt s->Set El ement (i, ptr ToTi nePoi nt s->El enent At (i)/1000.0f); // convert to seconds

}

If this task completes without errors, the image is read and then a itk:: Vectorl mage is created to store
the data series. Instead of thresholding the entire data series using the threshold value, just the first image
volume in the series is thresholded and used as a mask when the data is copied to the itk:: Vectorlmage:

/] Get real nunber of slices and create vector inmage.
/1 Aso threshold the imge at the sane tine.

int real Slices = dins[2]/nunber O Ti mePoi nt s;

Vect or | mageType: : Regi onType region;

Vect or | mageType: : Si zeType si ze;

size[0] = dims[0Q];

size[1] = dims[1];

size[2] = real Slices;

Vect or | mageType: : I ndexType index;
index[0] = 0;

index[1] = 0;

index[2] = 0;

regi on. Set Si ze(si ze) ;
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regi on. Set I ndex(i ndex);
Vect or | mageType: : Poi nter vectorlmage = VectorlmageType:: New();
vect or | mage- >Set Regi ons(r egi on) ;
vect or | mage- >Set Vect or Lengt h( nunber O Ti mePoi nt s) ;
Vect or | mageType: : Poi nt Type origin = basel i neReader->Get Qut put ()->Get Ori gin();
origin[2] = -baselineReader->CGet Qut put ()->Cet Spacing()[2]*size[2]/2.0f;
vector I mage->Set Ori gin(origin);
vect or | mage- >Set Spaci ng( basel i neReader - >Get Qut put () - >CGet Spaci ng());
vect or I mage- >Set Di rect i on( basel i neReader - >Get Qut put ()->Cet Direction());
vect or | mage- >Al | ocat e();
| mgeType: : I ndexType i mageTi mePoi nt | ndex;
for(index[0]=0,inmageTi mePoi nt | ndex[ 0] =0;
i ndex[ 0] <(int)size[0];
i ndex[ 0] ++, i mageTi mePoi nt | ndex[ 0] ++)
{
for(index[ 1] =0, i mageTi mePoi nt | ndex[ 1] =0;
i ndex[ 1] <(int)size[1];
i ndex[ 1] ++, i mageTi nePoi nt | ndex[ 1] ++)
{
for( index[2]=0;
i ndex[ 2] <(int)size[2];
i ndex[ 2] ++ )
{
Il Milti-echo inversion recovery Bruker images are stored as they are acquired.
/1 This means that the images are not stored as volunmes. W need to put
Il each echo fromeach slice into the vector as foll ows:
if( (algorithm!= MRT1Paraneter Map3Dl mageFi | t er Type: : | DEAL_STEADY_STATE) &&
(al gorithm !'= MRT1Par anet er Map3Dl mageFi | t er Type: : HYBRI D_STEADY STATE 3PARAM )
{

i mageTi nePoi nt | ndex[ 2] = index[ 2] *number Of Ti mePoints; // Skip to next slice
}
Vect or | mageType: : Pi xel Type ti mePoi nt Vect or ( nunber O Ti mePoi nt s) ;
for(unsigned int timePoint=0; tinePoint<nunmber X TimePoints; tinePoint++)
{
Il Images are stored as volumes in the saturation recovery case, so we need
Il to skip to each new repetition while filling the vector.
if( (algorithm == MRT1Paraneter Map3Dl mageFi | t er Type: : | DEAL_STEADY_STATE) ||
(al gorithm == MRT1Par anet er Map3Dl mageFi | t er Type: : HYBRI D_STEADY STATE 3PARAM )
{
i mageTi mePoi ntIndex[ 2] = index[2] + (real Slices*timePoint);
}
| mgeType: : Pi xel Type pi xel Val
= basel i neReader - >Get Qut put () - >Get Pi xel (i mageTi nePoi nt | ndex) ;
| mgeType: : Pi xel Type nmaskVal = 0;
if( (algorithm == MRT1Paraneter Map3Dl nageFi | t er Type: : | DEAL_STEADY STATE) ||
(al gorithm == MRT1Par anet er Map3Dl mageFi | t er Type: : HYBRI D_STEADY STATE 3PARAM )

{
maskVal = t 1Mask->Get Qut put () - >Get Pi xel (i ndex) ;

}

el se

{
Vect or | mageType: : | ndexType tenplndex = index;
tenpl ndex[ 2] = tenpl ndex[ 2] *nunber Of Ti mePoints; // Skip to next slice
maskVal = t 1Mask->Get Qut put () - >Get Pi xel (t enpl ndex) ;
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Figure 3: Output from Bruker T; parameter map example. The image on the top left is the T; parameter map, the
top middle image is the constant &), the top right image is the constant B, and the bottom middle image is the R-
squared map. The tube numbers from Table 1 are labeled in red on the T; parameter map image. Unlike Figure 1,
very little contrast exists in the constant image . This indicates that the TE of 10 ms was short enough to remove the
contributions due to T, in Equation 1.

}
ti mePoi nt Vector[ti mePoint] = (maskVal ==0) ?0: pi xel Val ;
if( (algorithm!= MRT1Paraneter Map3Dl mageFi | t er Type: : | DEAL_STEADY_STATE) &&
(al gorithm !'= MRT1Par anet er Map3Dl mageFi | t er Type: : HYBRI D_STEADY STATE 3PARAM )

{

++i mageTi nePoi nt | ndex[ 2] ;
}
}

vect or | mage- >Set Pi xel (i ndex, timePointVector);

}
}
}

Finally, the T; map is calculated, the components extracted, and then written to file - the same as in the
Bruker T, map example (3.1). Figure 3 shows the T}, exponent constant (Sy), constant (B), and R-squared
output images for this example and Table 4 contains the average T; time, exponent constant, constant, and
R-squared value for each tube. To verify the fitted values, the magnitude of the MR signal at the center
of tube 1 was plotted for each image repetition as a function of repetition time and the fitted function was
added as an overlay in Figure 4. Again, as can be seen in the figure, the fitted values match the plotted MR
signal values very well.
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Figure 4: A plot of image intensity (S§) as a function of TR for a pixel in the center of tube 1 with overlay of fitted curve.
Again, this demonstrates that the predicted data is a good fit for the experimental data.

3.3 Philips REC T, Parameter Map

The previous examples (3.1 and 3.2) used the Bruker data to generate T, and T; parameter maps. In this
example a Philips multi-echo spin-echo PAR/REC data set is used to calculate T,. The name of the file is
T2_Map_4_3.PAR and the example code is saved in PhilipsT2Map.cxx. The image was acquired on a 3.0
T Philips Achieva system. A single 4 mm axial slice with SENSE factor 2.5, 256 x 256 matrix size, 230
mm X 230 mm FOV, TR of 252.901 ms, and 14 echoes (TE 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96,
104, and 112 ms) was acquired. The 252.901 ms TR time is not ideal for measuring T,, as it will include
significant T; contributions and will reduce the overall signal to noise ratio (SNR) of the image. However,
this is ideal for testing the non-linear fitting capabilities of i t k: : MRT2Par anet er Map3DI mageFi | t er used
in this example.

PhilipsT2Map.cxx takes the same 9 arguments as BrukerT2Map.cxx (3.1). For this example the optional
parameters are 0 (output T,), 1 (use NON_LINEAR algorithm Equation ??), 2.0 (maximum T, time of 2.0
seconds), and 14 (every voxel less than 14 set to zero).

After successfully reading the image information using itk:: Phili psREC nagel O, PhilipsT2Map.cxx
checks to make sure that the number of image volumes is greater than or equal to the number of echo
times:

unsi gned int number Of EchoTines = 0;

int tenpNum = 0;

/1 Make sure that the nunber of inmges

/] stored in the REC file matches the nunber of echoes.

if( litk::ExposeMet aDat a<i nt>(imagel O >Get Met aDat abi cti onary(),
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Table 4: Average T;, &, constant B, and R-squared value for each tube in the Bruker T; phantom example.

‘ Tube # ‘ Average T, (ms) ‘ Average Sy ‘ Average B ‘ Average R-squared ‘
1 825.514+9.00 | 1.3027 x 10° £6.3788 x 107 | 1.0438 £0.0017 0.999 +0.000
2 838.20+6.65 | 1.5196 x 10° £4.5192 x 107 | 1.0487 £0.0014 0.998 +0.000
3 825.85+15.32 | 1.4088 x 10° £6.9022 x 107 | 1.0596 +0.0024 0.998 +0.000
4 1908.40+22.33 | 1.4908 x 10° £7.9244 x 107 | 1.0538 +0.0025 0.996 4+ 0.000
5 1186.40+ 14.60 | 1.4531 x 10° £5.9687 x 107 | 1.0571 £ 0.0028 0.998 4+ 0.000
6 1019.90 £9.41 | 1.4596 x 10° £6.4035 x 107 | 1.0586 +0.0025 0.998 + 0.000
7 838.67+11.49 | 1.4719 x 10° £5.0358 x 107 | 1.0653 £0.0026 0.998 + 0.000
8 1260.90 £ 15.10 | 1.4911 x 10° £6.9226 x 107 | 1.0481 4 0.0023 0.998 4+ 0.000
9 999.66+8.06 | 1.4871 x 10° £6.2972 x 107 | 1.0491 £ 0.0021 0.998 +0.000
10 734.15+£7.62 | 1.4678 x 10° +6.6556 x 107 | 1.0601 & 0.0028 0.998 4 0.000
11 532.28+12.63 | 1.6377 x 10° £2.4449 x 10% | 1.1015+0.0075 0.999 +0.000
12 1275.90+ 13.15 | 1.5154 x 109 £7.2595 x 107 | 1.0515+0.0023 0.998 4+ 0.000
13 1310.00 £ 10.64 | 1.6134 x 10° £6.2195 x 107 | 1.0526 £+ 0.0021 0.998 + 0.000
14 1317.20£13.43 | 1.6257 x 10° +6.8480 x 107 | 1.0567 +0.0017 0.998 4+ 0.000

i tk::PAR MaxNumber OF Echoes, t empNun) )

{

std::cerr << "Could not determ ne the nunber of echoes" << std::endl;

r

nunber OfF EchoTi mes = static_cast<unsi gned int>(tempNum;

eturn 1;

/1 Get the inmge dinensions and nake sure that

/] there exists at |east nunberOf EchoTi mes image
/] volumes. It's possible to have nmore if the
/] REC file contains more than one image type

[l (i.e. magnitude, phase, real, inmaginary, etc.)
dims[ 0] = i magel O >Get Di nensi ons(0);

dins[1] = imagel O >Cet Di nensions(1);

dins[2] = imagel O >Cet Di nensi ons(2);

dins[ 3] = imagel O >Cet Di nensi ons(3);

i f( nunber O EchoTimes > dins[3] )
{

std::cerr << "The nunber of echoes is larger than the nunber of inage blocks" << std::endl;
return 1;

}

As noted in the code comments it’s possible that more than one image type is stored in the REC file. For
example the image used in this example contains both the magnitude and phase images, so di ns[ 3] = 28
instead of 14. By default REC files store the slices unsorted. i t k: : Phi | i psRECI nagel O will automatically
sort the slices by image type when the data is read. However, in order to calculate T,, the magnitude
image is needed. The following code checks to see if the REC file contains the magnitude image using the
itk::MetaDataDictionary:

/] Check to see if the REC file has at |east the nagnitude inage.
i nt haveMagni tude = 0;


http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
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int nunber O | mageTypes = 0;
Phi | i psRECI magel OType: : | mageTypesType i mageTypes;
i f( litk::ExposeMetabDat a<i nt>(imagel O >Get Met aDat abi cti onary(),
i tk::PAR Number Of | mageTypes, nunber O | mageTypes) )
{
std::cerr << "Could not determne the nunber of inage types" << std::endl;
return 1;
}
if( litk::ExposeMetaDat a<Phili psRECI magel OType: : | mageTypesType>
(i magel O >CGet Met aDat aDi ctionary(), itk::PAR | mgeTypes,inmageTypes) )
{
std::cerr << "Could not get the imge types vector" << std::endl;
return 1;

}
for(int j=0; j<nunberOf|mageTypes; |++)

if( imageTypes[j] == 0)
{
haveMagni tude = 1;
}
}
i f( !'haveMagnitude )
{
std::cerr << "Magnitude inage type not found in REC file" << std::endl;
return 1;

}

An issue that must be dealt with when using Philips PAR/REC image data is the existence of multiple
scanning sequences. The Philips T; example (3.4) makes use of this feature to extract the phase corrected
real image for calculating T; via the inversion recovery method. However, for T;, if more than 1 scanning
sequence exists in the REC file, processing is aborted with an error:

/1 Check to nake sure that there is only one scanning sequence,

/'l otherwise the T2 map cannot be processed.

i nt nunber O Scanni ngSequences = 0;

if( litk::ExposeMet aDat a<i nt>(i magel O >Get Met aDat abi cti onary(),

i tk::PAR Number Of Scanni ngSequences, nunber O Scanni ngSequences) )

{

std::cerr << "Could not determine the nunber of scanning sequences”;
std::cerr << std::endl;

return 1,

}

i f( nunber O Scanni ngSequences > 1)

{

std::cerr << "Cannot process a T2 map when the nunber of scanning sequences";
std::cerr << " is greater than 1" << std::endl;
return 1,

}

Philips REC images are stored as 16 bit signed integers. The PAR file lists rescale intercept (RI), rescale
slope (RS), and scale slope (SS) values for converting the integer data back to the original floating point
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data. As described in the PAR file, the floating point value is obtained using the following formula:

PV RS4RI

PP = "Rsuss (1)

where PV is the pixel value in the REC file and FP is the floating point value. The following source
demonstrates how to get the scale values using the itk::MetaDataDi ctionary and convert the image to
floating point using i tk:: ShiftScal el mageFilter and itk:: ShiftScal el nPl acel mageFilter:

/] Get rescale values for converting the 16 bit image to floating point.
Phi | i psRECI magel OType: : Scanni ngSequencel mageTypeRescal eVal uesCont ai ner Type: : Poi nt er
scanSequencel mageTypeRescal eVal ues = NULL;
if( litk::ExposeMetaData
<Phi | i psRECI nagel OType: : Scanni ngSequencel mageTypeRescal eVal uesCont ai ner Type: : Poi nt er >
(i magel O >CGet Met aDat abi ctionary(),itk::PAR Scanni ngSequencel mageTypeRescal eVal ues,
scanSequencel mageTypeRescal eVal ues) )
{
std::cerr << "Could not get the rescale values for each";
std::cerr << " scanning sequence and imge type" << std::endl;
return 1,

}

i f( !'scanSequencel mageTypeRescal eVal ues )
{
std::cerr << "Received NULL scanning sequence/inage types vector";
std::cerr << " pointer fromnmeta dictionary" << std::endl;
return 1,
}
Phi | i psRECI magel OType: : | mgeTypeRescal eVal uesCont ai ner Type: : Poi nt er
rescal eVal ueVect or
= scanSequencel mageTypeRescal eVal ues- >El ement At (0); // Only 1 scanning sequence.
i f( !rescal eval ueVector )
{
std::cerr << "Received NULL rescal e values vector pointer fronf;
std::cerr << " neta dictionary" << std::endl;
return 1,

}

/] Change image to floating point val ue.
Shi ft Scal el mageFi | t er Type: : Poi nter scaleOnly = NULL;
Shi ft Scal el nPl acel mageFi | t er Type: : Poi nter shiftAndScal e = NULL;
Phi | i psRECI magel OType: : | mgeTypeRescal eVal uesType rescal eVal ues
= rescal eVal ueVect or - >El enent At (0); // Magnitude image will be the first el ement.
if( (rescalevValues[2] '=0) & // scale slope (SS)
(rescal eValues[1] !=0) ) // rescale slope (RS
{
scal eOnly = ShiftScal el mageFilter Type:: New();
scal enl y->Set | nput (t 2Mask- >Get Qut put () ) ;
scal eOnl y->Set Scal e(rescal eVal ues[1]); // RS
shift AndScal e = Shift Scal el nPl acel mageFi | t er Type: : New() ;
shi ft AndScal e- >Set | nput ('scal eOnl y->Get Qut put () ) ;
shi ft AndScal e- >Set Shift (rescal eVal ues[0]); // rescale intercept (R)
shi ft AndScal e- >Set Scal e( 1. 0/ (rescal eVal ues[ 2] *rescal eVal ues[1])); // 1/ (SS*RS)


http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
http://www.itk.org/Doxygen/html/classitk_1_1ShiftScaleImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ShiftScaleInPlaceImageFilter.html
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el se

{

std::cerr << "Invalid rescale values" << std::endl;
return 1;

}

Because the Philips data is 4D, it is easier in this instance to use AddMREchol mage() to add the input
images to i t k: : MRT2Par amet er Map3Dl mageFi | t er instead of Set MREchol nage(). This is done using
a itk::VectorContainer of itk::ExtractlmageFilter smart pointers, one for each echo image, to
exctract the images from the 4D volume as follows:

Extract | mageFi | t er Cont ai ner Type: : Pointer extractVO =

Extract | mageFi | t er Cont ai ner Type: : New() ;

extract VA - >r esi ze( number Of EchoTi mes- 1) ;

Extract | mageFi | t er Type: : I nput | mageRegi onType extractionRegion;
Extract| mageFil ter Type: : I nput | mageSi zeType extractionSi ze;

extractionSi ze[0] = dinms[0];
extractionSi ze[1] = dims[1];
extractionSi ze[2] = dinms[2];
extractionSi ze[3] = 0;

Extract| mageFi | ter Type: : I nput | magel ndexType extracti onl ndex;
extractionl ndex[0] = 0;
extractionl ndex[ 1] 0;
extractionlndex[2] = 0;
extractionRegi on. Set Si ze(extractionSi ze);
Phi I i psRECI magel OType: : EchoTi mesCont ai ner Type: : Poi nt er
ptr ToEchoes = NULL;
i f( litk::ExposeMetaDat a<Phili psRECI magel OType: : EchoTi nesCont ai ner Type: : Poi nt er >
(i magel O >Get Met aDat aDi ctionary(), itk::PAR EchoTines, ptrToEchoes) )

{
std::cerr << "Could not get the echo times" << std::endl;
return 1,

}

if( !'ptrToEchoes )

{

std::cerr << "Received NULL echo times pointer front;
std::cerr << " neta dictionary" << std::endl;
return 1,

}
i f( ptrToEchoes->size() != nunber O EchoTi mes )

{

std::cerr << "The size of the echo tines vector does";
std::cerr << " not match the nunber of echoes listed in";
std::cerr << " the PARfile" << std::endl;

return 1;

}

for(unsigned int i=1; i<nunmberOf EchoTi mes; i++)

extract VO - >Set El ement (i -1, ExtractlnmageFilterType:: New());
extract VO - >El ement At (i - 1) - >Set | nput (shi ft AndScal e- >Get Qut put () ) ;
extractionlndex[3] =i;

extractionRegi on. Set | ndex(extractionl ndex);

extract VO - >El ement At (i-1)->Set Extracti onRegi on(extractionRegi on);


http://www.itk.org/Doxygen/html/classitk_1_1VectorContainer.html
http://www.itk.org/Doxygen/html/classitk_1_1ExtractImageFilter.html

3.4 Philips REC T; Parameter Map 25

Figure 5: Output from Philips T, parameter map example. The image on the left is the T, parameter map, the middle
image is the constant §), and the right image is the R-squared map. Like Figure 1 significant T; contrast exists in the
constant image & due to the extremely short TR of 252.901 ms.

t 2Map- >AddVREchol nage( pt r ToEchoes- >El ement At (i)/1000.0f, // convert to seconds
extract VO - >El ement At (i - 1) ->Get Qut put () ) ;

}

Like the Bruker T, example (3.1), the first echo image is not used and the echo times are converted to
seconds. Figure 5 shows the output images from this example. Figure 6 plots the fitted data against the
experimentally acquired data points for a location at the center of a gray matter region in the phantom. As
seen in the figure, the nonlinear fitting routine found a reasonable fit in spite of the noisy input data.

3.4 Philips REC T; Parameter Map

The final example demonstrates an inversion recovery T; parameter map measurement using a fast inversion
recovery Look-Locker sequence acquired on a 3.0 T Philips Achieva system. The Philips T; phantom
specified at the beginning of this section was used (3). The name of the file is T1_LL_10_1.PAR and the
example code is saved in PhilipsT1Map.cxx. A single 2 mm axial slice with SENSE factor 2.5, 160 x 160
matrix size, 225 mm x 225 mm FOV, TR of 25.0 ms, TE of 4.45 ms, and 8 inversion times (T | 83, 532, 980,
1429, 1877, 2325, 2774, and 3222 ms) was acquired.

PhilipsT1Map.cxx takes the same 9 parameters as BrukerT1Map.cxx (3.2). For this example the optional
parameters are O (output T;), 1 (use INVERSION_RECOVERY algorithm Equation 9), 5.0 (maximum
T, time of 5.0 seconds), and 50 (every voxel less than 50 set to zero). The IDEAL_STEADY _STATE,
Equation 7, and HYBRID_STEADY _STATE_3PARAM, Equation 8, algorithms are not supported.

Similar to the Philips T, example (3.3), PhilipsT1Map.cxx checks to make sure that the number of image
volumes is greater than or equal to the number of time points. However, the number of time points in this
case is equal to the number of cardiac phases, instead of the number of echo times:

unsi gned int number Of Ti mePoints = O;

int tenpNum = 0;

/1 Find the maxi mum nunber of cardiac phases.

if( litk::ExposeMetaDat a<i nt>(i magel O >Get Met aDat abi cti onary(),
i tk::PAR MaxNumber O Car di acPhases, t enpNunm) )

{

std::cerr << "Could not determne the nunber of cardiac";
std::cerr << " phases" << std::endl;
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GM MR Image Intensity as a Function of TE
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Figure 6: A plot of MR image intensity (S) as a function of TE for a pixel in the center of the gray matter sphere used
in the Philips T, parameter map example with overlay of fitted curve. The experimental image intensity points are noisy
due to the short TR 252.901 ms and sense factor 2.5. A reasonable fit was obtained in spite of the expected variation
in the experimental data points.
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return 1,

}

nunber O Ti mePoi nts = static_cast<unsigned int>(tenpNunj;

i f( nunber O Ti mePoints < 2 )

{

std::cerr << "Mist have at least 2 cardiac phase i mges to";
std::cerr << " calculate T1" << std::endl;

return 1,

}

/1 Get the inmage dinmensions and nmake sure that
Il there exists at |east nunber O TinePoints inmage
/1 volunes. [It's possible to have nore if the
/] REC file contains more than one image type
/1 (i.e. magnitude, phase, real, imaginary, etc.)

dins[ 0] = i magel O >Cet Di nensi ons(0);
dims[ 1] = i magel O >Get Di nensi ons(1);
dims[2] = i mgel O >CGet Di nensi ons(2);
dims[ 3] = i magel O >CGet Di nensi ons(3);

i f( nunber O Ti mePoints > dims[3] )

{

std::cerr << "The nunber of tine points is larger than the number";
std::cerr << " of image blocks" << std::endl;

return 1,

}

Unlike PhilipsT2Map.cxx, PhilipsT1Map.cxx requires either the magnitude image or both the magnitude
image and the phase corrected real image depending on the fit type. The magnitude image is used to gen-
erate a binary mask using the optional threshold value supplied on the command line. The phase corrected
real image is listed as image type 4 in the PAR file and is required for the non-absolute value inversion
recovery fitting options. The code below will check for the existence of the proper image types stored in the
i tk:: MetaDataDictionary and return with an error if the required image type does not exist in the REC
file:

/] Check to see if we have the correct imge types.
int haveCorrect!|mge = 0;
int nunber Of | mageTypes = 0;
Phi | i psRECI magel OType: : | mageTypesType i mageTypes;
if( litk::ExposeMetabDat a<i nt>(i magel O >Get Met aDat abi cti onary(),
i tk::PAR Nurmber Of | mageTypes, nunber O | nageTypes) )
{
std::cerr << "Could not determine the nunber of inmage types" << std::endl;
return 1,
}
if( !itk::ExposeMetaData<PhilipsRECI magel OType: : | mageTypesType>
(i magel O >CGet Met aDat aDi ctionary(),itk:: PAR | mageTypes, i mageTypes) )

{

std::cerr << "Could not get the imge types vector" << std::endl;

return 1,

}

/1 Need inmage 4 (corrected real image) for inversion recovery/Look-Locker
/1 fit type.

if( (algorithm == MRT1Paranet er Map3Dl mageFi | t er Type: : | NVERSI ON_RECOVERY) | |
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(al gorithm == MRT1Par anet er Map3Dl mageFi | t er Type: : | NVERSI ON_RECOVERY_3PARAM | |
(al gorithm == MRT1Par anet er Map3Dl mageFi | t er Type: : LOOK_LOCKER) )

{
for(int j=0; j<nunberCflmageTypes; |++)

{
if( imageTypes[j] == 4)
{

haveCorrect| mage = 1,

}

}

i f( !'haveCorrectl|mage )

{
std::cerr << "No corrected real imge type detected in PAR';
std::cerr << " file" << std::endl;
return 1;

}

}

/1 Now check for existence of the magnitude image.
haveCorrectlnage = 0;
for(int j=0; j<nunberCflmageTypes; |++)
{
if( imgeTypes[j] == 0)
{
haveCorrect| nage = 1;
}
}
i f( !'haveCorrect!| mage )
{
std::cerr << "No magnitude inmage type detected in PAR file" << std::endl;
return 1;

}

If the correct image types exist in the REC file, as reported in the PAR file, the program will attempt to read
the inversion times from the itk:: MetaDat aDi ctionary. The actual inversion times are listed as trigger
times in the PAR file and are extracted as follows:

/] Get trigger tines.

Phi | i psRECI magel OType: : Tri gger Ti mesCont ai ner Type: : Poi nt er

ptrToTi mePoi nts = NULL;

if( !itk::ExposeMetaData<PhilipsREC magel OType:: Trigger Ti mesCont ai ner Type: : Poi nt er >
(i magel O >Get Met aDat aDi ctionary(),itk::PAR TriggerTi nes, ptrToTi mePoints) )
{

std::cerr << "Could not get the trigger tines" << std::endl;

return 1,

}

if( !'ptrToTi nePoints )

{

std::cerr << "Received NULL trigger times pointer fromneta";

std::cerr << " dictionary" << std::endl;

return 1,

}
i f( ptrToTi mePoints->size() != nunber O Ti nePoints )

{
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std::cerr << "The size of the tine points vector does not match the";
std::cerr << " nunber of cardiac phases listed in the PAR file" << std::endl;
return 1,

}

After scaling the 16 bit data read using i t k: : Phi | i psRECI magel O to floating point data as detailed in the
previous example (3.3), each 3D volume for each time point is extracted, masked, and assigned as inputs to
i tk:: MRT1Par amet er Map3Dl mageFi | t er using AddMVRI mage() :

/] Extract volunmes according to algorithmtype.
if( (algorithm == MRT1Paraneter Map3Dl mageFi | t er Type: : | NVERSI ON_RECOVERY) | |
(al gorithm == MRT1Par anet er Map3Dl mageFi | t er Type: : | NVERS| ON_RECOVERY_3PARAM) | |
(al gorithm == MRT1Par anet er Map3Dl mageFi | t er Type: : LOOK_LOCKER) )
{
/] Corrected real image is after the magnitude and real images in first scanning sequence.
for(unsigned int i=0; i<nunmber O TinmePoints; i++)
{
extract VO ->Set El enent (i, ExtractlnageFilterType:: New());
extract VO - >El ement At (i) ->Set | nput (shi ft AndScal e- >Get Qut put () ) ;
extractionlndex[3] = 2*nunber Of Ti mePoints + i;
extractionRegi on. Set I ndex(extractionl ndex);
extract VO - >El enent At (i ) - >Set Ext racti onRegi on(extractionRegi on);
maskFi | t er Cont ai ner- >Set El ement (i, Maskl mageFi | t er Type: : New());
maskFi | t er Cont ai ner - >El ement At (i) ->Set | nput 1(extract VO - >El enent At (i )->GetQut put());
maskFi | t er Cont ai ner - >El ement At (i) ->Set | nput 2( magni t udeMask- >Get Qut put ());
t 1Map- >AddMRI mage( pt r ToTi mePoi nt s- >El ement At (i)/1000. 0f, // convert to seconds
maskFi | t er Cont ai ner - >El ement At (i) ->CGet Qutput());
}

}

el se

/1 Nagnitude inmage is at front.
for(unsigned int i=0; i<nunmber O TinmePoints; i++)
{
extract VO - >Set El enent (i, ExtractlmgeFilterType:: New());
extract VO - >El ement At (i) ->Set | nput (shi ft AndScal e- >Get Qut put () ) ;
maskFi | t er Cont ai ner - >Set El ement (i, Maskl mageFi | ter Type: : New());
maskFi | t er Cont ai ner - >El ement At (i) ->Set I nput 1(extract VO ->El enent At (i )->Get Qut put());
maskFi | t er Cont ai ner - >El ement At (i) - >Set | nput 2( magni t udeMask->Get Qut put ());
extractionlndex[3] =1i;
extractionRegi on. Set | ndex( extractionl ndex);
extract VO - >El ement At (i) - >Set Ext racti onRegi on(extractionRegi on);
t 1Map- >AddMRI mage( pt r ToTi mePoi nt s- >El ement At (i)/1000. 0f, // convert to seconds
maskFi | t er Cont ai ner - >El ement At (i)->CGet Qutput());
}

}

The final output is then extracted and written to disk as shown previously (3.1). Figure 7 shows the Ty,
exponent constant, and R-squared output images for this example and Table 5 contains the average T; time,
exponent constant, and R-squared value for each tube in the phantom. For verification the magnitude of
the MR signal at the center of tube 5 (pure water) was plotted for each image time point as a function of
inversion time and the fitted function was added as an overlay in Figure 8. Similar to the previous examples,
the predicted inversion recovery curve fits the experimental data well.
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Figure 7: Output from Philips T; parameter map example. The image on the left is the T, parameter map, the middle
image is the constant ), and the right image is the R-squared map. The tube numbers from Table 2 are labeled in red

on the T; parameter map image.
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Figure 8: A plot of MR image intensity as a function of T| for a pixel in the center of tube 5 with overlay of fitted curve.
Like the previous examples, this demonstrates that the predicted data is a good fit for the experimental data.
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Table 5: Average T;, &, and R-squared value for each tube in the Philips T; phantom example.

‘ Tube # ‘ Average T; (ms) ‘ Average S ‘ Average R-squared ‘

1 895.48£17.72 | 68353 £3511 0.998 £0.001
976.82+23.56 | 62715£4718 0.998 £0.001
1074.00 £ 18.94 | 72041 £3235 0.998 £0.001
1639.40 +28.21 | 60428 £3412 0.998 £0.001
2601.601+59.02 | 60281 +3991 0.998 +£0.001

N BN

4 Conclusion

This paper outlines the background, implementation, and use of a suite of classes and programs for gener-
ating MR T, and Ty parameter maps using Philips PAR/REC and Bruker 2dseq image files. The supplied
examples based on image phantoms demonstrate that these classes generate valid parameter maps. Included
with the MR parameter mapping classes are new image readers for Philips PAR/REC and Bruker 2dseq
image files, which are useful not only for MR parameter mapping, but also for integration with DTI, seg-
mentation, and registration pipelines within ITK. Feel free to contact the author for suggestions or bugs
(http://wwv. hrre. psu. edu/ nnr | ab/ groups/ st udent s/ dbi gl er. ht m).
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