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Abstract

This document describes a suite of new multi-threaded classes for calculating magnetic resonance (MR)
T2 and T1 parameter maps implemented using the Insight Toolkit ITK (www.itk.org). Similar to MR
diffusion tensor imaging (DTI), MR T2 and T1 parameter maps provide a non-invasive means for quanti-
tatively measuring disease or pathology in-vivo. Included in the suite are classes for reading proprietary
Bruker 2dseq and Philips PAR/REC images and example programs and data for validating the new
classes.
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1 Background

Magnetic resonance imaging (MRI) is a powerful, non-invasive, medical imaging modality capable
of producing a wide variety of image contrasts. In addition to standard T1- and T2-weighted con-
trast images, MRI is also capable of producing quantitative measurements of magnetic resonance (MR)
specific or derived parameters. Typically these quantitative measurements are not acquired directly
from the MR scanner, but are calculated with multiple image volumes using a specific set of exper-
imental parameters. For example, the ITK itk::DiffusionTensor3DReconstructionImageFilter
takes as input multiple MR image volumes acquired with varying gradient directions and strengths.
The itk::TensorFractionalAnisotropyImageFilter converts its tensor output into the fractional
anisotropy scalar quantity, which is a measure of the shape of the diffusion of water (derived parameter).

Similar to diffusion tensor imaging (DTI), the T2 and T1 parameter maps or their inverses, R2 and R1, are
calculated using multiple image acquisitions with varying parameters. Whereas DTI indirectly measures
the directional distribution of the diffusion of water, T2 and T1 parameter maps are exponential relaxation
times specific to the tissue or sample that is being imaged. Increasingly whole brain MR parameter maps
are used to perform statistical parametric mapping studies to characterize and monitor neurodegenerative
disease or pathology. For example, this technique, termed voxel-based relaxometry (VBR), was applied to
studies of epilepsy to show increases in T2 within the hippocampus, parahippocampal gyrus, and anterior
temporal lobe white matter, when compared with normal controls [13, 12]. A similar study was performed
for patients suffering from multiple-system atrophy of cerebellar type [15]. In this study, the inverse of T2,
R2, was shown to decrease in the cerebellum and brainstem and increase in the putamen. Also, preliminary
work in amyotrophic lateral sclerosis (ALS) demonstrated increases in T2 within the subthalamic region
when compared with age-matched normal controls [1]. Statistical parametric maps require the brain images
to be registered to a reference brain atlas - a task well suited for ITK. However, currently ITK does not
provide classes for calculating T2 and T1 parameter maps.

1.1 Measuring T2 Relaxation

T2 is conventionally measured by acquiring multiple spin-echo images. The following equation describes
the signal for a voxel acquired using a spin-echo sequence:

S ∝ ρe

(

−TE
T2

) [

1− e

(

−TR
T1

)]

(1)

where ρ is the proton density, TE is the time to echo, and TR is the time to repetition. To calculate T2, TR
is set to a long value, ≥ 5T1, and TE is varied over the multiple spin-echo image acquisitions. Since ρ is
assumed constant Equation 1 reduces to the following:

Si(t) = S0e
−TEi

T2 (2)

where S0 = ρ
[

1− e

(

−TR
T1

)]

and i refers to the ith image with echo time TEi. Because Si(t) and TEi are

known, S0 and T2 can be estimated using a linear least squares or nonlinear fit. Although not described in

http://www.itk.org/Doxygen/html/classitk_1_1DiffusionTensor3DReconstructionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1TensorFractionalAnisotropyImageFilter.html
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detail in this paper, the estimation of T ∗
2 is the same as T2. The difference is that the images are acquired

using a gradient echo sequence instead of a spin-echo sequence.

1.2 Measuring T1 Relaxation

Many image acquisition methods exist for measuring T1 [9]. The signal obtained when using the steady-state
or saturation recovery approach is the same as Equation 1. However to measure T1, TE is set as small as
possible and TR is varied. The nonlinear fitting in this case becomes:

Si(t) = S0

[

1− e

(

−TRi
T1

)]

(3)

where S0 = ρe
−TE

T2 and i refers to the ith image with repetition time TRi. T1 may also be measured using the
inversion recovery sequence. The inversion recovery sequence is a spin-echo sequence with an additional
180 degree radiofrequency (RF) pulse at the beginning of the sequence. Again, the fit is nonlinear and
changes to the following:

Si(t) = S0

[

1−2e

(

−TIi
T1

)]

(4)

where S0 = ρe
−TE

T2 and i refers to the ith image with inversion time TIi. Both the steady-state and in-
version recovery methods require long TR or TI times in order to obtain good estimates of T1 and
therefore require long scan times. Since long scan times are not suitable for human studies, fast T1-
mapping protocols have been developed to overcome this problem [10, 2, 5, 11, 17, 19, 3, 6, 7, 14, 16,
4, 18, 8]. Many fast methods are variants of the Look-Locker or TOMROP technique [10, 5]. The
itk::MRT1ParameterMap3DImageFilter class described in the next section (2.2) provides an implemen-
tation of the Look-Locker method by Deichmann and Haase [2]. T1 is not measured directly, but a slightly
lower value T ∗

1 . T1 is estimated after performing a fit for T ∗
1 (Equation 13).

2 Implementation

This section describes the multi-threaded ITK classes for calculating the parameter maps. Since the classes
are derived from the itk::ImageToImageFilter, they can easily be integrated with a registration pipeline.
In addition to the classes for calculating T2 and T1, classes for reading proprietary Bruker 2dseq (2.3) and
Philips PAR/REC (2.4) MR image files are described. The examples outlined in the next section (3.1, 3.2,
3.3, and 3.4) use the new readers to calculate T2 and T1 parameter maps from the original proprietary image
data formats.

2.1 itk::MRT2ParameterMap3DImageFilter

The interface of itk::MRT2ParameterMap3DImageFilter was designed to be similar with
itk::DiffusionTensor3DReconstructionImageFilter . As such, this filter is templated over the
input pixel type and the output pixel type. The input T2-weighted MR images must all have the same
size and dimensions. The 3D itk::VectorImage output will always have four components. The first
component of the output will be the T2 time in seconds (R2 in Hz if PerformR2MappingOn() is called),

http://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1DiffusionTensor3DReconstructionImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1VectorImage.html
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the second component will be the constant A as shown in the equations below, and the fourth component
will be the R-squared value from the curve fitting. The third component will vary depending on the type of
T2 fitting selected using SetAlgorithm(). For LINEAR and NON LINEAR the third component will be
zero. For NON LINEAR WITH CONSTANT the third component will be the value C as shown below.

• LINEAR (Linear least squares):

Si(t) = Ae

(

−TEi
T2

)

(5)

• NON LINEAR (Non-linear least squares using Levenberg-Marquardt): Same as Equation 5.

• NON LINEAR WITH CONSTANT (Non-linear least squares using Levenberg-Marquardt):

Si(t) = Ae

(

−TEi
T2

)

+C (6)

There are two ways to use this class. When multiple T2 or T ∗
2 -weighted images are available the images are

added as follows:

filter->AddMREchoImage( echoTime1, image1 );
filter->AddMREchoImage( echoTime2, image2 );

...

When the ’n’ T2 or T ∗
2 -weighted images are stored in a single multi-component image (

itk::VectorImage), use SetMREchoImage() like this:

filter->SetMREchoImage( echoTimeContainer, vectorImage );
...

A number of Get/Set methods are provided for controlling the output of the filter:

• Algorithm - Set/Get the T2 fitting algorithm used (LINEAR, NON LINEAR, and
NON LINEAR WITH CONSTANT).

• MaxT2Time - Set the maximum T2 time (T2 times greater than or equal to this value will be set to this
value).

• PerformR2Mapping - If On R2 (in Hz) will be calculated instead of T2.

Multi-threaded fitting is performed over every voxel in the output image region across the entire image
time series using the overridden void ThreadedGenerateData() function. Linear least squares fitting
provides starting parameters for the non-linear algorithms. However, the input time series image data must
be linearized first before a linear least squares fit is possible. void FitLinearExponential() handles this
task:

template< class TMREchoImagePixelType, class TMRParameterMapImagePixelType >
void
MRT2ParameterMap3DImageFilter<TMREchoImagePixelType,TMRParameterMapImagePixelType>
::FitLinearExponential(ExponentialFitType X, ExponentialFitType Y, unsigned int num,

http://www.itk.org/Doxygen/html/classitk_1_1VectorImage.html
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MRParameterMapPixelType &output)
{
EchoTimeType Sumxy=0, Sumx=0, Sumy=0, Sumx2=0, Sumy2=0, b=0, denom=0;

for(unsigned int i=0; i<num; i++)
{
Sumxy += X[i]*log(Y[i]);
Sumx += X[i];
Sumy += log(Y[i]);
Sumy2 += log(Y[i])*log(Y[i]);
Sumx2 += X[i]*X[i];

}
denom = Sumx2-(Sumx*Sumx/static_cast<EchoTimeType>(num));
if( denom == 0 )
{
b = NumericTraits< EchoTimeType >::max() *
((Sumxy-(Sumx*Sumy/static_cast<EchoTimeType>(num))) < 0)?-1.0f:1.0f;

}
else
{
b = (Sumxy-(Sumx*Sumy/static_cast<EchoTimeType>(num)))/denom;

}
if( b == 0 )
{
b = NumericTraits< EchoTimeType >::max();

}
output[0] = static_cast<typename MRParameterMapPixelType::ValueType>
(-b); // T2
output[1] = static_cast<typename MRParameterMapPixelType::ValueType>
(exp((Sumy-b*Sumx)/static_cast<EchoTimeType>(num))); // Constant
output[3] = static_cast<typename MRParameterMapPixelType::ValueType>
((Sumxy*Sumxy)/(Sumy2*Sumx2)); // R-squared
}

Non-linear fitting is accomplished using the vnl levenberg marquardt class. See the included source
code for more details.

2.2 itk::MRT1ParameterMap3DImageFilter

The interface to itk::MRT1ParameterMap3DImageFilter is basically the same as
itk::MRT2ParameterMap3DImageFilter (2.1). Like itk::MRT2ParameterMap3DImageFilter
the 3D itk::VectorImage output will always have four components. The first component of the output
will be the T1 time in seconds (R1 in Hz if PerformR1MappingOn() is called), the second component will
be the constant A as shown in the functions below, and the fourth component will be the R-squared value
from the curve fitting. The third component will vary depending on the type of T1 fitting selected. For all
of the 2 parameter models below the third component will be zero. For the remaining models the third
component will be the value B as shown below.

• IDEAL STEADY STATE (Non-linear least squares using Levenberg-Marquardt):

Si(t) = A

[

1− e

(

−TRi
T1

)]

(7)

http://www.itk.org/Doxygen/html/classitk_1_1VectorImage.html
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• HYBRID STEADY STATE 3PARAM (Non-linear least squares using Levenberg-Marquardt):

Si(t) = A

[

B− e

(

−TRi
T1

)]

(8)

• INVERSION RECOVERY (Non-linear least squares using Levenberg-Marquardt):

Si(t) = A

[

1−2e

(

−TIi
T1

)]

(9)

• INVERSION RECOVERY 3PARAM (Non-linear least squares using Levenberg-Marquardt):

Si(t) = A

[

1−Be

(

−TIi
T1

)]

(10)

• ABSOLUTE INVERSION RECOVERY (Non-linear least squares using Levenberg-Marquardt):

Si(t) =

∣

∣

∣

∣

A

[

1−2e

(

−TIi
T1

)]
∣

∣

∣

∣

(11)

• ABSOLUTE INVERSION RECOVERY 3PARAM (Non-linear least squares using Levenberg-
Marquardt):

Si(t) =

∣

∣

∣

∣

A

[

1−Be

(

−TIi
T1

)]
∣

∣

∣

∣

(12)

• LOOK LOCKER (Non-linear least squares using Levenberg-Marquardt):

Si(t) = A

[

1−Be

(

−TIi
T∗1

)

]

,T1 = (T ∗
1 )(B−1) (13)

• ABSOLUTE LOOK LOCKER (Non-linear least squares using Levenberg-Marquardt):

Si(t) =

∣

∣

∣

∣

∣

A

[

1−Be

(

−TIi
T∗1

)

]
∣

∣

∣

∣

∣

,T1 = (T ∗
1 )(B−1) (14)

The INVERSION RECOVERY, INVERSION RECOVERY 3PARAM, and LOOK LOCKER algo-
rithms require the input data to be the real component of the complex reconstructed MRI. Usually, the
image provided by the MR scanner is the magnitude of the complex reconstructed image, which forces the
image data to be all positive. If the real image data is not available, the absolute versions of these algorithms
may be used instead. The absolute versions attempt to find the data point where the measured relaxation
curve goes from negative to positive. This should be the point where the gradient switches from negative to
positive as shown in the code below.

// Make function non absolute again. This is done by making sure the
// Y values are always increasing.
Yfixed = Y;
for(unsigned int i=0; i<num-1; i++)
{
// Negative slope
if( Y[i+1]-Y[i] < 0 )
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{
Yfixed[i] = -Yfixed[i];

}
// Positive slope
else
{
break;

}

}

This code may fail if the image data is very noisy. In this case, smoothing of the input data will reduce
the noise and should eliminate the problem. However, in most instances it should correctly locate the point
where the measured relaxation curve goes from negative to positive without requiring smoothing.

Similar to itk::MRT2ParameterMap3DImageFilter (2.1), there are two ways to use
itk::MRT1ParameterMap3DImageFilter. When multiple images are available the images are added as
follows:

filter->AddMRImage( time1, image1 );
filter->AddMRImage( time2, image2 );

...

When the ’n’ images are stored in a single multi-component image ( itk::VectorImage), use
SetMRImage() like this:

filter->SetMRImage( timeContainer, vectorImage );
...

Get/Set methods are provided for controlling the output of the filter:

• Algorithm - Set/Get the T1 fitting algorithm used.

• MaxT1Time - Set the maximum T1 time (T1 times greater than or equal to this value will be set to this
value).

• PerformR1Mapping - If On R1 (in Hz) will be calculated instead of T1.

Multi-threaded non-linear fitting using the vnl levenberg marquardt class is performed over ev-
ery voxel in the output image region across the entire image time series using the overridden void
ThreadedGenerateData() function. Unlike itk::MRT2ParameterMap3DImageFilter, the starting pa-
rameters are obtained by making a guess using the input data. The guess depends on the particular algorithm
chosen using the call to SetAlgorithm() (see the included source code).

2.3 itk::Bruker2DSEQImageIO

The Bruker image format is a very flexible and complex image format. A brief descrip-
tion is found at http://www.mrc-cbu.cam.ac.uk/Imaging/Common/brukerformat.shtml .

http://www.itk.org/Doxygen/html/classitk_1_1VectorImage.html
http://www.mrc-cbu.cam.ac.uk/Imaging/Common/brukerformat.shtml
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itk::Bruker2DSEQImageIO provides read-only access to most Bruker 2dseq binary image files via
virtual void ReadImageInformation() and virtual void Read(), which are pure virtual methods
declared in the parent class itk::ImageIOBase. A known limitation is the reading of 2dseq files that
contain slices with varying orientations, like a reference scan with three orthogonal slices. For these
images itk::Bruker2DSEQImageIO will only read the first ’n’ slices that have the same orientation.
The other known limitation is that the class cannot handle 4D images. This is in spite of the fact that
Bruker 2dseq images can be 4D. The user must determine if the 3D volume read is 4D by examining
the parameters in the itk::MetaDataDictionary . virtual bool CanReadFile() is also defined
and may be used to determine if the Bruker 2dseq is readable. The implementation included with the
source code was designed using example images acquired at the Penn State Center for NMR Research
(http://www.hmc.psu.edu/nmrlab/), but has not undergone exhaustive testing using all possible Bruker
2dseq image types.

itk::Bruker2DSEQImageIO provides access to important acquisition parameters via the
itk::MetaDataDictionary. The list of parameters is by no means complete, but other parame-
ters may be added as needed. The following code defines the names of the parameters stored in the
itk::MetaDataDictionary:

extern const char *const RECO_BYTE_ORDER;
extern const char *const RECO_FOV;
extern const char *const RECO_SIZE;
extern const char *const RECO_WORDTYPE;
extern const char *const RECO_IMAGE_TYPE;
extern const char *const RECO_TRANSPOSITION;
extern const char *const ACQ_DIM;
extern const char *const NI/*IMND_N_SLICES*/;
extern const char *const NR;
extern const char *const ACQ_SLICE_THICK/*IMND_SLICE_THICK*/;
extern const char *const NECHOES/*IMND_N_ECHO_IMAGES*/;
extern const char *const ACQ_SLICE_SEPN/*IMND_SLICE_SEPN*/;
extern const char *const ACQ_SLICE_SEPN_MODE;
extern const char *const ACQ_ECHO_TIME;
extern const char *const ACQ_REPETITION_TIME;
extern const char *const ACQ_INVERSION_TIME;

Types are also defined for vector quantities stored in the itk::MetaDataDictionary :

/** Special types used for Bruker meta data. */
typedef VectorContainer< unsigned int, double > RECOFOVContainerType;
typedef VectorContainer< unsigned int, int > RECOTranspositionContainerType;
typedef VectorContainer< unsigned int, double > ACQEchoTimeContainerType;
typedef VectorContainer< unsigned int, double > ACQRepetitionTimeContainerType;
typedef VectorContainer< unsigned int, double > ACQInversionTimeContainerType;
typedef VectorContainer< unsigned int, double > ACQSliceSepnContainerType;

The examples in the next section (3.1 and 3.2) show how to use the types with the parameter names to
retrieve the values from the itk::MetaDataDictionary. Finally, itk::Bruker2DSEQImageIOFactory
is also included with the source code for users who wish to use the object factory mechanisms of ITK.

http://www.itk.org/Doxygen/html/classitk_1_1ImageIOBase.html
http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
http://www.hmc.psu.edu/nmrlab/
http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
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2.4 itk::PhilipsRECImageIO

Like itk::Bruker2DSEQImageIO (2.3), itk::PhilipsRECImageIO is derived from itk::ImageIOBase
and implements read-only image access to Philips PAR/REC image data. The *.PAR file describes in
human readable text the binary image data stored in the *.REC file. The actual parsing of the PAR
parameters is done using the functions defined in itkPhilipsPAR.h and itkPhilipsPAR.cxx. Currently
itk::PhilipsRECImageIO supports reading PAR file versions 3 through 4.1, based on sample data
acquired at the Penn State Center for NMR Research (http://www.hmc.psu.edu/nmrlab/). Unlike
itk::Bruker2DSEQImageIO, itk::PhilipsRECImageIO supports 4D images.

itk::PhilipsRECImageIO also provides access to important acquisition parameters via the
itk::MetaDataDictionary. The following code defines the names of the parameters stored in the
itk::MetaDataDictionary:

extern const char *const PAR_Version;
extern const char *const PAR_SliceOrientation;
extern const char *const PAR_ExaminationName;
extern const char *const PAR_ProtocolName;
extern const char *const PAR_SeriesType;
extern const char *const PAR_AcquisitionNr;
extern const char *const PAR_ReconstructionNr;
extern const char *const PAR_ScanDuration;
extern const char *const PAR_MaxNumberOfCardiacPhases;
extern const char *const PAR_TriggerTimes;
extern const char *const PAR_MaxNumberOfEchoes;
extern const char *const PAR_EchoTimes;
extern const char *const PAR_MaxNumberOfDynamics;
extern const char *const PAR_MaxNumberOfMixes;
extern const char *const PAR_PatientPosition;
extern const char *const PAR_PreparationDirection;
extern const char *const PAR_Technique;
extern const char *const PAR_ScanMode;
extern const char *const PAR_NumberOfAverages;
extern const char *const PAR_ScanResolution;
extern const char *const PAR_RepetitionTimes;
extern const char *const PAR_ScanPercentage;
extern const char *const PAR_FOV;
extern const char *const PAR_WaterFatShiftPixels;
extern const char *const PAR_AngulationMidSlice;
extern const char *const PAR_OffCentreMidSlice;
extern const char *const PAR_FlowCompensation;
extern const char *const PAR_Presaturation;
extern const char *const PAR_CardiacFrequency;
extern const char *const PAR_MinRRInterval;
extern const char *const PAR_MaxRRInterval;
extern const char *const PAR_PhaseEncodingVelocity;
extern const char *const PAR_MTC;
extern const char *const PAR_SPIR;
extern const char *const PAR_EPIFactor;
extern const char *const PAR_TurboFactor;
extern const char *const PAR_DynamicScan;
extern const char *const PAR_Diffusion;
extern const char *const PAR_DiffusionEchoTime;

http://www.itk.org/Doxygen/html/classitk_1_1ImageIOBase.html
http://www.hmc.psu.edu/nmrlab/
http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
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extern const char *const PAR_MaxNumberOfDiffusionValues;
extern const char *const PAR_GradientBValues;
extern const char *const PAR_MaxNumberOfGradientOrients;
extern const char *const PAR_GradientDirectionValues;
extern const char *const PAR_InversionDelay;
extern const char *const PAR_NumberOfImageTypes;
extern const char *const PAR_ImageTypes;
extern const char *const PAR_NumberOfScanningSequences;
extern const char *const PAR_ScanningSequences;
extern const char *const PAR_ScanningSequenceImageTypeRescaleValues;

Types are also defined for vector quantities stored in the itk::MetaDataDictionary :

/** Special types used for Philips PAR meta data. */
typedef VectorContainer< unsigned int, double > EchoTimesContainerType;
typedef VectorContainer< unsigned int, double > TriggerTimesContainerType;
typedef VectorContainer< unsigned int, double > RepetitionTimesContainerType;
typedef vnl_vector_fixed< int, 2 > ScanResolutionType;
typedef vnl_vector_fixed< float, 3 > FOVType;
typedef vnl_vector_fixed< double, 3 > AngulationMidSliceType;
typedef vnl_vector_fixed< double, 3 > OffCentreMidSliceType;
typedef vnl_vector_fixed< float, 3 > PhaseEncodingVelocityType;
/** Image types: 0=Magnitude, 1=Real, 2=Imaginary, 3=Phase, & 4=Special/Processed. */
typedef vnl_vector_fixed< int, 8 > ImageTypesType;
typedef vnl_vector_fixed< int, 8 > ScanningSequencesType;
typedef std::vector< int > SliceIndexType;
typedef vnl_vector_fixed< double, 3 > ImageTypeRescaleValuesType;
typedef VectorContainer< unsigned int, ImageTypeRescaleValuesType >
ImageTypeRescaleValuesContainerType;
typedef VectorContainer< unsigned int, ImageTypeRescaleValuesContainerType::Pointer >
ScanningSequenceImageTypeRescaleValuesContainerType;
typedef double GradientBvalueType;
typedef VectorContainer< unsigned int, GradientBvalueType > GradientBvalueContainerType;
typedef vnl_vector_fixed< double, 3 > GradientDirectionType;
typedef VectorContainer< unsigned int, GradientDirectionType >
GradientDirectionContainerType;

The examples in the next section (3.3 and 3.4) show how to use the types with the parameter names to
retrieve the values from the itk::MetaDataDictionary. Again, itk::PhilipsRECImageIOFactory is
also included with the source code for users who wish to use the object factory mechanisms of ITK.

3 Examples

The examples that follow demonstrate how to use the classes described in the previous sections. The data and
source for these examples are included with this article. The Bruker data directory contains both a T2 data set
and a T1 saturation recovery data set. A phantom containing 14 test tubes with varied concentrations of agar
and gadopentetate dimeglumine (Gd-DPTA) was used for both data sets. Table 1 shows the concentrations
for each tube.

Two separate phantoms were used for the Philips T2 and T1 examples. The phantom for the T2 example was
designed to mimic brain white matter (WM) and gray matter (GM). A cylindrical container was filled with

http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
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Table 1: Gd-DTPA and agar concentrations for phantom used in Bruker examples.

Tube # % Gd-DTPA Agar (g/ml)
1 0.0229 0.054560
2 0.0229 0.038265
3 0.0229 0.029345
4 0 0.019065
5 0.0103 0.025325
6 0.0153 0.025615
7 0.0229 0.023750
8 0.0084 0.033580
9 0.0154 0.035165
10 0.0280 0.030315
11 0.0510 0.010755
12 0.0084 0.027200
13 0.0084 0.022890
14 0.0084 0.019765

2.6224×10−2 (g/ml) concentration agar doped with 0.024% Gd-DTPA (white matter) and embedded within
the container were 17 plastic spheres filled with 1.8382× 10−2 (g/ml) agar doped with 0.007% Gd-DTPA
(gray matter). The T1 phantom contains 5 tubes with varying amounts of Gd-DTPA. Table 2 shows the
concentration of Gd-DTPA for each numbered tube.

Table 2: Gd-DTPA concentrations for phantom used in Philips T1 example.

Tube # % Gd-DTPA
1 0.043
2 0.024
3 0.014
4 0.008
5 0

3.1 Bruker 2dseq T2 Parameter Map

In this example a T2 parameter map is generated using a multi-echo spin-echo sequence acquired on a 3.0
T Bruker MedSpec MR system. The T R time was 1595.03 ms and 11 echo images were acquired with a
starting TE of 7.919 ms and an echo spacing of 7.919 ms (final echo time was 87.107 ms). A single 3
mm slice was acquired with a 256 x 256 matrix size and 20 cm x 20 cm field of view (FOV). The data
for this example is located in the DCB021304.oj1/3/pdata/1/ folder. The source code is located in the
BrukerT2Map.cxx file.

BrukerT2Map.cxx takes up to 9 arguments. The first 5 arguments are required and are used to specify the
full path of the input Bruker 2dseq, the output T2 parameter map filename, the output exponential constant
(S0) map filename , the output constant map (C) filename, and the output R-squared map filename. The
remaining 4 optional arguments are used to control the output, specifically whether or not to output T2 or R2
(default is T2), the algorithm to use (default is LINEAR), the maximum T2 time (default is 10 seconds), and
a baseline threshold value for masking the input image (default is 0). The optional parameters used for this
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example are 0 (output T2), 0 (use LINEAR algorithm Equation 5), 2.0 (maximum T2 time of 2.0 seconds),
and 1000 (every voxel less than 1000 set to zero).

After checking for the correct number of arguments and reading the arguments from the command line, the
program attempts to read the Bruker 2dseq and get the image information:

// Create 2DSEQ reader and check the file if it can be read.
Bruker2DSEQImageIOType::Pointer imageIO = Bruker2DSEQImageIOType::New();
if( !imageIO->CanReadFile(inputFilename) )
{
std::cerr << "Could not read 2dseq file" << std::endl;
return 1;
}

// Read the image information.
imageIO->SetFileName(inputFilename);
try
{
imageIO->ReadImageInformation();
}
catch( itk::ExceptionObject &err )
{
std::cerr << "ExceptionObject caught";
std::cerr << " : " << err.GetDescription();
return 1;
}

If the image is read without errors, the program will attempt to get the echo times from the
itk::MetaDataDictionary:

// Get the echo times in ms.
Bruker2DSEQImageIOType::ACQEchoTimeContainerType::Pointer ptrToEchoes = NULL;
if( !itk::ExposeMetaData<Bruker2DSEQImageIOType::ACQEchoTimeContainerType::Pointer>
(imageIO->GetMetaDataDictionary(), itk::ACQ_ECHO_TIME,ptrToEchoes) )
{
std::cerr << "Could not get the echo times" << std::endl;
return 1;
}
if( !ptrToEchoes )
{
std::cerr << "Received NULL echo times pointer from meta dictionary" << std::endl;
return 1;
}
unsigned int numberOfEchoTimes = ptrToEchoes->Size();

Instead of acquiring multiple spin-echo images with different TE times, typically a multi-echo spin-echo
image is acquired to measure T2. A spin-echo image is acquired using a 90 degree RF pulse followed by a
180 degree RF pulse. To acquire a multi-echo data set a series of 180 degree RF pulses follow the first 90 and
180 degree pulses. The application of a perfectly homogenous 180 RF pulse across a sample is difficult and
imperfections in the flip-angle lead to what are called stimulated echoes for the echo images acquired after
the first 180 degree RF pulse. Therefore in order to measure T2 the first echo image without the stimulated

http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
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echo signal is usually thrown out. The following for loop below will do that as well as convert the echo
times to seconds:

for(unsigned int i=1; i<(unsigned int)numberOfEchoTimes; i++)
{
ptrToEchoes->SetElement(i-1,ptrToEchoes->ElementAt(i)/1000.0f); // convert to seconds
}
ptrToEchoes->CastToSTLContainer().pop_back();
--numberOfEchoTimes;
if( numberOfEchoTimes < 2 )
{
std::cerr << "Must have at least 2 echo images to calculate T2" << std::endl;
return 1;
}

As already mentioned previously, itk::Bruker2DSEQImageIO is limited to reading Bruker 2dseq images
in 3D only. For a multi-echo spin-echo image, the 2dseq is in reality a 4D image with the fourth dimension
being the echo time. The code segment below will convert the 3D image to a itk::VectorImage, which
will be supplied as an input to itk::MRT2ParameterMap3DImageFilter:

// Get real number of slices and create vector image.
// Also threshold the image at the same time.
int realSlices = dims[2]/(numberOfEchoTimes+1);
VectorImageType::RegionType region;
VectorImageType::SizeType size;
size[0] = dims[0];
size[1] = dims[1];
size[2] = realSlices;
VectorImageType::IndexType index;
index[0] = 0;
index[1] = 0;
index[2] = 0;
region.SetSize(size);
region.SetIndex(index);
VectorImageType::Pointer vectorImage = VectorImageType::New();
vectorImage->SetRegions(region);
vectorImage->SetVectorLength(numberOfEchoTimes);
VectorImageType::PointType origin = baselineReader->GetOutput()->GetOrigin();
origin[2] = -baselineReader->GetOutput()->GetSpacing()[2]*size[2]/2.0f;
vectorImage->SetOrigin(origin);
vectorImage->SetSpacing(baselineReader->GetOutput()->GetSpacing());
vectorImage->SetDirection(baselineReader->GetOutput()->GetDirection());
vectorImage->Allocate();
ImageType::IndexType echoIndex;
for(index[0]=0,echoIndex[0]=0;
index[0]<(int)size[0];
index[0]++,echoIndex[0]++)
{
for(index[1]=0,echoIndex[1]=0;

index[1]<(int)size[1];
index[1]++,echoIndex[1]++)
{

http://www.itk.org/Doxygen/html/classitk_1_1VectorImage.html
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for( index[2]=0;
index[2]<(int)size[2];
index[2]++ )

{
// Multi-echo Bruker images are stored as they are acquired. This
// means that the images are not stored as volumes. We need to put
// each echo from each slice into the vector as follows:
echoIndex[2] = index[2]*(numberOfEchoTimes+1) + 1; // Skip to next slice ignoring the first echo.
VectorImageType::PixelType echoVector(numberOfEchoTimes);
for(unsigned int echo=0; echo<numberOfEchoTimes; echo++)
{
ImageType::PixelType pixelVal
= baselineReader->GetOutput()->GetPixel(echoIndex);

echoVector[echo] = (pixelVal < threshold)?0:pixelVal;
++echoIndex[2];
}
vectorImage->SetPixel(index, echoVector);
}

}
}

The fitting options and itk::VectorImage input data are input into
itk::MRT2ParameterMap3DImageFilter as follows:

// Create T2 mapping class.
MRT2ParameterMap3DImageFilterType::Pointer t2Map
= MRT2ParameterMap3DImageFilterType::New();
// Select the fit type.
switch(algorithm)
{
case MRT2ParameterMap3DImageFilterType::LINEAR:
t2Map->SetAlgorithm(MRT2ParameterMap3DImageFilterType::LINEAR);
break;

case MRT2ParameterMap3DImageFilterType::NON_LINEAR:
t2Map->SetAlgorithm(MRT2ParameterMap3DImageFilterType::NON_LINEAR);
break;

case MRT2ParameterMap3DImageFilterType::NON_LINEAR_WITH_CONSTANT:
t2Map->SetAlgorithm(MRT2ParameterMap3DImageFilterType::NON_LINEAR_WITH_CONSTANT);
break;

default:
std::cerr << "In valid algorithm = " << algorithm << std::endl;
return 1;

}
t2Map->SetMaxT2Time(maxT2Time);
t2Map->SetMREchoImage(ptrToEchoes, vectorImage);
if( r2Mapping )
{
t2Map->PerformR2MappingOn();
}

Finally, the itk::VectorImage output is connected to the input of
itk::VectorIndexSelectionCastImageFilter so that the extracted components may be written
to file with the file names supplied on the command line:

http://www.itk.org/Doxygen/html/classitk_1_1VectorImage.html
http://www.itk.org/Doxygen/html/classitk_1_1VectorImage.html
http://www.itk.org/Doxygen/html/classitk_1_1VectorIndexSelectionCastImageFilter.html
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Figure 1: Output from Bruker T2 parameter map example. The image on the left is the T2 parameter map, the middle

image is the constant S0, and the right image is the R-squared map. The tube numbers from Table 1 are labeled in red

on the T2 parameter map image. Note that some contrast exists in the constant image S0. This indicates that the T R of

1595.03 ms was not long enough to remove the contributions due to T1 in Equation 1.

// Extract each output component and write to disk.
VectorIndexSelectionCastImageFilterType::Pointer extractComp
= VectorIndexSelectionCastImageFilterType::New();
extractComp->SetInput(t2Map->GetOutput());
WriterType::Pointer writer = WriterType::New();
writer->SetInput(extractComp->GetOutput());

Figure 1 shows the T2, exponent constant, and R-squared output images for this example and Table 3 contains
the average T2 time, exponent constant, and R-squared value for each tube. To verify the fitted values, the
magnitude of the MR signal at the center of tube 1 was plotted for each echo image as a function of echo
time and the fitted function was added as an overlay in Figure 2. As can be seen in the figure, the fitted
values match the plotted MR signal values very well.

Table 3: Average T2, S0, and R-squared value for each tube in the Bruker T2 phantom example.

Tube # Average T2 (ms) Average S0 Average R-squared
1 38.147±0.982 23567±594 0.783±0.002
2 50.697±1.088 25385±690 0.799±0.001
3 62.540±1.344 25083±459 0.807±0.001
4 99.065±2.733 16889±395 0.818±0.001
5 74.704±1.548 21102±520 0.812±0.001
6 72.822±1.442 23036±454 0.811±0.001
7 75.776±2.633 24721±2778 0.812±0.002
8 59.594±1.511 20244±513 0.804±0.001
9 55.987±1.256 23424±613 0.802±0.001

10 61.708±1.233 26303±693 0.806±0.001
11 129.920±4.652 31113±1307 0.823±0.001
12 71.762±1.579 20737±475 0.810±0.001
13 81.658±2.013 21333±532 0.814±0.001
14 93.423±2.056 21607±471 0.817±0.000
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Figure 2: A plot of image instensity (Si) as a function of T E for a pixel in the center of tube 1 with overlay of fitted

curve. Visually, the fitted curve matches the experimental data very well.

3.2 Bruker 2dseq T1 Parameter Map

This example calculates a T1 parameter map using the saturation recovery method acquired on a 3.0 T Bruker
MedSpec MR system. The TE time was 10 ms and 11 images were acquired with TR = 30, 50, 100, 200,
500, 1000, 2000, 3000, 4000, 6000, and 10000 ms. The single slice acquisition thickness was 10 mm.
The matrix size was 128 x 128 and the FOV 20 cm x 20 cm. The data for this example is located in the
DCB021304.oj1/5/pdata/1/ folder. The source code is located in the BrukerT1Map.cxx file.

The arguments to BrukerT1Map.cxx are essentially the same as BrukerT2Map.cxx (3.1). The optional pa-
rameters used for this example are 0 (output T1), 5 (use HYBRID STEADY STATE 3PARAM algorithm
Equation 8), 5.0 (maximum T1 time of 5.0 seconds), and 20546109 (every voxel less than 20546109 set to
zero).

After checking for the correct number of arguments and reading the arguments from the command line, the
program attempts to read the Bruker 2dseq and get the image information - the same as in BrukerT2Map.cxx
(3.1). After successfully reading the image information the program will extract the repetition times or the
inversion times depending on the fit algorithm specified on the command line and convert the times to
seconds:

// Extract repetition/inversion times depending on the algorithm.
Bruker2DSEQImageIOType::ACQRepetitionTimeContainerType::Pointer ptrToTimePoints = NULL;
if( (algorithm == MRT1ParameterMap3DImageFilterType::IDEAL_STEADY_STATE) ||
(algorithm == MRT1ParameterMap3DImageFilterType::HYBRID_STEADY_STATE_3PARAM) )
{
// Repetition times for the saturation recovery fit type.
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if( !itk::ExposeMetaData<Bruker2DSEQImageIOType::ACQRepetitionTimeContainerType::Pointer>
(imageIO->GetMetaDataDictionary(), itk::ACQ_REPETITION_TIME,ptrToTimePoints) )

{
std::cerr << "Could not get the repetition times" << std::endl;
return 1;

}
}
else
{
// Inversion times for all others.
if( !itk::ExposeMetaData<Bruker2DSEQImageIOType::ACQRepetitionTimeContainerType::Pointer>
(imageIO->GetMetaDataDictionary(), itk::ACQ_INVERSION_TIME,ptrToTimePoints) )

{
std::cerr << "Could not get the inversion times" << std::endl;
return 1;

}
}
if( !ptrToTimePoints )
{
std::cerr << "Received NULL repetition/inversion times pointer";
std::cerr << " from meta dictionary" << std::endl;
return 1;
}
unsigned int numberOfTimePoints = ptrToTimePoints->Size();
if( numberOfTimePoints < 2 )
{
std::cerr << "Must have at least 2 images to calculate T1" << std::endl;
return 1;
}

// Convert the times to seconds.
for(unsigned int i=0; i<(unsigned int)numberOfTimePoints; i++)
{
ptrToTimePoints->SetElement(i,ptrToTimePoints->ElementAt(i)/1000.0f); // convert to seconds
}

If this task completes without errors, the image is read and then a itk::VectorImage is created to store
the data series. Instead of thresholding the entire data series using the threshold value, just the first image
volume in the series is thresholded and used as a mask when the data is copied to the itk::VectorImage:

// Get real number of slices and create vector image.
// Also threshold the image at the same time.
int realSlices = dims[2]/numberOfTimePoints;
VectorImageType::RegionType region;
VectorImageType::SizeType size;
size[0] = dims[0];
size[1] = dims[1];
size[2] = realSlices;
VectorImageType::IndexType index;
index[0] = 0;
index[1] = 0;
index[2] = 0;
region.SetSize(size);

http://www.itk.org/Doxygen/html/classitk_1_1VectorImage.html
http://www.itk.org/Doxygen/html/classitk_1_1VectorImage.html
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region.SetIndex(index);
VectorImageType::Pointer vectorImage = VectorImageType::New();
vectorImage->SetRegions(region);
vectorImage->SetVectorLength(numberOfTimePoints);
VectorImageType::PointType origin = baselineReader->GetOutput()->GetOrigin();
origin[2] = -baselineReader->GetOutput()->GetSpacing()[2]*size[2]/2.0f;
vectorImage->SetOrigin(origin);
vectorImage->SetSpacing(baselineReader->GetOutput()->GetSpacing());
vectorImage->SetDirection(baselineReader->GetOutput()->GetDirection());
vectorImage->Allocate();
ImageType::IndexType imageTimePointIndex;
for(index[0]=0,imageTimePointIndex[0]=0;
index[0]<(int)size[0];
index[0]++,imageTimePointIndex[0]++)
{
for(index[1]=0,imageTimePointIndex[1]=0;
index[1]<(int)size[1];
index[1]++,imageTimePointIndex[1]++)

{
for( index[2]=0;
index[2]<(int)size[2];
index[2]++ )
{
// Multi-echo inversion recovery Bruker images are stored as they are acquired.
// This means that the images are not stored as volumes. We need to put
// each echo from each slice into the vector as follows:
if( (algorithm != MRT1ParameterMap3DImageFilterType::IDEAL_STEADY_STATE) &&
(algorithm != MRT1ParameterMap3DImageFilterType::HYBRID_STEADY_STATE_3PARAM) )
{
imageTimePointIndex[2] = index[2]*numberOfTimePoints; // Skip to next slice
}
VectorImageType::PixelType timePointVector(numberOfTimePoints);
for(unsigned int timePoint=0; timePoint<numberOfTimePoints; timePoint++)
{
// Images are stored as volumes in the saturation recovery case, so we need
// to skip to each new repetition while filling the vector.
if( (algorithm == MRT1ParameterMap3DImageFilterType::IDEAL_STEADY_STATE) ||
(algorithm == MRT1ParameterMap3DImageFilterType::HYBRID_STEADY_STATE_3PARAM) )

{
imageTimePointIndex[2] = index[2] + (realSlices*timePoint);

}
ImageType::PixelType pixelVal
= baselineReader->GetOutput()->GetPixel(imageTimePointIndex);

ImageType::PixelType maskVal = 0;
if( (algorithm == MRT1ParameterMap3DImageFilterType::IDEAL_STEADY_STATE) ||
(algorithm == MRT1ParameterMap3DImageFilterType::HYBRID_STEADY_STATE_3PARAM) )

{
maskVal = t1Mask->GetOutput()->GetPixel(index);

}
else
{
VectorImageType::IndexType tempIndex = index;
tempIndex[2] = tempIndex[2]*numberOfTimePoints; // Skip to next slice
maskVal = t1Mask->GetOutput()->GetPixel(tempIndex);
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Figure 3: Output from Bruker T1 parameter map example. The image on the top left is the T1 parameter map, the

top middle image is the constant S0, the top right image is the constant B, and the bottom middle image is the R-

squared map. The tube numbers from Table 1 are labeled in red on the T1 parameter map image. Unlike Figure 1,

very little contrast exists in the constant image S0. This indicates that the T E of 10 ms was short enough to remove the

contributions due to T2 in Equation 1.

}
timePointVector[timePoint] = (maskVal==0)?0:pixelVal;
if( (algorithm != MRT1ParameterMap3DImageFilterType::IDEAL_STEADY_STATE) &&
(algorithm != MRT1ParameterMap3DImageFilterType::HYBRID_STEADY_STATE_3PARAM) )

{
++imageTimePointIndex[2];

}
}
vectorImage->SetPixel(index, timePointVector);
}

}
}

Finally, the T1 map is calculated, the components extracted, and then written to file - the same as in the
Bruker T2 map example (3.1). Figure 3 shows the T1, exponent constant (S0), constant (B), and R-squared
output images for this example and Table 4 contains the average T1 time, exponent constant, constant, and
R-squared value for each tube. To verify the fitted values, the magnitude of the MR signal at the center
of tube 1 was plotted for each image repetition as a function of repetition time and the fitted function was
added as an overlay in Figure 4. Again, as can be seen in the figure, the fitted values match the plotted MR
signal values very well.
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Figure 4: A plot of image intensity (Si) as a function of T R for a pixel in the center of tube 1 with overlay of fitted curve.

Again, this demonstrates that the predicted data is a good fit for the experimental data.

3.3 Philips REC T2 Parameter Map

The previous examples (3.1 and 3.2) used the Bruker data to generate T2 and T1 parameter maps. In this
example a Philips multi-echo spin-echo PAR/REC data set is used to calculate T2. The name of the file is
T2 Map 4 3.PAR and the example code is saved in PhilipsT2Map.cxx. The image was acquired on a 3.0
T Philips Achieva system. A single 4 mm axial slice with SENSE factor 2.5, 256 x 256 matrix size, 230
mm x 230 mm FOV, TR of 252.901 ms, and 14 echoes (T E 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96,
104, and 112 ms) was acquired. The 252.901 ms TR time is not ideal for measuring T2, as it will include
significant T1 contributions and will reduce the overall signal to noise ratio (SNR) of the image. However,
this is ideal for testing the non-linear fitting capabilities of itk::MRT2ParameterMap3DImageFilter used
in this example.

PhilipsT2Map.cxx takes the same 9 arguments as BrukerT2Map.cxx (3.1). For this example the optional
parameters are 0 (output T2), 1 (use NON LINEAR algorithm Equation ??), 2.0 (maximum T2 time of 2.0
seconds), and 14 (every voxel less than 14 set to zero).

After successfully reading the image information using itk::PhilipsRECImageIO, PhilipsT2Map.cxx
checks to make sure that the number of image volumes is greater than or equal to the number of echo
times:

unsigned int numberOfEchoTimes = 0;
int tempNum = 0;
// Make sure that the number of images
// stored in the REC file matches the number of echoes.
if( !itk::ExposeMetaData<int>(imageIO->GetMetaDataDictionary(),
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Table 4: Average T1, S0, constant B, and R-squared value for each tube in the Bruker T1 phantom example.

Tube # Average T1 (ms) Average S0 Average B Average R-squared
1 825.51±9.00 1.3027×109 ±6.3788×107 1.0438±0.0017 0.999±0.000
2 838.20±6.65 1.5196×109 ±4.5192×107 1.0487±0.0014 0.998±0.000
3 825.85±15.32 1.4088×109 ±6.9022×107 1.0596±0.0024 0.998±0.000
4 1908.40±22.33 1.4908×109 ±7.9244×107 1.0538±0.0025 0.996±0.000
5 1186.40±14.60 1.4531×109 ±5.9687×107 1.0571±0.0028 0.998±0.000
6 1019.90±9.41 1.4596×109 ±6.4035×107 1.0586±0.0025 0.998±0.000
7 838.67±11.49 1.4719×109 ±5.0358×107 1.0653±0.0026 0.998±0.000
8 1260.90±15.10 1.4911×109 ±6.9226×107 1.0481±0.0023 0.998±0.000
9 999.66±8.06 1.4871×109 ±6.2972×107 1.0491±0.0021 0.998±0.000
10 734.15±7.62 1.4678×109 ±6.6556×107 1.0601±0.0028 0.998±0.000
11 532.28±12.63 1.6377×109 ±2.4449×108 1.1015±0.0075 0.999±0.000
12 1275.90±13.15 1.5154×109 ±7.2595×107 1.0515±0.0023 0.998±0.000
13 1310.00±10.64 1.6134×109 ±6.2195×107 1.0526±0.0021 0.998±0.000
14 1317.20±13.43 1.6257×109 ±6.8480×107 1.0567±0.0017 0.998±0.000

itk::PAR_MaxNumberOfEchoes,tempNum) )
{
std::cerr << "Could not determine the number of echoes" << std::endl;
return 1;
}
numberOfEchoTimes = static_cast<unsigned int>(tempNum);

// Get the image dimensions and make sure that
// there exists at least numberOfEchoTimes image
// volumes. It’s possible to have more if the
// REC file contains more than one image type
// (i.e. magnitude, phase, real, imaginary, etc.)
dims[0] = imageIO->GetDimensions(0);
dims[1] = imageIO->GetDimensions(1);
dims[2] = imageIO->GetDimensions(2);
dims[3] = imageIO->GetDimensions(3);
if( numberOfEchoTimes > dims[3] )
{
std::cerr << "The number of echoes is larger than the number of image blocks" << std::endl;
return 1;
}

As noted in the code comments it’s possible that more than one image type is stored in the REC file. For
example the image used in this example contains both the magnitude and phase images, so dims[3] = 28
instead of 14. By default REC files store the slices unsorted. itk::PhilipsRECImageIO will automatically
sort the slices by image type when the data is read. However, in order to calculate T2, the magnitude
image is needed. The following code checks to see if the REC file contains the magnitude image using the
itk::MetaDataDictionary:

// Check to see if the REC file has at least the magnitude image.
int haveMagnitude = 0;

http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
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int numberOfImageTypes = 0;
PhilipsRECImageIOType::ImageTypesType imageTypes;
if( !itk::ExposeMetaData<int>(imageIO->GetMetaDataDictionary(),
itk::PAR_NumberOfImageTypes,numberOfImageTypes) )
{
std::cerr << "Could not determine the number of image types" << std::endl;
return 1;
}
if( !itk::ExposeMetaData<PhilipsRECImageIOType::ImageTypesType>
(imageIO->GetMetaDataDictionary(), itk::PAR_ImageTypes,imageTypes) )
{
std::cerr << "Could not get the image types vector" << std::endl;
return 1;
}
for(int j=0; j<numberOfImageTypes; j++)
{
if( imageTypes[j] == 0 )
{
haveMagnitude = 1;

}
}
if( !haveMagnitude )
{
std::cerr << "Magnitude image type not found in REC file" << std::endl;
return 1;
}

An issue that must be dealt with when using Philips PAR/REC image data is the existence of multiple
scanning sequences. The Philips T1 example (3.4) makes use of this feature to extract the phase corrected
real image for calculating T1 via the inversion recovery method. However, for T2, if more than 1 scanning
sequence exists in the REC file, processing is aborted with an error:

// Check to make sure that there is only one scanning sequence,
// otherwise the T2 map cannot be processed.
int numberOfScanningSequences = 0;
if( !itk::ExposeMetaData<int>(imageIO->GetMetaDataDictionary(),
itk::PAR_NumberOfScanningSequences,numberOfScanningSequences) )
{
std::cerr << "Could not determine the number of scanning sequences";
std::cerr << std::endl;
return 1;
}
if( numberOfScanningSequences > 1 )
{
std::cerr << "Cannot process a T2 map when the number of scanning sequences";
std::cerr << " is greater than 1" << std::endl;
return 1;
}

Philips REC images are stored as 16 bit signed integers. The PAR file lists rescale intercept (RI), rescale
slope (RS), and scale slope (SS) values for converting the integer data back to the original floating point
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data. As described in the PAR file, the floating point value is obtained using the following formula:

FP =
PV ∗RS+RI

RS∗SS
(15)

where PV is the pixel value in the REC file and FP is the floating point value. The following source
demonstrates how to get the scale values using the itk::MetaDataDictionary and convert the image to
floating point using itk::ShiftScaleImageFilter and itk::ShiftScaleInPlaceImageFilter :

// Get rescale values for converting the 16 bit image to floating point.
PhilipsRECImageIOType::ScanningSequenceImageTypeRescaleValuesContainerType::Pointer
scanSequenceImageTypeRescaleValues = NULL;
if( !itk::ExposeMetaData
<PhilipsRECImageIOType::ScanningSequenceImageTypeRescaleValuesContainerType::Pointer>
(imageIO->GetMetaDataDictionary(),itk::PAR_ScanningSequenceImageTypeRescaleValues,
scanSequenceImageTypeRescaleValues) )

{
std::cerr << "Could not get the rescale values for each";
std::cerr << " scanning sequence and image type" << std::endl;
return 1;
}
if( !scanSequenceImageTypeRescaleValues )
{
std::cerr << "Received NULL scanning sequence/image types vector";
std::cerr << " pointer from meta dictionary" << std::endl;
return 1;
}
PhilipsRECImageIOType::ImageTypeRescaleValuesContainerType::Pointer
rescaleValueVector
= scanSequenceImageTypeRescaleValues->ElementAt(0); // Only 1 scanning sequence.
if( !rescaleValueVector )
{
std::cerr << "Received NULL rescale values vector pointer from";
std::cerr << " meta dictionary" << std::endl;
return 1;
}

// Change image to floating point value.
ShiftScaleImageFilterType::Pointer scaleOnly = NULL;
ShiftScaleInPlaceImageFilterType::Pointer shiftAndScale = NULL;
PhilipsRECImageIOType::ImageTypeRescaleValuesType rescaleValues
= rescaleValueVector->ElementAt(0); // Magnitude image will be the first element.
if( (rescaleValues[2] != 0) && // scale slope (SS)
(rescaleValues[1] != 0) ) // rescale slope (RS)
{
scaleOnly = ShiftScaleImageFilterType::New();
scaleOnly->SetInput(t2Mask->GetOutput());
scaleOnly->SetScale(rescaleValues[1]); // RS
shiftAndScale = ShiftScaleInPlaceImageFilterType::New();
shiftAndScale->SetInput(scaleOnly->GetOutput());
shiftAndScale->SetShift(rescaleValues[0]); // rescale intercept (RI)
shiftAndScale->SetScale(1.0/(rescaleValues[2]*rescaleValues[1])); // 1/(SS*RS)
}

http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
http://www.itk.org/Doxygen/html/classitk_1_1ShiftScaleImageFilter.html
http://www.itk.org/Doxygen/html/classitk_1_1ShiftScaleInPlaceImageFilter.html
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else
{
std::cerr << "Invalid rescale values" << std::endl;
return 1;
}

Because the Philips data is 4D, it is easier in this instance to use AddMREchoImage() to add the input
images to itk::MRT2ParameterMap3DImageFilter instead of SetMREchoImage(). This is done using
a itk::VectorContainer of itk::ExtractImageFilter smart pointers, one for each echo image, to
exctract the images from the 4D volume as follows:

ExtractImageFilterContainerType::Pointer extractVOI =
ExtractImageFilterContainerType::New();
extractVOI->resize(numberOfEchoTimes-1);
ExtractImageFilterType::InputImageRegionType extractionRegion;
ExtractImageFilterType::InputImageSizeType extractionSize;
extractionSize[0] = dims[0];
extractionSize[1] = dims[1];
extractionSize[2] = dims[2];
extractionSize[3] = 0;
ExtractImageFilterType::InputImageIndexType extractionIndex;
extractionIndex[0] = 0;
extractionIndex[1] = 0;
extractionIndex[2] = 0;
extractionRegion.SetSize(extractionSize);
PhilipsRECImageIOType::EchoTimesContainerType::Pointer
ptrToEchoes = NULL;
if( !itk::ExposeMetaData<PhilipsRECImageIOType::EchoTimesContainerType::Pointer>
(imageIO->GetMetaDataDictionary(), itk::PAR_EchoTimes,ptrToEchoes) )
{
std::cerr << "Could not get the echo times" << std::endl;
return 1;
}
if( !ptrToEchoes )
{
std::cerr << "Received NULL echo times pointer from";
std::cerr << " meta dictionary" << std::endl;
return 1;
}
if( ptrToEchoes->size() != numberOfEchoTimes )
{
std::cerr << "The size of the echo times vector does";
std::cerr << " not match the number of echoes listed in";
std::cerr << " the PAR file" << std::endl;
return 1;
}
for(unsigned int i=1; i<numberOfEchoTimes; i++)
{
extractVOI->SetElement(i-1, ExtractImageFilterType::New());
extractVOI->ElementAt(i-1)->SetInput(shiftAndScale->GetOutput());
extractionIndex[3] = i;
extractionRegion.SetIndex(extractionIndex);
extractVOI->ElementAt(i-1)->SetExtractionRegion(extractionRegion);

http://www.itk.org/Doxygen/html/classitk_1_1VectorContainer.html
http://www.itk.org/Doxygen/html/classitk_1_1ExtractImageFilter.html
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Figure 5: Output from Philips T2 parameter map example. The image on the left is the T2 parameter map, the middle

image is the constant S0, and the right image is the R-squared map. Like Figure 1 significant T1 contrast exists in the

constant image S0 due to the extremely short T R of 252.901 ms.

t2Map->AddMREchoImage(ptrToEchoes->ElementAt(i)/1000.0f, // convert to seconds
extractVOI->ElementAt(i-1)->GetOutput());

}

Like the Bruker T2 example (3.1), the first echo image is not used and the echo times are converted to
seconds. Figure 5 shows the output images from this example. Figure 6 plots the fitted data against the
experimentally acquired data points for a location at the center of a gray matter region in the phantom. As
seen in the figure, the nonlinear fitting routine found a reasonable fit in spite of the noisy input data.

3.4 Philips REC T1 Parameter Map

The final example demonstrates an inversion recovery T1 parameter map measurement using a fast inversion
recovery Look-Locker sequence acquired on a 3.0 T Philips Achieva system. The Philips T1 phantom
specified at the beginning of this section was used (3). The name of the file is T1 LL 10 1.PAR and the
example code is saved in PhilipsT1Map.cxx. A single 2 mm axial slice with SENSE factor 2.5, 160 x 160
matrix size, 225 mm x 225 mm FOV, TR of 25.0 ms, TE of 4.45 ms, and 8 inversion times (TI 83, 532, 980,
1429, 1877, 2325, 2774, and 3222 ms) was acquired.

PhilipsT1Map.cxx takes the same 9 parameters as BrukerT1Map.cxx (3.2). For this example the optional
parameters are 0 (output T1), 1 (use INVERSION RECOVERY algorithm Equation 9), 5.0 (maximum
T1 time of 5.0 seconds), and 50 (every voxel less than 50 set to zero). The IDEAL STEADY STATE,
Equation 7, and HYBRID STEADY STATE 3PARAM, Equation 8, algorithms are not supported.

Similar to the Philips T2 example (3.3), PhilipsT1Map.cxx checks to make sure that the number of image
volumes is greater than or equal to the number of time points. However, the number of time points in this
case is equal to the number of cardiac phases, instead of the number of echo times:

unsigned int numberOfTimePoints = 0;
int tempNum = 0;
// Find the maximum number of cardiac phases.
if( !itk::ExposeMetaData<int>(imageIO->GetMetaDataDictionary(),
itk::PAR_MaxNumberOfCardiacPhases,tempNum) )
{
std::cerr << "Could not determine the number of cardiac";
std::cerr << " phases" << std::endl;
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Figure 6: A plot of MR image intensity (Si) as a function of TE for a pixel in the center of the gray matter sphere used

in the Philips T2 parameter map example with overlay of fitted curve. The experimental image intensity points are noisy

due to the short T R 252.901 ms and sense factor 2.5. A reasonable fit was obtained in spite of the expected variation

in the experimental data points.
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return 1;
}
numberOfTimePoints = static_cast<unsigned int>(tempNum);
if( numberOfTimePoints < 2 )
{
std::cerr << "Must have at least 2 cardiac phase images to";
std::cerr << " calculate T1" << std::endl;
return 1;
}

// Get the image dimensions and make sure that
// there exists at least numberOfTimePoints image
// volumes. It’s possible to have more if the
// REC file contains more than one image type
// (i.e. magnitude, phase, real, imaginary, etc.)
dims[0] = imageIO->GetDimensions(0);
dims[1] = imageIO->GetDimensions(1);
dims[2] = imageIO->GetDimensions(2);
dims[3] = imageIO->GetDimensions(3);
if( numberOfTimePoints > dims[3] )
{
std::cerr << "The number of time points is larger than the number";
std::cerr << " of image blocks" << std::endl;
return 1;
}

Unlike PhilipsT2Map.cxx, PhilipsT1Map.cxx requires either the magnitude image or both the magnitude
image and the phase corrected real image depending on the fit type. The magnitude image is used to gen-
erate a binary mask using the optional threshold value supplied on the command line. The phase corrected
real image is listed as image type 4 in the PAR file and is required for the non-absolute value inversion
recovery fitting options. The code below will check for the existence of the proper image types stored in the
itk::MetaDataDictionary and return with an error if the required image type does not exist in the REC
file:

// Check to see if we have the correct image types.
int haveCorrectImage = 0;
int numberOfImageTypes = 0;
PhilipsRECImageIOType::ImageTypesType imageTypes;
if( !itk::ExposeMetaData<int>(imageIO->GetMetaDataDictionary(),
itk::PAR_NumberOfImageTypes,numberOfImageTypes) )
{
std::cerr << "Could not determine the number of image types" << std::endl;
return 1;
}
if( !itk::ExposeMetaData<PhilipsRECImageIOType::ImageTypesType>
(imageIO->GetMetaDataDictionary(),itk::PAR_ImageTypes,imageTypes) )
{
std::cerr << "Could not get the image types vector" << std::endl;
return 1;
}
// Need image 4 (corrected real image) for inversion recovery/Look-Locker
// fit type.
if( (algorithm == MRT1ParameterMap3DImageFilterType::INVERSION_RECOVERY) ||

http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
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(algorithm == MRT1ParameterMap3DImageFilterType::INVERSION_RECOVERY_3PARAM) ||
(algorithm == MRT1ParameterMap3DImageFilterType::LOOK_LOCKER) )
{
for(int j=0; j<numberOfImageTypes; j++)
{
if( imageTypes[j] == 4 )
{
haveCorrectImage = 1;
}

}
if( !haveCorrectImage )
{
std::cerr << "No corrected real image type detected in PAR";
std::cerr << " file" << std::endl;
return 1;

}
}
// Now check for existence of the magnitude image.
haveCorrectImage = 0;
for(int j=0; j<numberOfImageTypes; j++)
{
if( imageTypes[j] == 0 )
{
haveCorrectImage = 1;

}
}
if( !haveCorrectImage )
{
std::cerr << "No magnitude image type detected in PAR file" << std::endl;
return 1;
}

If the correct image types exist in the REC file, as reported in the PAR file, the program will attempt to read
the inversion times from the itk::MetaDataDictionary. The actual inversion times are listed as trigger
times in the PAR file and are extracted as follows:

// Get trigger times.
PhilipsRECImageIOType::TriggerTimesContainerType::Pointer
ptrToTimePoints = NULL;
if( !itk::ExposeMetaData<PhilipsRECImageIOType::TriggerTimesContainerType::Pointer>
(imageIO->GetMetaDataDictionary(),itk::PAR_TriggerTimes,ptrToTimePoints) )
{
std::cerr << "Could not get the trigger times" << std::endl;
return 1;
}
if( !ptrToTimePoints )
{
std::cerr << "Received NULL trigger times pointer from meta";
std::cerr << " dictionary" << std::endl;
return 1;
}
if( ptrToTimePoints->size() != numberOfTimePoints )
{

http://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
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std::cerr << "The size of the time points vector does not match the";
std::cerr << " number of cardiac phases listed in the PAR file" << std::endl;
return 1;
}

After scaling the 16 bit data read using itk::PhilipsRECImageIO to floating point data as detailed in the
previous example (3.3), each 3D volume for each time point is extracted, masked, and assigned as inputs to
itk::MRT1ParameterMap3DImageFilter using AddMRImage():

// Extract volumes according to algorithm type.
if( (algorithm == MRT1ParameterMap3DImageFilterType::INVERSION_RECOVERY) ||
(algorithm == MRT1ParameterMap3DImageFilterType::INVERSION_RECOVERY_3PARAM) ||
(algorithm == MRT1ParameterMap3DImageFilterType::LOOK_LOCKER) )
{
// Corrected real image is after the magnitude and real images in first scanning sequence.
for(unsigned int i=0; i<numberOfTimePoints; i++)
{
extractVOI->SetElement(i, ExtractImageFilterType::New());
extractVOI->ElementAt(i)->SetInput(shiftAndScale->GetOutput());
extractionIndex[3] = 2*numberOfTimePoints + i;
extractionRegion.SetIndex(extractionIndex);
extractVOI->ElementAt(i)->SetExtractionRegion(extractionRegion);
maskFilterContainer->SetElement(i,MaskImageFilterType::New());
maskFilterContainer->ElementAt(i)->SetInput1(extractVOI->ElementAt(i)->GetOutput());
maskFilterContainer->ElementAt(i)->SetInput2(magnitudeMask->GetOutput());
t1Map->AddMRImage(ptrToTimePoints->ElementAt(i)/1000.0f, // convert to seconds
maskFilterContainer->ElementAt(i)->GetOutput());

}
}
else
{
// Magnitude image is at front.
for(unsigned int i=0; i<numberOfTimePoints; i++)
{
extractVOI->SetElement(i, ExtractImageFilterType::New());
extractVOI->ElementAt(i)->SetInput(shiftAndScale->GetOutput());
maskFilterContainer->SetElement(i,MaskImageFilterType::New());
maskFilterContainer->ElementAt(i)->SetInput1(extractVOI->ElementAt(i)->GetOutput());
maskFilterContainer->ElementAt(i)->SetInput2(magnitudeMask->GetOutput());
extractionIndex[3] = i;
extractionRegion.SetIndex(extractionIndex);
extractVOI->ElementAt(i)->SetExtractionRegion(extractionRegion);
t1Map->AddMRImage(ptrToTimePoints->ElementAt(i)/1000.0f, // convert to seconds
maskFilterContainer->ElementAt(i)->GetOutput());

}
}

The final output is then extracted and written to disk as shown previously (3.1). Figure 7 shows the T1,
exponent constant, and R-squared output images for this example and Table 5 contains the average T1 time,
exponent constant, and R-squared value for each tube in the phantom. For verification the magnitude of
the MR signal at the center of tube 5 (pure water) was plotted for each image time point as a function of
inversion time and the fitted function was added as an overlay in Figure 8. Similar to the previous examples,
the predicted inversion recovery curve fits the experimental data well.
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Figure 7: Output from Philips T1 parameter map example. The image on the left is the T2 parameter map, the middle

image is the constant S0, and the right image is the R-squared map. The tube numbers from Table 2 are labeled in red

on the T1 parameter map image.

Figure 8: A plot of MR image intensity as a function of T I for a pixel in the center of tube 5 with overlay of fitted curve.

Like the previous examples, this demonstrates that the predicted data is a good fit for the experimental data.
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Table 5: Average T1, S0, and R-squared value for each tube in the Philips T1 phantom example.

Tube # Average T1 (ms) Average S0 Average R-squared
1 895.48±17.72 68353±3511 0.998±0.001
2 976.82±23.56 62715±4718 0.998±0.001
3 1074.00±18.94 72041±3235 0.998±0.001
4 1639.40±28.21 60428±3412 0.998±0.001
5 2601.60±59.02 60281±3991 0.998±0.001

4 Conclusion

This paper outlines the background, implementation, and use of a suite of classes and programs for gener-
ating MR T2 and T1 parameter maps using Philips PAR/REC and Bruker 2dseq image files. The supplied
examples based on image phantoms demonstrate that these classes generate valid parameter maps. Included
with the MR parameter mapping classes are new image readers for Philips PAR/REC and Bruker 2dseq
image files, which are useful not only for MR parameter mapping, but also for integration with DTI, seg-
mentation, and registration pipelines within ITK. Feel free to contact the author for suggestions or bugs
(http://www.hmc.psu.edu/nmrlab/groups/students/dbigler.htm).
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