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Abstract. We propose a novel framework at MICCAI 2005 [1] to predict pacing
sites in the left ventricle (LV) of a heart. This framework can be used to assist
pacemaker implantation and programming in cardiac resynchronization therapy
(CRT) that is a widely adopted therapy for heart failure patients. Hierarchical
agglomerative clustering technique is performed to the time series of LV wall
thickness to identify pacing site candidates. Meanwhile, pearson correlation co-
efficients of wall motion series show the dissimilarity between them. These main
components of our clustering based prediction framework are implemented by
using open source software toolkit PRTools.

1 Introduction

In the United States, heart failure is responsible for almost 1 million hospital admissions
and 40,000 deaths annually. Heart failure is the pathophysiological state in which an
abnormality of cardiac function is responsible for the failure of the heart to pump blood
at a rate for the requirements of the body tissues. As the mainproblem, the walls of the
LV cannot contract synchronously that damaged the heart’s pumping action of patient.

De Teresaet al. [2] demonstrated that cardiac function can be improved by chang-
ing the sequence of the ventricular electrical activation using pacing. They also noted
that the LV ejection fraction (an important index for cardiac function) was maximal
when wall contractions were simultaneous. Based on the previous sudies, a promising
therapeutic option, called cardiac resynchronization therapy (CRT), has been proposed
as an alternative treatment in patients with severe, drug-refractory heart failure.

Our paper in MICCAI 2005 [1] proposes an efficient framework to predict the op-
timal LV pacing sites that should be stimulated by electrical impulses of pacemaker.
Hierarchical clustering method is used on a time series of wall thickness measurements.
Based on the clustering result, we can find candidate pacing sites with abnormal local
motion.

In our framework implementation, open source toolkit PRTools is used for wall mo-
tion series similarity measurement, hierarchical clustering and clustering results visual-
ization. PRtools is a powerful MATLAB toolbox for pattern recognition purposes. It can
be downloaded from the PRTools website (http://www.ph.tn.tudelft.nl/ bob/PRTOOLS.html).
PRTools offer 200 pattern recognition routines and the additional 200 support routines
that are a basic set covering largely the area of statisticalpattern recognition [3].
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The rest of this paper is organized as follows. Section 2 describes the data set and
the methods used in this study. Section 3 presents and discusses the results. Section 4
concludes this work.

2 Materials and Methods

2.1 Image Acquisition

Cardiac magnetic resonance imaging (MRI) is used to capture3D images of a heart dur-
ing its normal operation in the short-axis orientation. With acquisition timed according
to heartbeat frequency, seventeen images can be acquired during each heartbeat. In this
work imaging was performed using FIESTA on a 1.5 Tesla scanner with flip angle20◦

and interslice gap of 5 mm. The short-axis orientation was operator-determined from
four-chamber scout views, optimizing for perpendicularity to the cardiac wall.

The sequences of heart images were produced in the DICOM format with256×256
pixels size (260×260 mm2). Each sequence consists of 17 volume images that together
represent one complete heartbeat cycle.

2.2 Left Ventricle Motion Modeling

Recent studies indicate that beneficial effects of CRT are related to improved mechani-
cal synchrony, thereby it can increase the pump function efficiency [4–6]. A successful
CRT will synchronize the wall contraction so that LV ejection fraction is maximized.
Therefore, the improvement in cardiac performance is highly dependent on the pacing
site that changes the sequence of ventricular activation ina manner that translates to an
improvement in cardiac performance.

In order to quantify the ventricular mechanical asynchronyor synchrony that can
directly help determine optimal treatment, we develop our spatio-temporal model to
describe a temporal sequence of wall thickness changing during a heart cycle. It is one
of the most sensitive indicators of ventricular dysfunctional contraction and can be used
to index the ventricular wall motion.

Left ventricular spatio-temporal model is proposed in our previous paper[1]. In this
model, both endocardium and epicardium of the LV are reconstructed by using the
spherical harmonic (SPHARM) method, which was introduced by Brechbühler, Gerig
and Kübler [7] for modeling any simply connected 3D object.Our surface alignment
algorithm [8] computes a new parameterization forv1 andv2 so that the Euclidean
distanceD(v1,v2) is minimized.

Combining the SPHARM description and our surface alignmentmethod offers a
set of spatio-temporal surface correspondences for our wall motion descriptor. In our
experiments, each sampling mesh on one surface has32 ∗ 32 nodes and each node
has a wall thickness value. The wall motion series we create includes the thickness
values for each surface node at each time phase during a heartcycle, from end-diastolic
phase to next end-diastolic one. We obtain aboutn wall motion series, wheren varies
from 80 to 100 in different experiments. The corresponding points of thesen series
are uniformly distributed on the LV surfaces. These wall motion series can characterize
local contraction behaviors of the LV wall and have a potential to capture the contraction
abnormality of a failing heart.
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2.3 Similarity measurement

For a pair of(θ, φ), the corresponding wall motion series is denoted asw(θ, φ) =
{w1(θ, φ), w2(θ, φ), ..., wn(θ, φ)}, wherewi(θ, φ) is the wall thickness value of wall
motion phasei corresponding to the parametrized point(θ, φ) on the epicrdium.

Formlly, given two wall motion seriesw(θx, φx) andw(θy, φy), we employ the
following formula to measure the dissimilarity between them:

dcorr(w(θx, φx), w(θy, φy)) = 1 − r(w(θx, φx), w(θy, φy)) =

1 −

[

n
∑

i=1

(

wi(θx, φx) − wmean(θx, φx)

σx

) (

wi(θy, φy) − wmean(θy , φy)

σy

)

]

/n,

whereσ =
√

(
∑n

i=1
(wi(θ, φ) − wmean(θ, φ))2)/n. r(w(θx, φx), w(θy, φy)) is the

Pearson correlation coefficient of two wall motion series,wmean(θ, φ) is the mean of
wall motion series, andσ is the standard deviation ofw(θ, φ). A Pearson correlation
coefficient indicates how the two wall motion series are related and the strength of
that relationship. The Pearson correlation coefficient is always between -1 and 1, and
we normalize distance function asdcorr/2 (the result will change from 0 to 1) in our
experiments.

Fig. 1. Example of shift and scaling re-
lationship of wall motion series.

Fig. 2. Example of the contraction delay
between wall motion series.

In this distance function,wmean(θ, φ) is used to remove the shift difference. In
Fig. 1, the square-curve (each curve represents a simulatedwall motion series) and
star-curve should be quite similar, since one of them can be shifted up vertically to
superpose with the other one. Similarly,σ is used to normalize the wall motion series
when we calculate the similarity score between them. In Fig.1, values of star-curve are
roughly 1.6 times those of circle-curve. Since we are interested in the wall thickness
change instead of the actual thickness value, these two motion series are also similiar.
For example, the mid-epicardium should have a larger wall thickness value and contract
more acutely than apex-epicardium. But if they contract anddilate synchronously, their
wall motion should be treated as the same.

In Fig. 2, star-curve represents a normal wall motion series. The wall motion series
represend by diamond-curve activate a little late, and their correlation value is 0.7265.
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As the activity delay increases, the Pearson correlation values between the other mo-
tion series and the normal one desrease to 0 (circle-curve) and -1 (square-curve, it is
perfectly divergent). Since the Pearson correlation coefficient is sensitive to direction
of change (increasing or decreasing), it is reasonable to use it to measure the similarity
between wall motion series. The Pearson correlation coefficient is always between -1
and 1, and we normalize distance function asdcorr/2 (the result will change from 0 to
1) in our experiments.

2.4 Hierarchical clustering

We apply hierarchical clustering algorithm [9] to group similar wall motion series to-
gether. It is a bottom-up clustering method where clusters can have sub-clusters. For any
set ofn objects, hierarchical clustering starts with every singleobject in a single clus-
ter. Then, in each successive iteration, it merges the closest pair of clusters by satisfying
their proximity information criteria, until all of the dataare in one cluster.

In our case, the objects are the wall motion series of sampledpoints on epicardium,
and the proximity criteria is defined by the distance described in between pairs of wall
motion series. The algorithm is sketched as follows:

1. Each wall motion series is assigned to a separate cluster.
2. All pair-wise distances between clusters are calculatedand stored into a distance

matrix.
3. repeat

– The pair clusters with the closest distance is found
– Those two clusters are merged into one cluster
– The distances between the new groups and the remaining groups are computed
to get a new distance matrix

4. until All of the wall motion series are clustered into a single group.

In Step 3, we employ the average-link approach: the distancebetween two cluster-
ings is defined as the average of distances between all pairs of wall motion series, where
each pair is made up of wall motion series from each group. Thus, the distance matrix
can be updated using the following formula:

d(r, p + q) =
np

np + nq

d(r, p) +
nq

np + nq

d(r, q)

wherep andq are merged into one new cluster, andnp andnq are the numbers of wall
motion series in groupp andq respectively.

The hierarchical clustering process usually stops after performingn − 1 iterations
in Step 3, and results in a dendrogram. This dendrogram is a binary tree (see Fig. 3 for
an example) in which each data point corresponds to a leaf nodes, and distance from the
root to a subtree indicates the similarity of subtrees – highly similar nodes or subtrees
have joining points that are farther from the root.

3 Results

We have implemented our pacing site prediction framework using Matlab 6.5. The open
source platform toolkit PRTools, a MATLAB based toolbox forpattern recognition, is
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used as the implementation for wall motion series similarity measurement, hierarchical
clustering and clustering results visualization.

To show the effectiveness of this framework, we use cardiac MRI data from 20
patients in our experiments, where half of them have heart failure problems. These
experiments are conducted on a PC with a 2.40GHz CPU and 512 MBmain memory.
Note that the patients are diagnosed by specialized physicians, and these diagnostic
results are used to validate our results in the experiments.
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Fig. 3. Dendrogram result of a failing heart. Thex label represents the number of wall motion
series. They label corresponds to the distance between clusters. The dendrogram is cut into
clusters by the “sweep-line 3”.[1]

Our primary purpose for building a cluster hierarchy is to structure and present wall
motion series at different levels of abstraction. Using a dendrogram, researchers and
technicians can easily know the dissimilarity between subclusters that represent certain
parts on the epicardium.

We move the horizontal sweep-line from top to bottom in the dendrogram result
(for example, the “sweep-line 1” in Fig. 3) to get the abnormal clusters (small clusters)
that have a large dissimilarity to the main cluster. Note that the pacemaker system uses
electrical impulses to adjust the sites whose contraction characteristics are considerably
different from other sites’. Thus, hierarchical clustering results can help us to find these
location candidates for installing the pacing leads.

The physician will test the pacing lead on candidate pacing sites according to the
suggested site ordering until they find a suitable region forfixing the tip of pacing lead.
If the list is empty and a suitable site isn’t found, we will continue to select a lower value
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sweep-line in the dendrogram result, for example, the “sweep-line 2” and “sweep-line
3” in Fig. 3.

Because the candidates list includes locations with notable asynchronous contrac-
tion and timing delay, the optimal resynchronization therapy can be obtained after
adding electrical pulse into these candidates. These sitesare potentially good candi-
dates to implant the pacemaker for a more efficient CRT.

4 Conclusions

During our framework implementation, the major advantagesof using the PRTools open
source software are that it provides a lot of pattern recongnition routines that make the
success of short term project more feasible and helps user tovisualize their datasets and
results conveniently.
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