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Abstract. We propose a novel framework at MICCAI 2005 [1] to predictipgc
sites in the left ventricle (LV) of a heart. This frameworknche used to assist
pacemaker implantation and programming in cardiac resgmitation therapy
(CRT) that is a widely adopted therapy for heart failure guatis. Hierarchical
agglomerative clustering technique is performed to thestgaries of LV wall
thickness to identify pacing site candidates. Meanwhiéarpon correlation co-
efficients of wall motion series show the dissimilarity beam them. These main
components of our clustering based prediction framewoekimplemented by
using open source software toolkit PRTools.

1 Introduction

In the United States, heart failure is responsible for atrhosillion hospital admissions
and 40,000 deaths annually. Heart failure is the pathoplogical state in which an
abnormality of cardiac function is responsible for theufegl of the heart to pump blood
at a rate for the requirements of the body tissues. As the praliiem, the walls of the
LV cannot contract synchronously that damaged the heartigging action of patient.

De Teresat al. [2] demonstrated that cardiac function can be improved angh
ing the sequence of the ventricular electrical activatisimg pacing. They also noted
that the LV ejection fraction (an important index for caaianction) was maximal
when wall contractions were simultaneous. Based on théquresudies, a promising
therapeutic option, called cardiac resynchronizatiorepe (CRT), has been proposed
as an alternative treatment in patients with severe, defrgeetory heart failure.

Our paper in MICCAI 2005 [1] proposes an efficient framewarlptedict the op-
timal LV pacing sites that should be stimulated by electricgulses of pacemaker.
Hierarchical clustering method is used on a time series dfthiakness measurements.
Based on the clustering result, we can find candidate padieg)\with abnormal local
motion.

In our framework implementation, open source toolkit PR$é®used for wall mo-
tion series similarity measurement, hierarchical clusteand clustering results visual-
ization. PRtools is a powerful MATLAB toolbox for patterro@gnition purposes. It can
be downloaded from the PRTools website (http://www.ptutielft.nl/bob/PRTOOLS.html).
PRTools offer 200 pattern recognition routines and thetadil 200 support routines
that are a basic set covering largely the area of statigiatérn recognition [3].



The rest of this paper is organized as follows. Section 2rdsssthe data set and
the methods used in this study. Section 3 presents and dextise results. Section 4
concludes this work.

2 Materialsand Methods

2.1 ImageAcquisition

Cardiac magnetic resonance imaging (MRI) is used to capdiienages of a heart dur-
ing its normal operation in the short-axis orientation.Watquisition timed according
to heartbeat frequency, seventeen images can be acquiiad dach heartbeat. In this
work imaging was performed using FIESTA on a 1.5 Tesla saawitk flip angle20°
and interslice gap of 5 mm. The short-axis orientation wasratpr-determined from
four-chamber scout views, optimizing for perpendiculatit the cardiac wall.

The sequences of heart images were produced in the DICOMatarith 256 x 256
pixels size 260 x 260 mm?). Each sequence consists of 17 volume images that together
represent one complete heartbeat cycle.

2.2 Léeft Ventricle Motion Modeling

Recent studies indicate that beneficial effects of CRT date® to improved mechani-
cal synchrony, thereby it can increase the pump functionieffcy [4—6]. A successful
CRT will synchronize the wall contraction so that LV ejectifsaction is maximized.
Therefore, the improvement in cardiac performance is figependent on the pacing
site that changes the sequence of ventricular activatiami@nner that translates to an
improvement in cardiac performance.

In order to quantify the ventricular mechanical asynchrongynchrony that can
directly help determine optimal treatment, we develop qatie-temporal model to
describe a temporal sequence of wall thickness changirigglareart cycle. It is one
of the most sensitive indicators of ventricular dysfuneéibcontraction and can be used
to index the ventricular wall motion.

Left ventricular spatio-temporal model is proposed in awvjpus paper[1]. In this
model, both endocardium and epicardium of the LV are recoot&d by using the
spherical harmonic (SPHARM) method, which was introducg@techbihler, Gerig
and Kubler [7] for modeling any simply connected 3D obj&atir surface alignment
algorithm [8] computes a new parameterization ¥grand v, so that the Euclidean
distanceD(v1, v2) is minimized.

Combining the SPHARM description and our surface alignnmeethod offers a
set of spatio-temporal surface correspondences for ourmeation descriptor. In our
experiments, each sampling mesh on one surface3has32 nodes and each node
has a wall thickness value. The wall motion series we creatieides the thickness
values for each surface node at each time phase during aclgekatfrom end-diastolic
phase to next end-diastolic one. We obtain aboufall motion series, where varies
from 80 to 100 in different experiments. The correspondininis of thesen series
are uniformly distributed on the LV surfaces. These walliomoseries can characterize
local contraction behaviors of the LV wall and have a potdti capture the contraction
abnormality of a failing heart.



2.3 Similarity measurement

For a pair of(0, ¢), the corresponding wall motion series is denotecud$, ¢) =
{w1(0, ¢), w2(0, P), ..., w, (0, P)}, wherew; (0, ¢) is the wall thickness value of wall
motion phaseé corresponding to the parametrized pdifit¢) on the epicrdium.

Formlly, given two wall motion series (6, ¢,) andw(6,, ¢,), we employ the
following formula to measure the dissimilarity betweenrthe
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wheres = /(O (wi(0, 9) — Wimean (0, 9))2) /1. 7(w(0s, dz), w(0,, dy)) is the
Pearson correlation coefficient of two wall motion serieg,... (¢, ¢) is the mean of
wall motion series, and is the standard deviation ab(6, ¢). A Pearson correlation
coefficient indicates how the two wall motion series areteslaand the strength of
that relationship. The Pearson correlation coefficientiggs between -1 and 1, and
we normalize distance function ds,,/2 (the result will change from 0 to 1) in our
experiments.
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Fig. 1. Example of shift and scaling re-  Fig. 2. Example of the contraction delay
lationship of wall motion series. between wall motion series.

In this distance functiomuv,,... (0, ¢) is used to remove the shift difference. In
Fig. 1, the square-curve (each curve represents a simulatdnotion series) and
star-curve should be quite similar, since one of them canhifeed up vertically to
superpose with the other one. Similaiyjs used to normalize the wall motion series
when we calculate the similarity score between them. InEigalues of star-curve are
roughly 1.6 times those of circle-curve. Since we are irgiee in the wall thickness
change instead of the actual thickness value, these twamséries are also similiar.
For example, the mid-epicardium should have a larger wiktiess value and contract
more acutely than apex-epicardium. But if they contractditade synchronously, their
wall motion should be treated as the same.

In Fig. 2, star-curve represents a normal wall motion sefiibe wall motion series
represend by diamond-curve activate a little late, and ttaetrelation value is 0.7265.



As the activity delay increases, the Pearson correlatituregebetween the other mo-
tion series and the normal one desrease to 0 (circle-cunge}l (square-curve, it is
perfectly divergent). Since the Pearson correlation cdefit is sensitive to direction
of change (increasing or decreasing), it is reasonablegdt i3 measure the similarity
between wall motion series. The Pearson correlation céaftiés always between -1
and 1, and we normalize distance functionias../2 (the result will change from 0 to
1) in our experiments.

2.4 Hierarchical clustering

We apply hierarchical clustering algorithm [9] to group Banwall motion series to-
gether. Itis a bottom-up clustering method where clustendave sub-clusters. For any
set ofn objects, hierarchical clustering starts with every siradgect in a single clus-
ter. Then, in each successive iteration, it merges the sipsér of clusters by satisfying
their proximity information criteria, until all of the datre in one cluster.

In our case, the objects are the wall motion series of sang@éeds on epicardium,
and the proximity criteria is defined by the distance desdriin between pairs of wall
motion series. The algorithm is sketched as follows:

1. Each wall motion series is assigned to a separate cluster.

2. All pair-wise distances between clusters are calculatestored into a distance

matrix.

3. repeat

— The pair clusters with the closest distance is found

— Those two clusters are merged into one cluster

— The distances between the new groups and the remaininggaoe computed
to get a new distance matrix

4. until All of the wall motion series are clustered into a single grou

In Step 3, we employ the average-link approach: the distbatieeen two cluster-
ings is defined as the average of distances between all faiedlonotion series, where
each pair is made up of wall motion series from each groups;Tthe distance matrix
can be updated using the following formula:

Tq

d(T,p + Q) = " d(?", p) + d(?", Q)

Np + Ny Ny + Ng
wherep andg are merged into one new cluster, angdandn, are the numbers of wall
motion series in group andgq respectively.

The hierarchical clustering process usually stops aftefopaingn — 1 iterations
in Step 3, and results in a dendrogram. This dendrogram isaayptree (see Fig. 3 for
an example) in which each data point corresponds to a lea&ff)@thd distance from the
root to a subtree indicates the similarity of subtrees —Igigimilar nodes or subtrees
have joining points that are farther from the root.

3 Results

We have implemented our pacing site prediction framewoirkguiglatlab 6.5. The open
source platform toolkit PRTools, a MATLAB based toolbox fmattern recognition, is



used as the implementation for wall motion series similarieasurement, hierarchical
clustering and clustering results visualization.

To show the effectiveness of this framework, we use cardi&i Mata from 20
patients in our experiments, where half of them have hedttréaproblems. These
experiments are conducted on a PC with a 2.40GHz CPU and 51hBB memory.
Note that the patients are diagnosed by specialized playsicand these diagnostic
results are used to validate our results in the experiments.

Dendrogram result of a failing heart
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Fig. 3. Dendrogram result of a failing heart. Thelabel represents the number of wall motion
series. They label corresponds to the distance between clusters. Thdrafgnam is cut into
clusters by the “sweep-line 3".[1]

Our primary purpose for building a cluster hierarchy is tosture and present wall
motion series at different levels of abstraction. Using adiegram, researchers and
technicians can easily know the dissimilarity between higters that represent certain
parts on the epicardium.

We move the horizontal sweep-line from top to bottom in thaditegram result
(for example, the “sweep-line 1” in Fig. 3) to get the abnoratasters (small clusters)
that have a large dissimilarity to the main cluster. Note tha pacemaker system uses
electrical impulses to adjust the sites whose contractiamacteristics are considerably
different from other sites’. Thus, hierarchical clustgriesults can help us to find these
location candidates for installing the pacing leads.

The physician will test the pacing lead on candidate padciteg siccording to the
suggested site ordering until they find a suitable regioffixang the tip of pacing lead.
If the list is empty and a suitable site isn’t found, we willhtmue to select a lower value



sweep-line in the dendrogram result, for example, the “paleee 2” and “sweep-line
3”in Fig. 3.

Because the candidates list includes locations with netasynchronous contrac-
tion and timing delay, the optimal resynchronization tipgr@aan be obtained after
adding electrical pulse into these candidates. These aitepotentially good candi-
dates to implant the pacemaker for a more efficient CRT.

4 Conclusions

During our framework implementation, the major advantagesing the PRTools open
source software are that it provides a lot of pattern reciiogrroutines that make the
success of short term project more feasible and helps usesualize their datasets and
results conveniently.
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