
Meeting Andy Warhol Somewhere Over the
Rainbow: RGB Colormapping and ITK

Nicholas J. Tustison1, Hui Zhang1, Gaëtan Lehmann2, Paul Yushkevich1 and
James C. Gee1

January 7, 2009

1Penn Image Computing and Science Laboratory, University of Pennsylvania, USA
2Unité de Biologie du Développement et de la Reproduction, Institut National de la Recherche

Agronomique, 78350 Jouy-en-Josas, France

Abstract

Although greyscale intensity values are primarily used in image data visualization oftentimes, due to
the requirements of aesthetics (whether they be self-imposed or collaborator-suggested), mapping the
greyscale image to a user-defined colormap is desired. In this paper, we propose a framework for inclu-
sion in the ITK library for converting intensity-valued images to user-defined RGB colormap images. We
also include several colormaps that can be readily applied for visualization of images in such programs
as ITK-SNAP or can be used as examples for creating new colormaps.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 2

2 Implementation 2
2.1 Colormap Functor Base Class . 3
2.2 Derived Colormap Functor Classes . 4
2.3 Custom Colormap Image Functor Class . 5
2.4 The Coordinating Scalar Image To RGB Image Filter . 5

Predefined Colormaps . 5
Custom Colormaps . 7

3 Examples 8
3.1 Visualizing RGB color images with ITK SNAP . 8
3.2 An ITK Homage to Andy Warhol . 8

2

grey hot

red cool

green autumn

blue winter

copper spring

jet summer

HSV overunder

Figure 1: Implemented colormaps.

1 Introduction

Visualization of medical imagery can be enhanced through the use of mapping the scalar intensity values to
RGB values. These images can then be visualized in such programs as ITK-SNAP. Given in Figure 1 is a list
of colormaps that have been implemented and are included with this submission. We have also designed the
framework to facilitate the development of other user-defined colormaps.

2 Implementation

Various classes exist to deal with RGB images. In fact, based on the title of one of the existing classes, we
initially believed that the functionality we propose in this submission already existed in the toolkit. However,
the class ScalarToRGBPixelFunctor performs a specific type of mapping ”for visualizing labeled images
which cannot be mapped successfully into grayscale images” which is not what we are proposing. In addi-
tion, Gaëten Lehmann has also provided the LabelOverlayImageFilter which has coloring and opacity
capabilities but is based on the binary input (requiring a label image and input image).

The overall use of our proposed framework is that the user would have various colormap functor classes
which are already defined or defined by the user (and subsequently submitted to the Insight Journal, of
course). The user could then “plug in” any one of these colormaps to the image-to-image filter we created
modeled after the UnaryFunctorImageFilter class to map an scalar image to an RGB image.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

2.1 Colormap Functor Base Class 3

pink prism

VGA flag

lines bone

Figure 2: Custom colormaps created using a sampled piecewise description.

2.1 Colormap Functor Base Class

We introduce a new abstract base functor class called ColormapFunctor. In mapping the set of input
grey pixel intensity values to RGB values, it is often helpful to rescale the input values to the range [0,1]
before performing the mapping to normalized RGB values also in the range [0,1]. One can then rescale the
normalized RGB values to the desired range. Therefore, the abstract base colormap functor class defines
two helper rescaling functions: RescaleInputValue and RescaleRGBComponentValue. The former takes
the input value and linearly rescales it to the range [0,1] according to the parameters

• m_MinimumInputValue,

• m_MaximumInputValue.

These values are calculated automatically from the input image by default in the coordinating filter class
itkScalarToRGBImageFilter discussed in a subsequent section. However, this automatic behavior can
be overridden by setting the parameter UseInputImageExtremaForScaling to false and specifying these
input extrema parameters manually.

The function RescaleRGBComponentValue then takes the normalized RGB values assumed to be in
the range [0,1] and linearly rescales them to the user-specified range [m_MaximumRGBComponentValue,
m_MaximumRGBComponentValue]. By default, these are set to the minimum and maximum values of the
RGB component type. We demonstrate the use of these functions when we discuss one of the derived RGB
colormap functor classes.

Also, to be consistent with the various other functors that have been defined in ITK, we define the following
operator functions:

• virtual bool operator!=(const ScalarToRGBColormapFunctor &) const

• virtual bool operator==(const ScalarToRGBColormapFunctor & other) const

• virtual RGBPixelType operator()(const ScalarType &) const = 0

The reader will note the pure operator() function which is the only function we redefined in each of our
derived colormap functor classes.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

2.2 Derived Colormap Functor Classes 4

2.2 Derived Colormap Functor Classes

Each derived class defines a unique colormap functor class. For example, we include the following files
defining the different colormaps in Figure 1:

• GreyColormapFunctor.h, GreyColormapFunctor.txx

• RedColormapFunctor.h, RedColormapFunctor.txx

• GreenColormapFunctor.h, GreenColormapFunctor.txx

• BlueColormapFunctor.h, BlueColormapFunctor.txx

• CopperColormapFunctor.h, CopperColormapFunctor.txx

• HotColormapFunctor.h, HotColormapFunctor.txx

• CoolColormapFunctor.h, CoolColormapFunctor.txx

• AutumnColormapFunctor.h, AutumnColormapFunctor.txx

• WinterColormapFunctor.h, WinterColormapFunctor.txx

• SpringColormapFunctor.h, SpringColormapFunctor.txx

• SummerColormapFunctor.h, SummerColormapFunctor.txx

• JetColormapFunctor.h, JetColormapFunctor.txx

• HSVColormapFunctor.h, HSVColormapFunctor.txx

• OverUnderColormapFunctor.h, OverUnderColormapFunctor.txx

• CustomColormapFunctor.h, CustomColormapFunctor.txx

To demonstrate the facility of creating a new colormap functor class, we invite the reader to inspect the
CopperColormapFunctor class, specifically the code defining the operator() function which describes
how to perform the mapping between scalar intensity values and the copper colormap.

26 template <class TScalar , class TRGBPixel >
27 typename CopperColormapFunctor <TScalar , TRGBPixel >::RGBPixelType
28 CopperColormapFunctor <TScalar , TRGBPixel >
29 ::operator()(const TScalar & v) const
30 {
31 // Map the input scalar between [0, 1].
32 RealType value = this->RescaleInputValue(v);
33
34 // Apply the color map.
35 RealType red = 1.2 * value;
36 red = vnl_math_min(1.0, red);
37
38 RealType green = 0.8 * value;
39
40 RealType blue = 0.5 * value;
41
42 // Set the rgb components after rescaling the values.
43 RGBPixelType pixel;
44

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

2.3 Custom Colormap Image Functor Class 5

45 pixel[0] = this->RescaleRGBComponentValue(red);
46 pixel[1] = this->RescaleRGBComponentValue(green);
47 pixel[2] = this->RescaleRGBComponentValue(blue);
48
49 return pixel;
50 }

The input scalar intensity value is remapped to the range [0,1] (line 32). The colormap is then applied to
obtain the red, green and blue values. The resulting RGB pixel is then returned. The reader will note that this
is the only function that was redefined to implement each colormap.

2.3 Custom Colormap Image Functor Class

In addition to being able to derive other colormap classes, we provide a custom colormap functor class which
allows one to specify a piecewise uniform sampling of the different RGB profile channels. Each channel
(either red, green, or blue) is specified by a vector of scalar values in the range [0,1]. The mapping is
performed by linearly interpolating between sample profile values. For example, the red, green and blue
channels of the cool colormap class can be described, respectively, as

• {0,1}

• {1,0}

• {1}

where the red channel varies linearly from 0 to 1 over the entire domain of the input scalar image, the green
channel varies linearly from 1 to 0 over the domain of the input scalar image, and the blue channel has a
constant value of 1 over the entire domain. Other colormaps require more samples for adequate description.
We provide several of these colormaps described by piecewise samples (and shown in Figure 2) in the
accompanying Source/CustomColormaps/ directory.

2.4 The Coordinating Scalar Image To RGB Image Filter

In previous sections, we described the various colormap functor classes. In this section, we describe the co-
ordinating filter, ScalarToRGBColormapImageFilter, which accepts one of these colormap functor classes
and an input scalar image and produces, as output, an RGB image where the pixel values have been mapped
according to the functor class. We derive this class from the ImageToImageFilter class with a large portion
of the code taken and adapted from the UnaryFunctorImageFilter class. In this way, the class has multi-
thread capabilities. Also, if no colormap is specified, the output behavior is defaulted to a grayscale mapping.
Usage is best illustrated by examining the test code which produced the images contained in the following
sections.

Predefined Colormaps

Preliminaries include specifying the input/output image types and reading the input image. After these pre-
liminaries, the filter is instantiated and supplied the input image.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

2.4 The Coordinating Scalar Image To RGB Image Filter 6

29 int itkScalarToRGBColormapImageFilterTest(int argc , char *argv[])
30 {
31 const unsigned int ImageDimension = 2;
32
33 typedef unsigned int PixelType;
34 typedef itk::RGBPixel <unsigned char> RGBPixelType;
35 // typedef itk::RGBAPixel<unsigned char> RGBPixelType;
36
37 typedef itk::Image <PixelType , ImageDimension > ImageType;
38 typedef itk::Image <float, ImageDimension > RealImageType;
39 typedef itk::Image <RGBPixelType , ImageDimension > RGBImageType;
40
41 typedef itk::ImageFileReader <ImageType > ReaderType;
42 ReaderType::Pointer reader = ReaderType::New();
43 reader ->SetFileName(argv[1]);
44 reader ->Update();
45
46 std::string colormapString(argv[3]);
47
48 typedef itk::ScalarToRGBColormapImageFilter <ImageType ,
49 RGBImageType > RGBFilterType;
50 RGBFilterType::Pointer rgbfilter = RGBFilterType::New();
51 rgbfilter ->SetInput(reader ->GetOutput());

Subsequently the selected colormap functor is instantiated and supplied to the image filter. The next step
concerns the selection of the desired colormap. For predefined colormaps, we have created an enumerated
type such that setting the colormap is performed relatively easily. For example, selecting the “hot” colormap
is performed via

73 else if (colormapString == "hot")
74 {
75 rgbfilter ->SetColormap(RGBFilterType::Hot);
76 }

Alternatively, we can instantiate the specific functor and set the colormap. For example, the “jet” colormap
can be specified by the following snippet:

97 else if (colormapString == "jet")
98 {
99 // rgbfilter->SetColormap(RGBFilterType::Jet);

100 typedef itk::Functor::JetColormapFunctor <ImageType::PixelType ,
101 RGBImageType::PixelType > ColormapType;
102 ColormapType::Pointer colormap = ColormapType::New();
103 rgbfilter ->SetColormap(colormap);
104 }

where we have commented out the enumerated type call. We then specify the desired minimum and maxi-
mum RGB component values (lines 166-167). We then write the output to disk where we can visualize the
result in ITK-SNAP or other software capable of viewing RGB images.

166 rgbfilter ->GetColormap()->SetMinimumRGBComponentValue(0);
167 rgbfilter ->GetColormap()->SetMaximumRGBComponentValue(255);
168
169 try
170 {
171 rgbfilter ->Update();
172 }

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

2.4 The Coordinating Scalar Image To RGB Image Filter 7

173 catch (...)
174 {
175 return EXIT_FAILURE;
176 }
177
178 typedef itk::ImageFileWriter <RGBImageType > WriterType;
179 WriterType::Pointer writer = WriterType::New();
180 writer ->SetFileName(argv[2]);
181 writer ->SetInput(rgbfilter ->GetOutput());
182 writer ->Update();

Custom Colormaps

For a custom colormap defined by piecewise samples, the following code which uses the accompany-
ing text files in the Source/CustomColormaps/ directory, illustrates its use. The reader will note that
the channels do not necessarily need to be of the same length. For example, earlier we discussed the
cool colormap class where the red channel varies linearly from 0 to 1 over the entire domain of the in-
put scalar image, the green channel varies linearly from 1 to 0 over the domain of the input scalar image,
and the blue channel has a constant value of 1 over the entire domain. The contents of the colormap file
Source/CustomColormaps/cool.txt are, appropriately enough,

1 0 1
2 1 0
3 1

where the first line describe the red channel, the second line describes the green channel, and the third
line describes the blue channel. A slightly more intricate example is the VGA colormap defined in the file
Source/CustomColormaps/vga.txt.

1 1 0.75 1 1 0 0 0 1 0 0.5 0.5 0.5 0 0 0 0.5
2 1 0.75 0 1 1 1 0 0 0 0.5 0 0.5 0.5 0.5 0 0
3 1 0.75 0 0 0 1 1 1 0 0.5 0 0 0 0.5 0.5 0.5

Again, the first line defines, in a piecewise fashion, the red channel, the second the green channel, and the
third line defines the blue channel.

These custom files are read into the custom colormap functor as follows:

117 else if (colormapString == "custom")
118 {
119 typedef itk::Functor::CustomColormapFunctor <ImageType::PixelType ,
120 RGBImageType::PixelType > ColormapType;
121 ColormapType::Pointer colormap = ColormapType::New();
122
123 ifstream str(argv[4]);
124 std::string line;
125
126 // Get red values
127 {
128 std::getline(str, line);
129 std::istringstream iss(line);
130 float value;
131 ColormapType::ChannelType channel;
132 while (iss >> value)
133 {

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

8

134 channel.push_back(value);
135 }
136 colormap ->SetRedChannel(channel);
137 }
138
139 // Get green values
140 {
141 std::getline(str, line);
142 std::istringstream iss(line);
143 float value;
144 ColormapType::ChannelType channel;
145 while (iss >> value)
146 {
147 channel.push_back(value);
148 }
149 colormap ->SetGreenChannel(channel);
150 }
151 // Get blue values
152 {
153 std::getline(str, line);
154 std::istringstream iss(line);
155 float value;
156 ColormapType::ChannelType channel;
157 while (iss >> value)
158 {
159 channel.push_back(value);
160 }
161 colormap ->SetBlueChannel(channel);
162 }
163 rgbfilter ->SetColormap(colormap);
164 }

3 Examples

3.1 Visualizing RGB color images with ITK SNAP

In Figure 3 we showcase recently added functionality to ITK-SNAP which allows the user to visualize RGB
image layers. After converting the RGB image shown in the top left of Figure 3 to an RGB image using the
spring colormap, we can visualize the two images with varying levels of opacity.1

3.2 An ITK Homage to Andy Warhol

As a pioneer in the Pop Art movement Andy Warhol is famous for depicting various iconic figures (e.g. Marilyn
Monroe) using different coloring schemes for artistic purposes. We use our new framework to produce our
own creation very much in the spirit (although perhaps lacking Warhol’s artistic sensitivities) of the Pop Art
movement in Figure 5 from the image in Figure 4 (available at http://en.wikipedia.org/wiki/Lenna).

1The reader will note that only RGB images of the metaIO format (.mha) are currently readable in ITK-SNAP.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

3.2 An ITK Homage to Andy Warhol 9

RGB overlay opacity = 0 RGB overlay opacity = 82

RGB overlay opacity = 164 RGB overlay opacity = 255

Figure 3: CT axial lung slice displayed with a spring colormap RGB overlay in ITK-SNAP with varying levels
of opacity.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

3.2 An ITK Homage to Andy Warhol 10

Figure 4: Subject for our ITK Pop Art contribution.

Figure 5: An ITK Homage to Andy Warhol.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

