Meeting Andy Warhol Somewhere Over the
Rainbow: RGB Colormapping and ITK

Nicholas J. Tustison', Hui Zhang', Gaétan Lehmann?, Paul Yushkevich! and
James C. Gee!

January 7, 2009

'Penn Image Computing and Science Laboratory, University of Pennsylvania, USA
2Unité de Biologie du Développement et de la Reproduction, Institut National de la Recherche
Agronomique, 78350 Jouy-en-Josas, France

Abstract

Although greyscale intensity values are primarily used in image data visualization oftentimes, due to
the requirements of aesthetics (whether they be self-imposed or collaborator-suggested), mapping the
greyscale image to a user-defined colormap is desired. In this paper, we propose a framework for inclu-
sion in the ITK library for converting intensity-valued images to user-defined RGB colormap images. We
also include several colormaps that can be readily applied for visualization of images in such programs
as ITK-SNAP or can be used as examples for creating new colormaps.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

Contents
1 Introduction 2
2 Implementation 2
2.1 Colormap FunctorBase Class i e e e 3
2.2 Derived Colormap Functor Classes 4
2.3 Custom Colormap Image FunctorClass 5
2.4 The Coordinating Scalar Image To RGB Image Filter 5
Predefined Colormaps e e 5
Custom Colormaps e e e e e 7
3 Examples 8
3.1 Visualizing RGB colorimages with ITKSNAP 8

3.2 AnITKHomageto Andy Warhol 8

copper spring
summer
overunder

Figure 1: Implemented colormaps.

1 Introduction

Visualization of medical imagery can be enhanced through the use of mapping the scalar intensity values to
RGB values. These images can then be visualized in such programs as ITK-SNAP. Given in Figure 1 is a list
of colormaps that have been implemented and are included with this submission. We have also designed the
framework to facilitate the development of other user-defined colormaps.

2 Implementation

Various classes exist to deal with RGB images. In fact, based on the title of one of the existing classes, we
initially believed that the functionality we propose in this submission already existed in the toolkit. However,
the class ScalarToRGBPixelFunctor performs a specific type of mapping "for visualizing labeled images
which cannot be mapped successfully into grayscale images” which is not what we are proposing. In addi-
tion, Gaéten Lehmann has also provided the LabelOverlayImageFilter which has coloring and opacity
capabilities but is based on the binary input (requiring a label image and input image).

The overall use of our proposed framework is that the user would have various colormap functor classes
which are already defined or defined by the user (and subsequently submitted to the Insight Journal, of
course). The user could then “plug in” any one of these colormaps to the image-to-image filter we created
modeled after the UnaryFunctorImageFilter class to map an scalar image to an RGB image.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

2.1 Colormap Functor Base Class 3

- (EERRRERREN

pink prism
VGA flag
lines bone

Figure 2: Custom colormaps created using a sampled piecewise description.

2.1 Colormap Functor Base Class

We introduce a new abstract base functor class called ColormapFunctor. In mapping the set of input
grey pixel intensity values to RGB values, it is often helpful to rescale the input values to the range [0, 1]
before performing the mapping to normalized RGB values also in the range [0, 1]. One can then rescale the
normalized RGB values to the desired range. Therefore, the abstract base colormap functor class defines
two helper rescaling functions: RescaleInputValue and RescaleRGBComponentValue. The former takes
the input value and linearly rescales it to the range [0, 1] according to the parameters

e m MinimumInputValue,

e m_MaximumInputValue.

These values are calculated automatically from the input image by default in the coordinating filter class
itkScalarToRGBImageFilter discussed in a subsequent section. However, this automatic behavior can
be overridden by setting the parameter UseInput ImageExt remaForScaling to false and specifying these
input extrema parameters manually.

The function RescaleRGBComponentValue then takes the normalized RGB values assumed to be in
the range [0, 1] and linearly rescales them to the user-specified range [m_MaximumRGBComponentValue,
m_MaximumRGBComponentValue]. By default, these are set to the minimum and maximum values of the
RGB component type. We demonstrate the use of these functions when we discuss one of the derived RGB
colormap functor classes.

Also, to be consistent with the various other functors that have been defined in ITK, we define the following
operator functions:

e virtual bool operator!=(const ScalarToRGBColormapFunctor &) const
e virtual bool operator==(const ScalarToRGBColormapFunctor & other) const
e virtual RGBPixelType operator() (const ScalarType &) const = 0

The reader will note the pure operator () function which is the only function we redefined in each of our
derived colormap functor classes.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

26
27
28

30
31
32
33
34
35

37
38
39
40
41

42
43
44

2.2 Derived Colormap Functor Classes 4

2.2 Derived Colormap Functor Classes

Each derived class defines a unique colormap functor class. For example, we include the following files
defining the different colormaps in Figure 1:

e GreyColormapFunctor.h, GreyColormapFunctor.txx

e RedColormapFunctor.h, RedColormapFunctor.txx

e GreenColormapFunctor.h, GreenColormapFunctor.txx

e BlueColormapFunctor.h, BlueColormapFunctor.txx

e CopperColormapFunctor.h, CopperColormapFunctor.txx
e HotColormapFunctor.h, HotColormapFunctor.txx

e CoolColormapFunctor.h, CoolColormapFunctor.txx

e AutumnColormapFunctor.h, AutumnColormapFunctor.txx
e WinterColormapFunctor.h, WinterColormapFunctor.txx
e SpringColormapFunctor.h, SpringColormapFunctor.txx
e SummerColormapFunctor.h, SummerColormapFunctor.txx
e JetColormapFunctor.h, JetColormapFunctor.txx

e HSVColormapFunctor.h, HSVColormapFunctor.txx

e OverUnderColormapFunctor.h, OverUnderColormapFunctor.txx

e CustomColormapFunctor.h, CustomColormapFunctor.txx

To demonstrate the facility of creating a new colormap functor class, we invite the reader to inspect the
CopperColormapFunctor class, specifically the code defining the operator () function which describes
how to perform the mapping between scalar intensity values and the copper colormap.

template <class TScalar, class TRGBPixel>

typename CopperColormapFunctor<TScalar, TRGBPixel>::RGBPixelType
CopperColormapFunctor<TScalar, TRGBPixel>

::operator () (const TScalar & v) const

{

// Map the input scalar between [0, 1].
RealType value = this->RescalelInputValue(v);

// Apply the color map.
RealType red = 1.2 * value;

red = vnl_math_min(1.0, red);
RealType green = 0.8 * value;

RealType blue = 0.5 * value;

// Set the rgb components after rescaling the values.
RGBPixelType pixel;

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

45
46
47
48
49
50

2.3 Custom Colormap Image Functor Class 5

pixel [0] = this->RescaleRGBComponentValue(red);
pixel [1] = this->RescaleRGBComponentValue (green);
pixel [2] = this->RescaleRGBComponentValue (blue);

return pixel;

The input scalar intensity value is remapped to the range [0,1] (line 32). The colormap is then applied to
obtain the red, green and blue values. The resulting RGB pixel is then returned. The reader will note that this
is the only function that was redefined to implement each colormap.

2.3 Custom Colormap Image Functor Class

In addition to being able to derive other colormap classes, we provide a custom colormap functor class which
allows one to specify a piecewise uniform sampling of the different RGB profile channels. Each channel
(either red, green, or blue) is specified by a vector of scalar values in the range [0,1]. The mapping is
performed by linearly interpolating between sample profile values. For example, the red, green and blue
channels of the cool colormap class can be described, respectively, as

e {01}

o {1}

where the red channel varies linearly from 0 to 1 over the entire domain of the input scalar image, the green
channel varies linearly from 1 to 0 over the domain of the input scalar image, and the blue channel has a
constant value of 1 over the entire domain. Other colormaps require more samples for adequate description.
We provide several of these colormaps described by piecewise samples (and shown in Figure 2) in the
accompanying Source/CustomColormaps/ directory.

2.4 The Coordinating Scalar Image To RGB Image Filter

In previous sections, we described the various colormap functor classes. In this section, we describe the co-
ordinating filter, ScalarToRGBColormapImageFilter, which accepts one of these colormap functor classes
and an input scalar image and produces, as output, an RGB image where the pixel values have been mapped
according to the functor class. We derive this class from the ImageToImageFilter class with a large portion
of the code taken and adapted from the UnaryFunctorImageFilter class. In this way, the class has multi-
thread capabilities. Also, if no colormap is specified, the output behavior is defaulted to a grayscale mapping.
Usage is best illustrated by examining the test code which produced the images contained in the following
sections.

Predefined Colormaps

Preliminaries include specifying the input/output image types and reading the input image. After these pre-
liminaries, the filter is instantiated and supplied the input image.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

29
30
31
32
33
34
35
36
37
38

40
41
42
43
44
45
46
47
48
49
50
51

73
74
75
76

97
98
99
100
101
102
103
104

166
167
168
169
170
171
172

2.4 The Coordinating Scalar Image To RGB Image Filter 6

int itkScalarToRGBColormapImageFilterTest (int argc, char *argv[])
{

const unsigned int ImageDimension = 2;

typedef unsigned int PixelType;
typedef itk::RGBPixel <unsigned char> RGBPixelType;
// typedef itk::RGBAPixel<unsigned char> RGBPixelType;

typedef itk::Image<PixelType, ImageDimension> ImageType;
typedef itk::Image<float, ImageDimension> ReallmageType;
typedef itk::Image<RGBPixelType, ImageDimension> RGBImageType;

typedef itk::ImageFileReader<ImageType> ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName (argv[l]);

reader ->Update () ;

std::string colormapString(argv([3]);

typedef itk::ScalarToRGBColormapImageFilter <ImageType,
RGBImageTIype> RGBFilterType;

RGBFilterType::Pointer rgbfilter = RGBFilterType::New();

rgbfilter->SetInput (reader->GetOutput ());

Subsequently the selected colormap functor is instantiated and supplied to the image filter. The next step
concerns the selection of the desired colormap. For predefined colormaps, we have created an enumerated
type such that setting the colormap is performed relatively easily. For example, selecting the “hot” colormap
is performed via

else if (colormapString == "hot")
{
rgbfilter->SetColormap (RGBFilterType::Hot);
}

Alternatively, we can instantiate the specific functor and set the colormap. For example, the “jet” colormap
can be specified by the following snippet:

else if (colormapString == "jet")
{
// rgbfilter->SetColormap (RGBFilterType::Jet);
typedef itk::Functor::JetColormapFunctor<ImageType::PixelType,
RGBImageType::PixelType> ColormapType;
ColormapType::Pointer colormap = ColormapType::New();
rgbfilter->SetColormap (colormap);

}

where we have commented out the enumerated type call. We then specify the desired minimum and maxi-
mum RGB component values (lines 166-167). We then write the output to disk where we can visualize the
result in ITK-SNAP or other software capable of viewing RGB images.

rgbfilter->GetColormap () ->SetMinimumRGBComponentValue (0);
rgbfilter->GetColormap () ->SetMaximumRGBComponentValue (255);

try
{
rgbfilter->Update ();
}

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

173
174
175
176
177
178
179
180
181
182

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

2.4 The Coordinating Scalar Image To RGB Image Filter

catch (...)
{
return EXIT_FAILURE;
}

typedef itk::ImageFileWriter<RGBImageTIype> WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName (argv([2]);

writer->SetInput (rgbfilter->GetOutput ());
writer->Update ();

Custom Colormaps

For a custom colormap defined by piecewise samples, the following code which uses the accompany-
ing text files in the Source/CustomColormaps/ directory, illustrates its use. The reader will note that
the channels do not necessarily need to be of the same length. For example, earlier we discussed the
cool colormap class where the red channel varies linearly from 0 to 1 over the entire domain of the in-
put scalar image, the green channel varies linearly from 1 to 0 over the domain of the input scalar image,
and the blue channel has a constant value of 1 over the entire domain. The contents of the colormap file

Source/CustomColormaps/cool.txt are, appropriately enough,

— o
o

where the first line describe the red channel, the second line describes the green channel, and the third
line describes the blue channel. A slightly more intricate example is the VGA colormap defined in the file

Source/CustomColormaps/vga.txt.

10.7511000100.50.50.5000 0.5
10.7501110000.500.50.50.500
107500011 100.50000.50.50.5

Again, the first line defines, in a piecewise fashion, the red channel, the second the green channel, and the

third line defines the blue channel.

These custom files are read into the custom colormap functor as follows:

else if (colormapString == "custom")
{
typedef itk::Functor::CustomColormapFunctor<ImageType::PixelType,
RGBImageType::PixelType> ColormapType;
ColormapType::Pointer colormap = ColormapType::New();

ifstream str(argv[4]);
std::string line;

// Get red values

{

std::getline(str, line);
std::istringstream iss(line);
float value;
ColormapType::ChannelType channel;
while (iss >> value)

{

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]

Distributed under Creative Commons Attribution License

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

channel .push_back (value);
}
colormap->SetRedChannel (channel);

}

// Get green values
{
std::getline(str, line);
std::istringstream iss(line);
float value;
ColormapType::ChannelType channel;
while (iss >> value)

{

channel.push_back (value);

}
colormap->SetGreenChannel (channel);
}
// Get blue values
{
std::getline(str, line);
std::istringstream iss(line);
float value;
ColormapType::ChannelType channel;
while (iss >> value)

{

channel.push_back (value);

}
colormap->SetBlueChannel (channel);
}
rgbfilter->SetColormap (colormap);
}

3 Examples

3.1 Visualizing RGB color images with ITK SNAP

In Figure 3 we showcase recently added functionality to ITK-SNAP which allows the user to visualize RGB
image layers. After converting the RGB image shown in the top left of Figure 3 to an RGB image using the
spring colormap, we can visualize the two images with varying levels of opacity.’

3.2 An ITK Homage to Andy Warhol

As a pioneer in the Pop Art movement Andy Warhol is famous for depicting various iconic figures (e.g. Marilyn
Monroe) using different coloring schemes for artistic purposes. We use our new framework to produce our
own creation very much in the spirit (although perhaps lacking Warhol’s artistic sensitivities) of the Pop Art
movement in Figure 5 from the image in Figure 4 (available at http://en.wikipedia.org/wiki/Lenna).

The reader will note that only RGB images of the metalO format (.mha) are currently readable in ITK-SNAP.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

3.2 An ITK Homage to Andy Warhol

[XeXe) ITK-SNAP 1.6.0.1: ExpB41f lice.nii.gz - N loaded

File Options Help

IRIS Toolbox
R
& 2

Taol Optians.
Crosshairs Tool

ntensty: Lobe
a2 o

Label descrigton
Clear Label

¥ Synchronize cursor
Segmentation Options.

Active drawing labet.
Label 1 =]

Draw aver:
EC |
[——
I Drawinverted 7

Overall jabel opacly-
P —

Et label,

3D Toolhox

Edil s
&

b8+

RGB overlay opacity = 0

ITK-SNAP 1.6.0.1: ExpB41f_downsampled_slice.nii.gz - No loaded

800 ITK-SNAP 1.6.0.1: ExpB41f. slice.nii.gz - No loaded
File Options Help
RIS Toolbox

R H
& 7
Tool Options

Crosshairs Tool

Intenstty: Label
a7 o

Labeldescrigtor:
Clar Label

@ Synchronize cursor

‘Segmentation Options
‘Active drawing label:
Label 1 <]

Overal label opacy
PR —

Edt abels.

3D Toolbox

ko
&

B+

RGB overlay opacity = 82

ITK-SNAP 1.6.0.1: ExpB41f_¢

|_slice.nii.gz - No loaded

Eile Options Help

IRIS Toolbox
:

w R D
Tool Options
Crosshairs Tool

ety Lobe
S 3
Label description:
i
 Synchronize curss sor
‘Segmentation Options

Active drawing labet
Label 1

Draw over:
Alllabels]
| —
I Draw inverted 7

Overal abel opaciy.
s 1

Editlabels...

3D Toolbox
* & S
&

DB+

Eile Options Help

IRIS Toolbox
:

w L8

TootOptens
Crosshairs Tool
oty Labat
o B
Label description:
o T
P
Segmentation Options

Active drawing labet
Label |

Draw over

Alllabels]
e

I Draw inverted 7

Overall abel apacity:
[—

Eitlabels..

3D Toolbox
F ok /
&

DB+

RGB overlay opacity = 164

Figure 3: CT axial lung slice displayed with a spring colormap RGB overlay in ITK-SNAP with varying levels

of opacity.

RGB overlay opacity = 255

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

3.2 AnITK Homage to Andy Warhol 10

Figure 4: Subject for our ITK Pop Art contribution.

Figure 5: An ITK Homage to Andy Warhol.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

