
A Novel Information-Theoretic Point-Set
Measure Based on the

Jensen-Havrda-Charvat-Tsallis Divergence
Release 0.00

Nicholas J. Tustison, Suyash P. Awate and James C. Gee

October 3, 2008

Penn Image Computing And Science Laboratory
University of Pennsylvania

Abstract

A novel point-set registration algorithm was proposed in [6] based on minimization of the Jensen-
Shannon divergence. In this contribution, we generalize this Jensen-Shannon divergence point-set mea-
sure framework to the Jensen-Havrda-Charvat-Tsallis divergence. This generalization permits a fine-
tuning of the actual divergence measure between robustness and specificity. The principle contribu-
tion of this submission is theitk::JensenHavrdaCharvatTsallisPointSetMetric class which is de-
rived from the existing itk::PointSetToPointSetMetric. In addition, we provide other classes
with utility that would extend beyond the point-set measure framework that we provide in this pa-
per. This includes a point-set analogue of the itk::ImageFunction, i.e. itk::PointSetFunction.
From this class we derive the class itk::ManifoldParzenWindowsPointSetFunction which pro-
vides a Parzen windowing scheme for learning the local structure of point-sets. Finally, we include the
itk::DecomposeTensorFunction class which wraps the different vnl matrix decomposition schemes
for easy use within ITK.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

Contents

1 Theoretical Overview 2
1.1 Point-Set to PDF Conversion . 2
1.2 Point-Set Divergence From the Jensen-Havrda-Charvat-Tsallis Entropy 3

2 Implementation Overview 3

3 Sample Usage 5
3.1 itkDecomposeTensorFunction . 5
3.2 itkJensenHavrdaCharvatTsallisPointSetMetric . 6

2

1 Theoretical Overview

This paper provides a description of recent point-set registration work in which a novel point-set measure-
ment was developed based on the Jensen-Havrda-Charvat-Tsallis (JHCT) entropy family which is a gener-
alization of the Jensen-Shannon (JS) entropy. The basic idea is that these Jensen entropy measures provide
a sense of the divergence between multiple probability density functions (PDFs). In fact, it has been shown
that the square root of such measures are actually a distance metric with all the associated salient properties
[3]. So, given K PDFs we can use standard gradient-based optimization strategies to register these K PDFs.1

As the discussion centers on registration of point-sets, the question remains how translation from point-sets
to PDFs occur. To perform this translation, we choose a Parzen windowing scheme which allows for the
local structure to be learned from the point-sets themselves. In the following sections, we first describe how
this translation occurs. Then, once, the PDFs have been generated, we describe how the divergence mea-
sures and derivatives are calculated. This is followed by a detailed look at the included classes and various
examples. Please note that a theoretical paper outlining the details in much greater detail is forthcoming.

1.1 Point-Set to PDF Conversion

Similar to our work, Wang et al. [8] present point-set registration methodology which employs the JS
measure. Each point-set is represented as a probability density function through the use of a Gaussian
mixture model (GMM) where each point, xi, specifies a Gaussian center with a constant isotropic covariance.
Thus, the kth probability density function, Pk(s), calculated from the kth point-set (consisting of Nk points)
is given by the GMM

Pk(s) =
1

Nk

Nk

∑
i=1

G(s;xk
i ,σ) (1)

where G(s;xk
i ,σ) is a normalized Gaussian with mean xk

i and isotropoic covariance characterized by σ.

However, given that point-sets often represent a sampling of an underlying structure, we modify the con-
version process transforming a point-set to its corresponding probability density function to capture that
local structure. Whereas previous work used isotropic Gaussians, we use the local point-set neighborhood
to estimate an appropriate covariance matrix where the local structure is reflected in the anisotropy of that
covariance [7]. For each point, xi, the associated weighted covariance matrix, CKi , is given by

CKi =
∑x j∈Ni,x j 6=xi

K (xi;x j)(xi− x j)T(xi− x j)

∑x j∈Ni,x j 6=xi
K (xi;x j)

(2)

where Ni is the local neighborhood of the point xi and K is a user-selected neighborhood weighting ker-
nel. We use an isotropic Gaussian for K as well as a k-d tree structure, i.e. itk::KdTree, for efficient
determination of Ni.

1Please note that our contribution does not include all the components to perform registration. Similar to the image registration
solution, one has to decide upon a transformation model and an optimization strategy. We use an earlier contribution from our lab
to define a B-spline transformation model [5] and use conjugate gradient descent (CGD) [4] for optimization.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

1.2 Point-Set Divergence From the Jensen-Havrda-Charvat-Tsallis Entropy 3

Determination of CKi from Equation (2) could potentially result in an ill-conditioned matrix. For this reason,
we use the modified covariance, Ci = CKi + σ2I where I is the identity matrix and σ is a user-provided
parameter denoting added isotropic Gaussian noise. Thus, the kth probability density function calculated
from the kth point-set is given by the GMM

Pk(s) =
1

Nk

Nk

∑
i=1

G(s;xk
i ,C

k
i) (3)

where G(s;xk
i ,C

k
i) is a normalized Gaussian with mean xk

i and covariance Ck
i evaluated at s.

1.2 Point-Set Divergence From the Jensen-Havrda-Charvat-Tsallis Entropy

Given K PDFs {P1, . . . ,PK}, the JHCT family of divergence measures is given by

JHCTα(P1, . . . ,PK) = Hα

(
K

∑
k=1

πkPk

)
−

K

∑
k=1

πkHα (Pk) (4)

where Hα(·) is the HCT entropy and the set of weights {π1, . . . ,πK |πk > 0,∑K
k=1 πk = 1} determines the rel-

ative contribution of the corresponding probability density function to the divergence measure. We assume
a weighting scheme of

πk =
Nk

∑
K
i=1 Ni

. (5)

.

Calculation of the derivative of the JHCT divergence with respect to each point is as follows:

∂JHCTα

∂xi
k

=
Nk

∑
i=1

[
1

MN

K

∑
k′=1

Mk′

∑
j=1

G(sk′
j ;xk

i ,C
k
i)(C

k
i)
−1(xk

i − sk′
j)

[P∗(sk′
j)]2−α

− 1
MkN

Mk

∑
j=1

G(sk
j;xk

i ,C
k
i)(C

k
i)
−1(xk

i − sk
j)

[Pk(sk
j)]2−α

]
(6)

where

P∗(s) =
1
N

K

∑
k=1

Nk

∑
i=1

G(s;xk
i ,C

k
i), N =

K

∑
k=1

Nk, M =
K

∑
k=1

Mk. (7)

It is well known [1, 2] that Hα(·) reduces to the conventional Shannon entropy as α→ 1.

2 Implementation Overview

After keeping the theoretical discussion to a tolerable minimum, we are now in a position to discuss the
implementation details of the proposed classes. The classes that we provide in this submission are as follows:

• itkJensenHavrdaCharvatTsallisPointSetMetric — this class is derived from the
itk::PointSetToPointSetMetric and encompasses our principal contribution. Given two
input point sets, one “fixed” and one “moving”, a PDF is generated from each point-set (see the first
section). The user can then calculate the divergence value or the derivative value via the GetValue()
and the GetDerivative() functions, respectively, or both using the GetValueAndDerivative()
function. The user-specified parameters are as follows:

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

4

– m_UseRegularizationTerm — the divergence in Equation (4) is composed of two terms. In
the gradient calculation, the second term acts as a type of regularizer. Therefore, we provide the
option of using the first term or both terms.

– m_UseInputAsSamples — this parameter allows the user to either generate random samples
from the generated PDFs or to use the input points as the samples.

– m_UseAnisotropicCovariances — this parameter allows the user to use isotropic (unlearned)
or anisotropic covariances (learned) in generating the PDFs.

– m_NumberOfFixedSamples — if random samples are to be used, this parameter indicates the
number of samples that should be generated from the fixed point-set.

– m_FixedPointSetSigma — if isotropic covariances are used, this parameter determines σ for
each of the fixed point Gaussians. If anisotropic covariances are used, this parameter determines
the added isototropic Gaussian noise.

– m_FixedKernelSigma — if isotropic covariances are used, this parameter is irrelevant. If
anisotropic covariances are used, this parameter determines the Gaussian kernel used in Equa-
tion (2).

– m_FixedCovarianceKNeighborhood — this parameter specifies the number of neighbors to be
used in constructing the anisotropic covariances. If isotropic covariances are used, this parameter
is irrelevant.

– m_FixedEvaluationKNeighborhood — this parameter specifies the number of neighbors used
in evaluating the PDF at a specific point.

– m_NumberOfMovingSamples — same as the fixed point set.

– m_MovingPointSetSigma — same as for the fixed point set.

– m_MovingKernelSigma — same as for the fixed point set.

– m_MovingEvaluationKNeighborhood — same as for the fixed point set.

– m_MovingCovarianceKNeighborhood — same as for the fixed point set.

– m_Alpha — this clamped parameter which is allowed to vary between [1,2] provides a trade-off
between specificity and robustness.

– m_UseWithRespectToTheMovingPointSet — it is our intent to employ this metric for sym-
metric point-set registration so the derivative is needed for both directions. Since generation of
the kd-tree for each point-set takes O(n logn) time, we simply allow the user to specify which
derivative is desired so that both can be obtained without recreating the kd-trees.

• itkPointSetFunction — this base class is analogous to the itk::itkImageFunction class in that
given a point-set, each of the derived classes is meant to return a value.

• itkManifoldParzenWindowsPointSetFunction — this class is derived from the
itkPointSetFunction. It encapsulates both anisotropic and isotropic GMMs. This class is
used by the itkJensenHavrdaCharvatTsallisPointSetMetric class. Many of the parameters
used in this class are the same as those in the itkJensenHavrdaCharvatTsallisPointSetMetric
class.

• itkGaussianProbabilityDensityFunction — this class is an extensive modification of the
itk::GaussianDensityFunction class which allows for generation of random samples.

• itkDecomposeTensorFunction — this class provides an easy interface to various vnl matrix decom-
position routines. These functions are:

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

5

– EvaluateEigenDecomposition

– EvaluateSymmetricEigenDecomposition

– EvaluateQRDecomposition

– EvaluateSVDDecomposition

– EvaluateSVDEcoonomyDecomposition

– EvaluateCholeskyDecomposition

– EvaluateDeterminant

Although this class has more generic utility, in the specific case discussed in this submission, it is used
in the itkGaussianProbabilityDensityFunction class to perform an eigen-decomposition of the
covariance matrix for generating random samples.

3 Sample Usage

3.1 itkDecomposeTensorFunction

The itk::DecomposeTensorFunction class is templated over the InputMatrixType, a RealType (de-
faults to float), and an OutputMatrixType (defaults to a itk::VariableSizeMatrix type). Usage
is straightforward as the following code snippet illustrates for performing eigen-decomposition. First, we
create an arbitrary 3×3 matrix.

15 InputMatrixType M(3, 3);
16 M(0, 0) = 1;
17 M(0, 1) = 2;
18 M(0, 2) = 3;
19 M(1, 0) = 2;
20 M(1, 1) = 5;
21 M(1, 2) = 4;
22 M(2, 0) = 3;
23 M(2, 1) = 4;
24 M(2, 2) = 9;

We then call the desired function (eigen-decomposition in the example below).

26 /**
27 * Eigen-Decomposition
28 */
29 OutputMatrixType D, V;
30 try
31 {
32 decomposer ->EvaluateEigenDecomposition(M, D, V);
33 }
34 catch(...)
35 {
36 std::cerr << "EvaluateEigenDecomposition: Exception thrown."
37 << std::endl;
38 return EXIT_FAILURE;
39 }

D and V hold the eigenvalues and eigenvectors, respectively.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

3.2 itkJensenHavrdaCharvatTsallisPointSetMetric 6

3.2 itkJensenHavrdaCharvatTsallisPointSetMetric

The itk::JensenHavrdaCharvatTsallisPointSetMetric class is templated over the point-set type. The
user also needs to know that unlike the flexibility of the itk::PointSetToPointSetMetric class, the only
acceptable transform type is the itk::IdentityTransform, due to the use of the kd-tree for facilitating
evaluation. Usage is described with the following example. We first read in the two point-sets. Please note
that the point-set reader class itkLabeledPointSetFileReader was developed by the authors to read in
labeled point-sets from various file formats (such as labeled images and vtk files) but it is not intended to be
included in ITK.

11 const unsigned int Dimension = 2;
12
13 typedef float RealType;
14 typedef itk::PointSet <RealType , Dimension > PointSetType;
15
16 typedef itk::LabeledPointSetFileReader <PointSetType > ReaderType;
17
18 ReaderType::Pointer fixedPointSetReader = ReaderType::New();
19 fixedPointSetReader ->SetFileName(argv[1]);
20 fixedPointSetReader ->Update();
21
22 ReaderType::Pointer movingPointSetReader = ReaderType::New();
23 movingPointSetReader ->SetFileName(argv[2]);
24 movingPointSetReader ->Update();

After instantiation of the metric class, we set the fixed and moving point-sets as well as the other parameters.

26 typedef itk::JensenHavrdaCharvatTsallisPointSetMetric <PointSetType >
27 PointSetMetricType;
28 PointSetMetricType::Pointer pointSetMetric = PointSetMetricType::New();
29 pointSetMetric ->SetMovingPointSet(movingPointSetReader ->GetOutput());
30 pointSetMetric ->SetMovingPointSetSigma(atof(argv[4]));
31 pointSetMetric ->SetMovingEvaluationKNeighborhood(30);
32 pointSetMetric ->SetFixedPointSet(fixedPointSetReader ->GetOutput());
33 pointSetMetric ->SetFixedPointSetSigma(atof(argv[3]));
34 pointSetMetric ->SetFixedEvaluationKNeighborhood(30);
35 pointSetMetric ->SetUseInputAsSamples(atoi(argv[7]));
36 pointSetMetric ->SetUseAnisotropicCovariances(atoi(argv[6]));
37 pointSetMetric ->SetAlpha(atof(argv[5]));
38
39 if(pointSetMetric ->GetUseAnisotropicCovariances())
40 {
41 pointSetMetric ->SetFixedCovarianceKNeighborhood(5);
42 pointSetMetric ->SetFixedKernelSigma(2 *
43 pointSetMetric ->GetFixedPointSetSigma());
44 pointSetMetric ->SetMovingCovarianceKNeighborhood(5);
45 pointSetMetric ->SetMovingKernelSigma(2 *
46 pointSetMetric ->GetMovingPointSetSigma());
47 }
48
49 if(!pointSetMetric ->GetUseInputAsSamples())
50 {
51 pointSetMetric ->SetNumberOfFixedSamples(1000);
52 pointSetMetric ->SetNumberOfMovingSamples(1250);
53 }

We then initialize the point-set metric and calculate the value and derivatives with respect to the fixed point-
set

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

References 7

57 pointSetMetric ->Initialize();
58
59 PointSetMetricType::DefaultTransformType::ParametersType parameters;
60 parameters.Fill(0);
61
62 pointSetMetric ->SetUseWithRespectToTheMovingPointSet(false);
63 PointSetMetricType::DerivativeType gradientFixed;
64 pointSetMetric ->GetDerivative(parameters , gradientFixed);
65
66 std::cout << "Fixed gradient: " << std::endl;
67 std::cout << gradientFixed << std::endl;
68
69 PointSetMetricType::MeasureType measureFixed
70 = pointSetMetric ->GetValue(parameters);
71
72 std::cout << "Fixed value: " << std::endl;
73 std::cout << measureFixed << std::endl << std::endl;
74
75 PointSetMetricType::MeasureType measureFixedTest;
76 PointSetMetricType::DerivativeType gradientFixedTest;
77
78 pointSetMetric ->GetValueAndDerivative(parameters ,
79 measureFixedTest , gradientFixedTest);

and the moving point-set.

95 pointSetMetric ->SetUseWithRespectToTheMovingPointSet(true);
96 PointSetMetricType::DerivativeType gradientMoving;
97 pointSetMetric ->GetDerivative(parameters , gradientMoving);
98
99 std::cout << "Moving gradient: " << std::endl;

100 std::cout << gradientMoving << std::endl;
101
102 PointSetMetricType::MeasureType measureMoving
103 = pointSetMetric ->GetValue(parameters);
104
105 std::cout << "Moving value: " << std::endl;
106 std::cout << measureMoving << std::endl;
107
108 PointSetMetricType::MeasureType measureMovingTest;
109 PointSetMetricType::DerivativeType gradientMovingTest;
110
111 pointSetMetric ->GetValueAndDerivative(parameters ,
112 measureMovingTest , gradientMovingTest);

Using ITK-SNAP we drew the two face outlines shown in Figure 1. These point-sets were then used as input
for different permutations of different parameters for the tests given in CMakeLists.txt. The resulting
derivatives for the test JHCT_3 are illustrated in Figure 2.

References

[1] J. Burbea and C. R. Rao. On the convexity of some divergence measures on entropy functions. IEEE
Transactions on Information Theory, 28:489–495, 1982. 1.2

[2] M. Gell-Mann and C. Tsallis. Nonextensive Entropy. Oxford University Press, 2004. 1.2

[3] A. Majtey, P. Lamberti, and A. Plastino. A monoparametric family of metrics for statistical mechanics.
Physica A, 344:547–553, 2004. 1

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

References 8

(a) (b)

Figure 1: (a) “Frowney-faced” point-set and (b) “Smiley-faced” point-set used to demonstrate the point-set divergence
measure.

(a) (b)

Figure 2: “Frowney-faced” (white) and “smiley-faced” (green) point-set displayed in Paraview along with the gradient
with respect to (a) the fixed point-set and (b) the moving point-set.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

References 9

[4] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical Recipes:
The Art of Scientific Computing. Cambridge University Press, 2 edition, 1992. 1

[5] N. J. Tustison and J. C. Gee. N-d Ck B-spline scattered data approximation. The Insight Journal, 2005.
1

[6] Nicholas J. Tustison, Jing Cai, Talissa A. Altes, G. Wilson Miller, Eduard E. de Lange, John P. Mugler
III, and James C. Gee. Pulmonary kinematics from 3-d hyperpolarized helium-3 tagged magnetic reso-
nance imaging. In Proceedings of the International Society for Magnetic Resonance in Medicine, 2008.
submitted. (document)

[7] Pascal Vincent and Yoshua Bengio. Manifold parzen windows. In S. Thrun, S. Becker, and K. Ober-
mayer, editors, Advances in Neural Information Prcessing Systems, pages 825–832. MIT Press, 2003.
1.1

[8] Fei Wang, Baba C. Vemuri, and Anand Rangarajan. Groupwise point pattern registration using a novel
CDF-based Jensen-Shannon divergence. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2006. 1.1

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

