Scene Graph: Visualization of Coordinate Systems in the Image Guided
Surgical Toolkit

Janakiram Dandibhotla

Division of Computing Studies

Arizona State University at the Polytechnic Campus
jdandibh@asu.edu

Kevin A. Gary

http://lead4.poly.asu.edu/

Division of Computing Studies

Arizona State University at the Polytechnic Campus
kgary@asu.edu

Abstract

In a surgical environment, there are many tools and objects
(including the patient) being used. In a computer-aided
surgery, the position of each of these tools in the operating
room is very critical and generally will be tracked in their
own coordinate systems. To show the surgeon a real time
picture of the operating environment on a computer
monitor, we need to know the position of each object with
respect to one common coordinate system, which in turn can
be achieved by knowing each coordinate system and the
transforms between them. Image-Guided Surgical Toolkit is
a software toolkit designed to enable biomedical
researchers to rapidly prototype and create new
applications for image-guided surgery. In IGSTK, in which
the coordinate systems and the transforms are being
successfully used, there is no central data structure or
repository, which will hold all the coordinate systems and
the transforms between them. Such a data structure could
help the IGSTK software developers to have more
confidence in the code they have written. This project
develops a tool, which will create such a data structure and
dynamically show the changes to it, to help such software
developers to write better code.

1 Problem Statement

The current IGSTK software developers do not have a way
to troubleshoot and verify whether the coordinate systems
and transforms, which they have created for the IGSTK
application, are being properly constructed and applied. To
do this troubleshooting effectively, a data structure, which
can hold references to all the coordinate systems being used
and the transformations between them is needed. This data
structure can be called a “Scene Graph” since this describes
the scene of the operating theater at any given point.
Without the scene graph, keeping track of the coordinate
systems and the relations between them is tough. There is no
way to observe the details when a coordinate system is
attached to another one or when it is detached. There are
also plenty of advantages by creating a Scene Graph. A
snapshot of all the coordinate systems and their relationships
can be had at any given point of time. The change in
relationships between the coordinate systems can be notified
to the user. The transforms currently being used can be
highlighted.

2 Introduction
2.1 What is IGSTK?

The Image-Guided Surgery Toolkit (IGSTK) is an open-
source C++ software library that provides the basic

components needed to develop image-guided surgery
applications [1]. IGSTK is built on top of several open
source software packages, listed below, and FLTK (Fast
Light Tool Kit), one among the GUI toolkits, is used to
create the dynamic scene graph window.

. The Insight Segmentation and Registration Toolkit
(ITK)

. The Visualization Toolkit (VTK)

. GUI toolkits such as FLTK and Qt

N

IGS Application

N
IGSTK) (IGSTK+FLTK \[IGSTK+QT

Operating System

)
)
ITK VTK /(FLTK][Qr W
)

Y Yan
L

Figure 2.1 IGSTK Layered Architecture.

IGSTK follows state machine architecture. Every
component in the operation theater is represented in its own
state machine. The communication between the state
machines is also isolated. If one of the state machines wants
to perform an operation on any other state machine, it has to
request the state machine. If the requested state machine can
process the request, it will process, or it doesn’t. In either
case the requested state machine sends an event back to the
requesting state machine. This has been dealt in depth in
section 2.3.

IGSTK has basically four types of components, which have
co-ordinate systems associated with them. They are View,
Tracker, TrackerTool and SpatialObject. The functionality
of the View class is to aggregate all the graphical
representations of spatial objects into one scene. The
Tracker class presents a generic interface for tracking the
positions of objects in IGSTK. The TrackerTool class
provides a generic implementation of a tool of a tracker.
This may contain hardware specific details of the tool, along
with the fields for position, orientation and error associated
with the measurement used. And the SpatialObject class is
intended to describe objects in the surgical scenario [2].
Each of these types of classes have a coordinate system
object (igstk::CoordinateSystem) associated with them. Any
other classes derived from these basic classes also have the
access to the coordinate system object.

2.2 Scene Graph
The developers need a way to verify and troubleshoot the

coordinate systems and the transforms created by them.
Since coordinate systems form the main part of IGSTK

application development, there should be a way to check if
they are created in the desired manner. This can be done, in
one way, by having a data structure, which holds all the
references of the coordinate systems and the transforms and
the developers can check this data structure at any given
point of time to verify the functionality.

To show all the components, with respect to each other, on a
computer screen requires that all the points to be shown
should be transformed to one coordinate system. To achieve
this, there should be transformations calculated for each of
the coordinate system with respect to at least one of other
coordinate system. This is exactly being done in IGSTK.
Every coordinate system has a reference to its parent
coordinate system and it also has the transform required to
translate a point from this coordinate system to the parent
coordinate system. So, it should not be astonishing to see
almost all of the components requesting the coordinate
system objects they hold on to, to set the parent coordinate
system and the transform between them.

Since each of the above-mentioned four types of objects has
a coordinate system associated with it, there will be many
coordinate system objects and transforms in the IGSTK
application. It would be nice to have a central repository
holding on to these coordinate system objects and the
transforms between them. It would also be very useful to
have a graph to represent this repository at any point of time
and the changes this repository has gone through. There is
no such central repository in IGSTK at present. This project
attempts to fulfill that purpose, to create a data structure to
hold all the coordinate system objects and the relationships
between them. This data structure will be used in many
ways to help the developer of the IGSTK application and at
last the user of that IGSTK application.

The data structure holding all the coordinate systems as
discussed above will be called “SceneGraph” and the details
of creating this data structure will be discussed in the
coming sections.

2.3 Event—driven architecture

The communication between different components in
IGSTK follows an event-driven architecture. Each and every
component of IGSTK is a state machine in itself. So, if one
of the components wants to change the state of other
component, it has to request that component. When the
component being requested processes the request, an event
is generated as a result of the process and this event is sent
to all the observers of the event. The event generally is
associated with a payload and the data required by observers
is packed into the payload of the event.

In this project, the scene graph should be notified of any
new parent-child relationships being created among

coordinate systems to keep track of them. For this purpose a
new event has been created which will be invoked when
ever a new parent-child relationship has been created. The
payload of this event has the parent coordinate system, the
child coordinate system and the transform between them.
The coordinate system object invokes the event whenever a
parent and the corresponding transform are being set. The
scene graph is registered as an observer for the event and
thus the event is sent to it.

2.4 What is FLTK?

FLTK is the software used to show the scene graph
dynamically. This section will try to address what is FLTK
and the use of FLTK in this project will be discussed later.

Fast Light Tool Kit (FLTK) is cross-platform C++ GUI
toolkit for UNIX"/Linux® (X11), Microsoft” Windows",
and MacOS® X. FLTK provides modern GUI functionality
without the bloat and supports 3D graphics via OpenGL"
and its built-in GLUT emulation [5].

FLTK is one of the GUI tools supported by IGSTK. It is a
very convenient, simple, cross platform and fast to learn
GUI tool kit. FLTK also includes an excellent Ul builder
called FLUID that can be used to create applications in
minutes [5]. FLTK has many different types of components
to build UI like windows, buttons, dialogue boxes etc. Some
of these have been used to show the scene graph
dynamically in this project. It is also very easy to bring up a
window in any platform. Just two lines of code:

Fl Window * window = new FI_Window(200,300, "Test”),
window->show();

will create a new window of width 2000x, height 300px and
name as “Test”.

The scene graph can be changed by adding a relationship
between coordinate systems or by detaching the child from
the parent. These changes to the scene graph will be nice to
see if they happen dynamically on a screen, which draws the
latest version of scene graph. It would also be interesting to
a developer of IGSTK application to look at the transforms
currently being used as a highlighted path in the scene
graph. The FLTK window being developed to show this
dynamic nature incorporates both of these facilities an
IGSTK developer would want.

3 Requirements
Requirements of the project are listed below.

3.1 Creating a Scene Graph

The scene graph is a structure that arranges the logical and
often (but not necessarily) spatial representation of a
graphical scene [7]. A scene graph in the context of this
project is a data structure holding the relationships between
the coordinate systems at any given point of time. The data
structure used here is essentially a tree structure with
coordinate systems at its nodes and the transforms
representing the edges. The scene graph in this context can
also have multiple root nodes representing coordinate
systems having no parent set.

3.2 Export a snapshot of the scene graph

The scene graph created in requirement 3.1 should be
exportable with a button click to some format that can be
used to view it as an image. The file format chosen in this
project is .dot format. The dot tool from GraphViz can be
used to convert this .dot file to a .jpeg image with the graph
structure shown. The export should be allowed at any point
to get a snapshot of scene graph at that point.

3.3 Visual annotation of the graph

The graphical image created using DOT tool should be able
to clearly distinguish between different types of components
in the graph and the current path of transformations being
used. So, this means the graph should be visually annotated
using different colors and shapes to show the different types
of objects holding the reference to coordinate systems.

3.4 Dynamic display of scene graph

The scene graph changes in time by adding or deleting some
of the relationships among the coordinate systems. It would
be a nice idea to show the changes being made to the scene
graph dynamically on the GUI (a separate window). The
IGSTK application developer can check if those were the
changes he/she really intended to do.

3.5 Highlight a path used to compute transform

The dynamic scene graph tree as created in requirement 3.4
should be able to highlight the path used to compute the
particular transform in the application. There is only one
parent and an associated transform for any coordinate
system. To calculate transform from a coordinate system to
another coordinate system, which is not the parent, a path
has to be calculated so that we can reach the particular
coordinate system and calculate transform accordingly in the
path. It would be a very useful feature to have this path
highlighted in the dynamic scene graph window.

4 Design Approach — Scene Graph

4.1 The Scene Graph Design

A scene graph, in the context of this project, is a data
structure holding reference to all the coordinate systems and
the relationships, which exists between them. Since each
coordinate system can contain only one parent and the
corresponding transform, a “TREE structure” will be very
suitable in this scenario. A tree structure generally has nodes
and edges associated with it. The edges will be directed
from the child to the parent.

The nodes of the tree structure discussed above should be a
representation of a coordinate system and the edges will the
relationship between the different nodes, which is the
transform. We can also incorporate the functionality of
edges into the nodes, since one child has only one parent.
The transform, which ought to be represented by edges, can
be integrated with the child node. So, the edges will now
just mean the direction of the relationship and will not have
any payload or data associated with them.

The node is also used for drawing the scene graph. So, the
details regarding the position of the node in the drawing
should also be incorporated in the node. To show the current
path being used to calculate the transform, we can also add
another flag that can be used to highlight the path
accordingly.

With all the details discussed above, the node
(igstk::SceneGraphNode class) should have these properties:

i) Name of the node.

i) Type of the coordinate system.
(One of the four types: SpatialObject, Tracker,
TrackerTool or View).

iii) Pointer to parent node.
iv) List of pointers to the child nodes.
V) X coordinate and Y coordinate.

(The x and y coordinates of the corner of the
node to be drawn on the FLTK scene graph

window).
vi) Flag to set if this node is in the current path.
vii) Transform to the parent.

The scene graph consists of a list of root node pointers.
There might be the case of multiple root nodes because of
the design of the child-parent coordinate system object
relations. So accommodate this, the scene graph has a “list
of root node pointers”.

For example, a snapshot of the scene graph can look as
below:

Figure 4.1 Example scene graph.

The example scene graph as shown above has two root
nodes and each of them has two child nodes. Some of the
child nodes have children and some do not. This diagram
implies that the RootNodel coordinate system is the parent
of Nodel coordinate system. The transform between these
coordinate systems is stored in the child node, in this case
Nodel. Each of the nodes has the pointer to the coordinate
system objects (igstk::CoordinateSystem) used in IGSTK.

4.2 Coordinate systems in IGSTK

Coordinate systems are very important in IGSTK. IGSTK
has several types of components having coordinate systems
associated with them as discussed in section 2.1. Coordinate
system object is private and to access that, we need to go
through Coordinate system delegator class
(igstk::CoordinateSystemDelegator). Each one of the four
types of components (View, Tracker Tool, Tracker or
Spatial Object) has a coordinate system delegator associated
with them, which in turn can access the CoordinateSystem
class associated with it. The above-mentioned four types of
components are generic types and the real functionality for
different kinds of tools and instruments is incorporated in
the classes derived from them. So, each one these will be
having a coordinate system associated with them.

The coordinate system object is also a state machine in
IGSTK. This makes it easier to observe the coordinate
system, because observing the coordinate system state
machine and the events generated by it will be simple. A
coordinate system in IGSTK has a parent and a transform
with respect to the parent. Whenever a request is made to set
the parent and the corresponding transform of a coordinate
system, an event can be generated which will be used to
update the scene graph. The details needed by the scene
graph from the event are:

i) Parent coordinate system.
i) Child coordinate system.
iii) Transform from child to parent coordinate

system or vice-versa.

So an event has been created to exactly accommodate this
and with the payload of the parent and child coordinate
systems and the transform. The header file is
(igstkCoordinateSystemSetTransformResult.h) and the class
is (igstk::CoordinateSystemSetTransformResult).

A SceneGraph class (igstk::SceneGraph) has been created to
hold the scene graph tree data structures. This class also has
all the logic to add and delete any relationships between the
coordinate systems. There is also a function in this class that
calls the FLTK GUI class, written separately as
igstk::SceneGraphUI class, to be shown and hidden
accordingly. All the logic to export the scene graph to .dot
format and to print the details of the scene graph to console
is also incorporated in this class.

4.3 Algorithms — SceneGraph

The algorithms to add and delete nodes in a scene graph are
pretty straightforward. The algorithm to add the nodes to the
scene graph is as follows:

An event is invoked whenever a parent is being set for a
coordinate system. The payload of the event gives all the
necessary details required to add it to the scene graph. The
payload consists of the parent coordinate system pointer,
pointer to child coordinate system and the transform
between them. When this event is received,

1) Get the parent coordinate system and check if a
node with the same name already exists.
i) If the parent node already exists, then create a

new child node with a reference to child
coordinate system and set the parent field
accordingly. Also add this child node to the list
of children in the parent node.

iii) If the parent node doesn’t exist, then create a
new parent node with a reference to parent
coordinate system and also create a child node
with a reference to child coordinate system.
Then set the parent in the child coordinate
system to be the parent just created and add the
child in the list of children in the parent node.
Then add the parent node to the list of root
nodes in the scene graph object.

In this algorithm, there is a need for optimization. Consider
the scenario as shown in the figure 4.1.

Now, the event got by the scene graph has the (parent, child)
pair to be (RootNodel, RootNode2). Then according to this
algorithm, the parent is checked for and RootNodel is will
be found. Then the RootNode2 will be added as child to
RootNodel. But, this will be duplication as shown in the
following figure.

Figure 4.2 Duplication of RootNode2.

So, to eliminate this scenario, we need to optimize the scene
graph whenever a node is added or deleted.

The algorithm for optimization will be as follows:

i) Check if any of the root nodes is already a
child node of some other node.
i) If this is the case, then attach this root node as

a child node to the node found to be its parent
and update the list of children in the parent
node.

iii) If nothing is found in step 1, do nothing.

According to this algorithm, if we optimize the above-
discussed scenario, we get the scene graph to look as below:

RootNodel

Figure 4.3 Scene Graph after optimization.

If a request to detach the parent from the child coordinate
system is made, the scene graph will get the corresponding
event and will adjust the graph accordingly, by deleting the
link between the corresponding nodes. In this process a new
root node might be created too.

5 Functional Design

5.1 Export scene graph

To take a snapshot of the scene graph at a given point of
time, the export functionality is provided. The export

functionality should facilitate an easy generation of a
graphical image of the scene graph. The format chosen in

this project is “.dot” format supported by a tool by name
“DOT” from GraphViz. In this format, the graphical image,
intended to be drawn, is described in a specific text format
and the DOT tool can generate an image from the .dot file.

For a small example, consider a graph having only one
parent and one child. To draw a graph directed from parent
to child, the following lines should be put in a “test.dot” file.
Here the PNode denotes the parent node and the CNode
denotes the child node.

digraph d {
PNode -> CNode;
/

The image is produces as follows.

Figure 5.1 Example image created by DOT tool.

There are many other customizations like the color of the
node, the size, type and color of the arrow pointing from
parent to child etc. The following command uses the DOT
tool to convert the file “test.dot” to “test.jpg” image file.

S3dot -Tjpg test.dot —o test.jpg

So, a snapshot of the scene graph can be very conveniently
exported at any time the application is running. For an
example of the .dot file created by the export functionality,
please see the appendix section.

5.2 Dynamic Scene Graph

The above-explained methodology cannot support dynamic
image generation of the changes made to the scene graph.
The dynamic nature of scene graph cannot be completely
understood by static snapshots of the scene graph at
particular intervals. Dynamic graphical image generation in
some form can help this dynamic nature of scene graph to be
studied in full. Also, all the paths used to calculate
transforms from one coordinate system to other are also very
difficult to show in the static image. For this purpose, this
project uses an FLTK window and other drawing tools
provided by FLTK in order to show the scene graph
dynamically. FLTK is a very efficient, lightweight drawing
tool although it has some drawbacks.

The Fast Light Tool Kit (FLTK) has many GUI widgets
used in drawing a scene graph. The basic widgets required
to draw a similar image as shown by the DOT tool are
“F1 Box” and “fl_line”. The major drawback though is that
there is no arrow widget in FLTK although it is not a big
constraint. The F1 Box widget can be used to draw the
nodes of the scene graph. The fl line needs to be used to
draw the arrows and links between the nodes of the scene
graph. The arrow can be drawn by calculating the end point
of a line and using “fl point” function to draw the
arrowhead.

To draw the boxes required to show the nodes, the x and y
coordinates of a corner of the box can be calculated and
stored in the node object. Since there can be many root
nodes associated with a scene graph, the window height and
width should be calculated before drawing the scene graph.
Then each of the root nodes of the scene graph is grouped
into an “F1_Group” object. Such groups created are then
added to the FLTK scene graph window. Each of the nodes
also needs its box representation. So, once the x and y
coordinates of the corner (top-left) corner of the box are
calculated, an F1_Box is created with those coordinates and
of height 20px and width 150px and label being the name of
the coordinate system.

5.2.1 Drawing the Scene Graph - Logic

Each group, representing one of the trees, will be drawn
from top to bottom. The height and width is calculated and
set. To calculate the height of each group, the depth of the
tree is calculated and multiplied with (height of each box +
height of the cushion space) to get the height in pixels. To
calculate the width, the maximum number of nodes at each
depth is calculated and this maximum number is multiplied
by (width of each box + cushion space). Once the height and
width is calculated, the x and y coordinates of each node are
calculated and stored in the node. The x and y coordinates
are calculated using the depth at which the current node is
and the number of boxes in that particular depth in the
current group.

Thus the x and y coordinates of each box are calculated.
Each box is then created with those coordinates and added to
the group, which finally will be added to the window. The
figure below shows an example of how a tree looks like.

M SceneGraph]

Tracker Ox02D1A2ES
MouseTrackerTool 0x02D25A9 ,

EllipsoidObject 0x02D15E00

View3D 0x02D2A1A8

CylinderObject 0x02D33240

Figure 5.2 Dynamic Scene Graph window.

In the above figure, there is only one tree and five nodes.
The x and y coordinates each node was calculated. Then the
boxes were created and added to the group. The group was
then added to the window. The lines have been created using
the fl_line function and the end points were given to this
function by getting the stored values of the x and y in the
boxes. Once the lines have been drawn, arrows were drawn
by filling out a small triangle at one end of the line.

5.2.2 Showing the transform path

To get a point value in one coordinate system from another
coordinate system, we need to transform the point by
rotation and translation. But, since in IGSTK, there is only
parent and transform being maintained per coordinate
system, we might need to transform the point to many
intermediate coordinate systems before we get the value in
required coordinate system. For example, consider a point in
CylinderObject coordinate system from Fig 5.2.1.1. The
application needs the point in EllipsoidObject coordinate
system. So, we can see from the graph that first, the point
needs to be transformed into many of the coordinate systems
in between (CylinderObject -> View3D -> Tracker ->
MouseTrackerTool ->EllipsoidObject) before converting
into the required coordinate system. It will be very useful to
the IGSTK application developer to see this path in the
scene graph. For example, in the figure shown below, the
path being used is highlighted in red.

M SceneGraph TSI E3

View3D 0x02869D070

EllipsoidObject 0x02866DA0 CylinderObject 0x028738D8

Figure 5.3 Scene Graph showing the transformation path.

To accommodate this behavior, a flag has been added into
each of the nodes to represent if it is in the current path
being shown. If the variable is flagged, the node is colored
in red, thus showing the path.

6 Results
6.1 Export scene graph

The export scene graph functionality as explained above
should create a .dot file. The .dot file will be used to create
the graphical image using DOT program from GraphViz.
One of the snapshots of the image created using the “Hello
World” program of IGSTK is as shown below.

Tracker 0x02D1A2E8

o

MouseTrackerTool 0x02D25A90

View3D 0x02D2A1A8

EllipsoidObject 0x02D15E00 CylinderObject 0x02D33240

Figure 6.1 Scene Graph image generated by DOT tool.

From this image the type of the node can be very easily
identified. Each one of the shapes used in the above figure
represents one of the four types of objects (SpatialObject,
Tracker, TrackerTool or View). The shapes used are:

Rectangle: Spatial Object
Trapezoid: Tracker
Hexagon: Tracker Tool
Octagon: View

The color of the shapes can also be changed and the
different types of nodes can clearly be distinguished. See
below figure.

Tracker 0x02D1A2E8

P

View3D 0x02D2A1A8

l

CylinderObject 0x02D33240

MouseTrackerTool 0x02D25A90

EllipsoidObject 0x02D15E00

Figure 6.2 Scene Graph image with borders colored.

The nodes can also be filled up with the respective colors
and that will be clearer. See the figure below.

Tracker 0x02D1A2E8

Figure 6.3 Scene Graph with nodes filled with colors.

The colors can be chosen as required and this provides a
very clear view of all the different types of components.

6.2 Dynamic scene graph

The dynamic scene graph functionality creates a new FLTK
window and shows the current scene graph in the window.

Example of a scene graph created by the Hello World
program of IGSTK is as seen below:

M SceneGraph 1]

Tracker Ox02D1A2ES
MouseTrackerTool 0x02D25A9 ,

EllipsoidObject 0x02015E00

View3D 0x02D2A1A8

CylinderObject 0x02D33240

Figure 6.4 Dynamic scene graph FLTK window for Hello
World IGSTK application.

The transforms being currently used can be shown on the
above window. This helps the developer to verify if the path
being used is what he/she is expecting. A screen shot of the
dynamic scene graph showing one of the path being used to
calculate transforms is as shown below:

M SceneGraph _[C1x]

View3D 0x02869D70

EllipsoidObject 0x02866DA0 CylinderObject 0x028738D8

Figure 6.5 Dynamic scene graph showing the transformation
path being used in the Hello World example.

7 Advantages for IGSTK application developer

The IGSTK application developer needs to have a way to
test and verify the application written. Troubleshooting the
coordinate systems and the transforms being used between
them is the important part of all the testing. This project
provides a tool to the developer to test the coordinate
systems and verify if the transforms are being used as
intended. The developer has also several advantages as
discussed below.

7.1 Re-check the relationships among the coordinate
systems

IGSTK applications are developed based on IGSTK
framework, which has many components having coordinate
systems. There will be many parent-child relationships set
among these coordinate systems, but there is no way to
check if the coordinate systems have been created as wanted
by the developer. The scene graph model helps to achieve
this confidence in the application developer. All the
relationships between the coordinate systems can be
checked and the relationships evaluated by exporting or
dynamically viewing the scene graph.

7.2 Check the transformation path

The dynamic window of scene graph, which shows the
transformation path, will help the developer to check if that
is what he/she is expecting. The current transformation path
being used by IGSTK application is shown on the FLTK
window for scene graph.

Also, the inclusion of the “export scene graph” and
“dynamic scene graph” functionalities in the IGSTK
application is very easy. The developer just needs to create a
reference to singleton scene graph and call a function to
export or pop up the FLTK window.

The IGSTK open source community, namely, Patrick Cheng
and Matt Turek, has reviewed this project work and the
community approves the work done for this project.

8 Future Work

The work done and the code written for this project will be
contributed back to open source project IGSTK and will be
part of IGSTK code base.

The project satisfies the initial need for the scene graph and
other functionalities, but certainly there are ways for
improvements and customizations. For example, the user
can be given a property to control which transformation
paths to show and what can be skipped. Some proposals for
future work include:

i) Export to different formats other than DOT.

i) Showing the transforms i.e., translations and
rotations among the coordinate system in some
form on the image.

iii) Extending the dynamic scene graph logic for
other Ul platforms like Qt.

iv) Allowing the wuser to control
transformation paths to be highlighted.

V) Allowing users to customize the look and feel
like the colors, shapes etc.

what

9 Acknowledgements

We are grateful to Patrick Cheng and Matt Turek from
IGSTK community for investing their time in helping us
throughout this project and validating it at the end.

10 References

[11 Kevin Cleary, “IGSTK The Book”, pp. 1-200, 2007.

[2] IGSTK Doxygen documentation [Online]
http://public.kitware.com/IGSTK/NightlyDoc/
(150¢t2008)

(3]
(4]

(3]

(6]
(7]

Herbert Schildt, “C++: The Complete Reference, 4th Edition”, pp. 50-
100, 2002.

What is Scene graph? [Online]
http://www.gamedev.net/reference/programming/features/scenegraph/
(200c¢t2008)

FLTK Documentation [Online]
http:/fitk.org/documentation.php/doc-1.1/toc.html

(10Nov2008)

Emden Gansner, Eleftherios Koutsofios and Stephen North, “Drawing
graphs with dot”, pp. 1-28, 2006.

Scene Graph definition — Wikipedia [Online]
http://en.wikipedia.org/wiki/Scene_graph

(15Nov2008)

11

Appendix

This is the .dot file created when running the hello world
example in IGSTK.

digraph G {

}

"Tracker 0x02DI1A2E8" -> "MouseTrackerTool
0x02D25490";

"MouseTrackerTool 0x02D25490" ->
"EllipsoidObject 0x02D15E00";

"Tracker 0x02D1A2E8" -> "View3D
0x02D2A1A48";

"View3D 0x02D241A8" -> "CylinderObject
0x02D33240";

"Tracker 0x02D1A2ES8"[shape=polygon, sides=4,
distortion=-0.7];

"MouseTrackerTool
0x02D25A490"[shape=polygon, sides=6];
"EllipsoidObject 0x02D15E00"[shape=polygon,
sides=4];

"View3D 0x02D2A41A8"[shape=polygon, sides=8],
"CylinderObject 0x02D33240"[shape=polygon,
sides=4];

The corresponding image generated by DOT tool is as

below:

MouseTrackerTool 0x02D25A90

Tracker 0x02D1A2E8

o

View3D 0x02D2A1A8

EllipsoidObject 0x02D15E00 CylinderObject 0x02D33240

Figure appl Scene Graph image from the .dot file above.

