
Implementation of weighted Dijkstra’s
shortest-path algorithm for n-D images

Release 1.00

Lior Weizman1, Moti Freiman1 and Leo Joskowicz1

January 29, 2009

1School of Engineering and Computer Science, The Hebrew University of Jerusalem, Israel

Abstract

This paper describes the ITK implementation of a shortest path extraction algorithm based on graph
representation of the image and the Dijkstra shortest path algorithm. The method requires the user to
provide two inputs: 1. path information in the form of start,end, and neighboring mode, the form of
which path is allowed to propagate between neighboring pixels, and 2. a weighting function which
sets the distance metric between neighboring pixels. A number of perspectives for choosing weighting
functions are given, as well as examples using real images. This paper can also serve as an example for
utilizing the Boost C++ graph library into the ITK framework.

Keywords: minimal path, centerline, vessel segmentation, ITK, boost

Contents

1 Introduction 1

2 Proposed class and implementation 2
2.1 Overview . 2
2.2 Weighting function . 3
2.3 Path information . 4

3 Examples 5
3.1 Gradient based weighting function. 6
3.2 Hybrid weighting function . 6

4 Software Requirements 7

1 Introduction

Shortest path is a useful algorithm for many applications including medical image analysis. In ITK only
fast-marching based shortest path is published [5]. In this work we present a shortest path algorithm based

2

on the graph representation of an image. This representation uses the “Boost” open source library under the
ITK framework. In this framework, variety of graph-based algorithms can be easily implemented on n-D
images. The main principle of utilizing the “Boost” libraryunder the ITK framework can be understood by
reviewing the implementation of the main filter presented inthis paper.

We use the “Boost” open source library in order to represent the image as a graph, and to find the shortest
path between two voxels in the image. Each voxel in the image is represented as a node in the graph. Adja-
cent nodes are connected by edges. The distance between two adjacent nodes is represented by the weight
of their connecting edge. The definition of the optimal weighting function is case dependent and should be
set by the user, along with the start and end voxels of the path. W describe two possible weighting func-
tions further in this paper. The shortest path between the start and the end voxels is found using Dijkstra’s
shortest-path algorithm [4].

We use the following notation. LetG = (V,E) be the image graph, whereV = {v1, ...,vn} are the graph
nodes (onevi per voxel) with their associated voxel intensity values,I(vi). The nodesvs and v f are the
user-defined start and end seed voxels.E = {(vi,v j)} are the graph edges, for all the pairs of neighboring
voxels. Each node has 4 or 8 neighbors for 2D images, or 6 or 26 neighbors for 3D images. Each edge has
a weight associated to it,w(vi,v j).

The shortest path is the sequence of edges connectingvs to v f for which the sum of its edge weights is
minimum. We use Dijkstras shortest-path algorithm whose worst-case complexity isO(n2), wheren is the
number of image voxels.

The definition of the weighting function of the edges dependswith the characteristics of the shortest path
that has to be found. In this paper, we present an example of finding the shortest path within a vessel in
a CT image, along with two possible weighting functions. Thefirst example is a simple gradient based
weighting function. The second example is a hybrid weighting function, which takes into account the
following requirements: a) The resulting path should not cross borders in the image, b) The resulting path
should be straight as possible, and c) The resulting path should be with homogeneous intensity. These
requirements are expressed by the following edge weightingfunction terms:

1. Intensity difference - the squared difference of the edge voxel intensity values:(I(vi)− I(v j))
2. Since

its value is large at boundary crossings, it prevents the path from crossing boundary areas.

2. Path smoothness - the angle between the edge voxels gradient directions:acos(∇vi·∇v j

|∇vi |·|∇vi |
). This term

prevents edges with large gradient differences to be added to the path.

3. Seed deviation intensity difference - the sum of the relative squared differences of the seeds and
edge voxel intensity values:(I(v j)− I(v f))

2 + (I(v j)− I(vs))
2. This term prevents the edges in the

path from diverging too much from the intensity values of theuser-selected seed points.

The weighting function can be replaced or modified in the codebelow, to meet the requirements of any other
specific application.

2 Proposed class and implementation

2.1 Overview

This project implements a number of auxiliary functions. The main filter to be employed by the user is
itk::ShortestPathImageFilter. This filter provides the functionality of finding the shortest path in an

2.2 Weighting function 3

(a) (b)

Figure 1: The shortest path in a 2D vessel image while using two different weighting functions: (a)

itk::WeightSimpleMetricCalculator and (b) itk::WeightGradAngleMetricCalculator.

image between two given start and end voxels. To define the weighting function between two neighboring
voxels, we define the abstract classitk::WeightMetricCalculator. An instance of a sub-class derived
from this class is required in order to feeditk::ShortestPathImageFilter with the required weighting
function.

Theitk::ShortestPathImageFilter represents the image as a graph, and finds the shortest path between
the start and end points using the Dijkstra shortest path algorithm. The graph representation and the path
extraction is done using the “Boost” C++ library. Therefore, a proper installation of the “Boost” library [3]
is required on the user’s machine.

2.2 Weighting function

Choosing an appropriate weighting function is the most important input required by the user. This is done
by extending the abstract classitk::WeightMetricCalculator into an appropriate sub-class, while im-
plementing the abstracts methodsGetEdgeWeight andInitialize (and optionally adding more methods,
as necessary).

For example, the class itk::WeightSimpleMetricCalculator is derived from
itk::WeightMetricCalculator and defines a simple gradient based weighting function. Another
example of defining a weighting function is the classitk::WeightGradAngleMetricCalculator. This
class implements a hybrid weighting function that is a sum ofa simple gradient based weight, the angle
between the gradients of the base voxel and its neighbor and the sum of the relative squared differences of
the seeds and edge voxel intensity values. Figure1 presents the obtained path with two different weighting
functions.

The main class, itk::ShortestPathImageFilter requires an instance of a class derived
from itk::WeightMetricCalculator used to compute the weighting function. In the ex-

2.3 Path information 4

ample below, an instance ofitk::ShortestPathImageFilter is fed by an instance of
itk::WeightGradAngleMetricCalculator.

1 //typedefs
2 typedef signed short PixelType ;
3 typedef unsigned char OutputPixelType;
4 const unsigned int Dimension = 2;
5 typedef itk::Image <PixelType , Dimension > ImageType ;
6 typedef itk::Image <OutputPixelType , Dimension > OutputImageType;
7 typedef itk::ShortestPathImageFilter <ImageType , OutputImageType >
8 itkShortestPathImageFilterType ;
9

10 // Class itk:: WeightGradAngleMetricCalculator is derived from
11 //itk:: WeightMetricCalculator and defines a hybrid weighting
12 //function
13 typedef itk::WeightGradAngleMetricCalculator <ImageType > MetricType ;
14 typedef itk::ImageFileReader < ImageType > ReaderType ;
15
16 // Instantiating and initializing metric object.
17 MetricType ::Pointer metric = MetricType ::New();
18 metric ->SetImage (reader ->GetOutput ());
19 metric ->SetStartIndex(start);
20 metric ->SetEndIndex(end);
21 metric ->Initialize ();
22 metric ->SetSigma (5.0);
23
24 // Instantiating itk:: ShortestPathImageFilter object and assigning
25 //the metric object
26 itkShortestPathImageFilterType ::Pointer
27 dijkstra =itkShortestPathImageFilterType ::New();
28
29 // Set the metric instance for the path
30 dijkstra ->SetMetric (metric);

2.3 Path information

Dijkstra shortest path extraction is a semi-automatic segmentation method - the user is required to pro-
vide start and end points. Our implementation also enables the user to select the possible path prop-
agation in the image. Setting the neighboring mode to full neighbors modes (by calling the method
SetModeToFullNeighbors()), will allow the path to propagate from an initial voxel to each and every one
of its neighbors (i.e. to one of its 8 or 26 neighbors in the 2D or 3D cases, respectively). Setting the neighbor-
ing mode to non-full neightbors mode (by calling the methodSetModeToNonFullNeighbors()) will allow
the path to propagate from a voxel only to one of its non-diagonal neighbors (i.e. to one of its 4 or 6 neigh-
bors in the 2D or 3D cases, respectively). In the example below, theitk::ShortestPathImageFilter is
is fed with the input image, start and end voxels and the neighboring mode. The last two lines in the code
below activates the filter and outputs the result into the output image pointer.

1 //Define the input image

5

(a) (b)

Figure 2:The shortest path in a 2D vessel image while using two different neighboring modes: (a) 4-neighbors mode

and (b) 8-neighbors mode.

2 dijkstra ->SetInput (reader ->GetOutput ());
3
4 //Define the start and end points
5 ImageType ::IndexType start , end;
6 start[0] = 21;
7 start[1] = 76;
8 end[0] = 52;
9 end[1] = 12;

10 dijkstra ->SetStartIndex(start);
11 dijkstra ->SetEndIndex (end);
12
13 //Define the neighboring mode
14 dijkstra ->SetModeToFullNeighbors ();
15 dijkstra ->Update ();
16 OutputImageType::Pointer resVolume = dijkstra ->GetOutput ();

Figure2 presents the effect of the neighboring mode selection on theextracted path.

3 Examples

In this section, wepresent two weighting functions, along with a proper usage of the main filter,
itk::ShortestPathImageFilter to extract the shortest path from an image.

To define a new weighting function, we define a new class derived from the abstract class
itk::WeightMetricCalculator. It implements the abstracts methodsGetEdgeWeight andInitialize
(and can optionally implement more methods, as necessary).

3.1 Gradient based weighting function 6

The methodGetEdgeWeight inputs two iterators as parameters. The first one points to the base voxel
and is of typeitk::ShapedNeighborhoodIterator< TInputImageType >. The second points to
one of the neighbors of the base voxels, therefore it is of type itk::ShapedNeighborhoodIterator<
TInputImageType >::Iterator. Examples for proper implementation of this method are given below.

3.1 Gradient based weighting function

The classitk::WeightSimpleMetricCalculator is derived fromitk::WeightMetricCalculator and
implements a simple gradient based weighting function, by implementing the functionGetEdgeWeight, as
follows:

1 template <class TInputImageType >
2 double
3 WeightSimpleMetricCalculator <TInputImageType >
4 :: GetEdgeWeight (const itkShapedNeighborhoodIteratorType &it1,
5 const itkShapedNeighborhoodIteratorforIteratorType &it2)
6 {
7 double a,b;
8 a=it1.GetCenterPixel();
9 b=it2.Get();

10 return (b-a)*(b-a);
11
12 }

3.2 Hybrid weighting function

The classitk::WeightGradAngleMetricCalculator is derived fromitk::WeightMetricCalculator
and implements a hybrid weighting function. The componentsof this weighting functions were previously
presented in Section1 .

To compute the second term of weighting function, a gradientimage has to be created. There-
fore, two data-members that hold the gradient image and the standard deviation of the gradient fil-
ter are defined, and the methodInitialize is updated to build the gradient image using the class
itk::GradientRecursiveGaussianImageFilter <TInputImageType> as follows:

1 template <class TInputImageType >
2 void WeightGradAngleMetricCalculator <TInputImageType >
3 :: Initialize ()
4 {
5 GradientRecursivePointer grad =
6 itkGradientRecursiveGaussianImageFilterType ::New();
7 grad_radius.Fill(1);
8 grad ->SetInput (m_Image);
9 grad ->SetSigma (m_Sigma);

10 grad ->Update ();
11 SetGradImage(grad ->GetOutput ());
12 }

7

To compute the third term of the weighting function, two additoinal data-members that hold the indices of
the start and end voxels of the path (as was entered by the user) are added, and the weighting function is
defined as follows:

1 template <class TInputImageType >
2 double
3 WeightGradAngleMetricCalculator <TInputImageType >
4 :: GetEdgeWeight (const itkShapedNeighborhoodIteratorType &it1,const
5 itkShapedNeighborhoodIteratorforIteratorType &it2)
6 {
7 IndexType &index1=it1.GetIndex ();
8 unsigned int i = it2.GetNeighborhoodIndex ();
9 PixelType a,b;

10 a=it1.GetCenterPixel();
11 b=it2.Get();
12 double iDifference=(b-a)*(b-a);
13 grad_radius.Fill(1);
14 itkShapedNeighborhoodGradIteratorType grad_it1 (grad_radius ,
15 m_GradImage , m_GradImage ->GetRequestedRegion ());
16 grad_it1 .SetLocation(index1);
17 GradPixelType a_grad=grad_it1 .GetCenterPixel();
18 GradPixelType b_grad=grad_it1 .GetPixel (i);
19 double pSmoothness=fabs((acos((a_grad*b_grad)/(a_grad.GetNorm ()*
20 b_grad.GetNorm ())) / M_PI))*10000;
21 PixelType startValue =m_Image ->GetPixel (m_StartIndex);
22 PixelType endValue =m_Image ->GetPixel (m_EndIndex);
23 double sIDifference=(b-startValue)*(b-startValue)+
24 (b-endValue)*(b-endValue);
25 double weight=iDifference+pSmoothness+sIDifference;
26 return weight;
27 }

The user can replace the weighting function with one that fitsthe specific requirements of the application.

We include the fileitkDijkstraFilterTest2D.cpp which produces the 2-D results presented in this
paper. Examples of finding the shortest path in a 3-D image canbe found in the included file
itkDijkstraFilterTest3D.cpp.

4 Software Requirements

You need to have the following software installed:

• Insight Toolkit 2.4 [2].

• CMake 2.2 [1].

• Boost C++ libraries 3.7 [3].

References 8

References

[1] http://www.cmake.org. 4

[2] http://www.itk.org. 4

[3] http://www.boost.org. 2.1, 4

[4] E. W. Dijkstra. A note on two problems in connexion with graphs.Numerische Mathematik, 1:269–271,
1959.1

[5] D. Mueller. Fast marching minimal path extraction in ITK. Insight Journal, 2008.
http://www.insight-journal.org/browse/publication/213. 1

http://www.cmake.org
http://www.itk.org
http://www.boost.org
http://www.insight-journal.org/browse/publication/213

	Introduction
	Proposed class and implementation
	Overview
	Weighting function
	Path information

	Examples
	Gradient based weighting function
	Hybrid weighting function

	Software Requirements

