Implementation of weighted Dijkstra’s
shortest-path algorithm for n-D images

Release 1.00

Lior Weizmanl, Moti Freiman! and Leo Joskowicz!

January 29, 2009

1School of Engineering and Computer Science, The Hebrewdusity of Jerusalem, Israel

Abstract

This paper describes the ITK implementation of a shortet patraction algorithm based on graph
representation of the image and the Dijkstra shortest ggtirithm. The method requires the user to
provide two inputs: 1. path information in the form of staytd, and neighboring mode, the form of
which path is allowed to propagate between neighboringlgib@nd 2. a weighting function which
sets the distance metric between neighboring pixels. A rurabperspectives for choosing weighting
functions are given, as well as examples using real images.paper can also serve as an example for
utilizing the Boost C++ graph library into the ITK framewaork

Keywords: minimal path, centerline, vessel segmentation, ITK, boost

Contents

1 Introduction 1

2 Proposed class and implementation 2
2.1 OVEIVIEBW . . . o o e 2
2.2 Weighting function. e 3
2.3 Pathinformation L 4

3 Examples 5
3.1 Gradient based weighting function. L 6
3.2 Hybrid weighting function. e 6

4 Software Requirements 7

1 Introduction

Shortest path is a useful algorithm for many applicatiortduding medical image analysis. In ITK only
fast-marching based shortest path is publistgdlp this work we present a shortest path algorithm based

on the graph representation of an image. This represemtasies the “Boost” open source library under the
ITK framework. In this framework, variety of graph-basedaithms can be easily implemented on n-D
images. The main principle of utilizing the “Boost” libramder the ITK framework can be understood by
reviewing the implementation of the main filter presentethia paper.

We use the “Boost” open source library in order to repredemtimage as a graph, and to find the shortest
path between two voxels in the image. Each voxel in the imagegresented as a node in the graph. Adja-
cent nodes are connected by edges. The distance betweedjagera nodes is represented by the weight
of their connecting edge. The definition of the optimal wéigdy function is case dependent and should be
set by the user, along with the start and end voxels of the patldescribe two possible weighting func-
tions further in this paper. The shortest path between #ré abd the end voxels is found using Dijkstra’s
shortest-path algorithn#].

We use the following notation. Lé&b = (V,E) be the image graph, wheké= {vi,...,v,} are the graph
nodes (oney per voxel) with their associated voxel intensity valugs;). The nodesss andvs are the
user-defined start and end seed vox&s= {(v;,vj)} are the graph edges, for all the pairs of neighboring
voxels. Each node has 4 or 8 neighbors for 2D images, or 6 oe@finors for 3D images. Each edge has
a weight associated to ity(Vv;, V;).

The shortest path is the sequence of edges connegtitigv; for which the sum of its edge weights is
minimum. We use Dijkstras shortest-path algorithm whosestvcase complexity i©(n?), wheren is the
number of image voxels.

The definition of the weighting function of the edges dependh the characteristics of the shortest path
that has to be found. In this paper, we present an exampledihdjrthe shortest path within a vessel in

a CT image, along with two possible weighting functions. Tingt example is a simple gradient based
weighting function. The second example is a hybrid weightinnction, which takes into account the

following requirements: a) The resulting path should nossrborders in the image, b) The resulting path
should be straight as possible, and c) The resulting patbldghme with homogeneous intensity. These
requirements are expressed by the following edge weiglftingtion terms:

1. Intensity difference - the squared difference of the edge voxel intensity val(igs;) — I (v;))2. Since
its value is large at boundary crossings, it prevents thie fpam crossing boundary areas.

2. Path smoothness - the angle between the edge voxels gradient directiaemss(‘DD\Z“'_‘DDV\"M). This term

prevents edges with large gradient differences to be addéktpath.

3. Seed deviation intensity difference - the sum of the relative squared differences of the seeds and
edge voxel intensity valuesi (vj) — I (v¢))2+ (1(vj) — 1 (vs))2. This term prevents the edges in the
path from diverging too much from the intensity values of tiser-selected seed points.

The weighting function can be replaced or modified in the dmalew, to meet the requirements of any other
specific application.

2 Proposed class and implementation

2.1 Overview

This project implements a number of auxiliary functions.eTrhain filter to be employed by the user is
i tk::ShortestPathl nageFi |t er. This filter provides the functionality of finding the shatgoath in an

2.2 Weighting function 3

(@) (b)

Figure 1. The shortest path in a 2D vessel image while using two different weighting functions: (a)
i tk::\WeightSinpleMetricCalculator and (b)itk:: Wi ght GadAngl eMetricCal cul ator.

image between two given start and end voxels. To define thghtileg function between two neighboring
voxels, we define the abstract clads: : i ght Met ri cCal cul at or. An instance of a sub-class derived
from this class is required in order to feetk: : Short est Pat hl mageFi | t er with the required weighting
function.

Thei tk:: Shortest Pat hl mageFi | t er represents the image as a graph, and finds the shortest patehe
the start and end points using the Dijkstra shortest paitritthgn. The graph representation and the path
extraction is done using the “Boost” C++ library. Therefaagroper installation of the “Boost” librana]

is required on the user’'s machine.

2.2 Weighting function

Choosing an appropriate weighting function is the most irtgst input required by the user. This is done
by extending the abstract claissk: : i ght Met ri cCal cul at or into an appropriate sub-class, while im-
plementing the abstracts methdais EdgeWei ght andlinitiali ze (and optionally adding more methods,
as necessary).

For example, the class itk::WightSinpleMetricCal cul ator is derived from
itk::WeightMetricCal culator and defines a simple gradient based weighting function. Herot
example of defining a weighting function is the clask: : Wi ght GradAngl eMetri cCal cul ator. This
class implements a hybrid weighting function that is a suna sfimple gradient based weight, the angle
between the gradients of the base voxel and its neighborrensiuim of the relative squared differences of
the seeds and edge voxel intensity values. Fidyseesents the obtained path with two different weighting
functions.

The main class, itk:: ShortestPathlmageFilter requires an instance of a class derived
from itk::WightMetricCalculator used to compute the weighting function. In the ex-

O© 0O ~NO O WNPEF

1

2.3 Path information 4

ample below, an instance ofitk::ShortestPathlmgeFilter is fed by an instance of
i tk::Weight GadAngl eMetricCal cul ator.

Il typedefs

typedef signed short Pixel Type;

typedef unsigned char OutputPixel Type;

const unsigned int Di mensi on = 2;

typedef itk::Image<Pixel Type, Dimension > |mageType;

typedef itk::Image<OutputPixel Type, Dimension > Qutputl mageType;

typedef itk:: ShortestPathl mageFilter <lmageType, OutputlmageType >
i tkShortestPathl mageFilterType;

Il Class itk:: WeightGradAngl eMetricCalculator is derived from
[litk:: WeightMetricCalculator and defines a hybrid weighting

[/ function

typedef itk:: WeightGradAngl eMetricCal cul ator <l mageType> MetricType;
typedef itk::|mageFil eReader < | mageType > ReaderType;

Il Instantiating and initializing metric object.
MetricType:: Pointer metric = MetricType:: New();
metric->Setl mage(reader - >Get Out put ());
metric->SetStartlndex(start);
metric->Set Endl ndex(end);

metric->lnitialize();

metric->SetSigma(5.0);

Il Instantiating itk:: ShortestPathl mageFilter object and assigning
//the metric object
itkShortestPathl mageFilterType:: Pointer

dij kstra=itkShortestPathl mageFilterType:: New();

Il Set the metric instance for the path
dijkstra->SetMetric(metric);

2.3 Path information

Dijkstra shortest path extraction is a semi-automatic ssdation method - the user is required to pro-
vide start and end points. Our implementation also enalblesuser to select the possible path prop-
agation in the image. Setting the neighboring mode to fuihimeors modes (by calling the method
Set ModeToFul | Nei ghbor s()), will allow the path to propagate from an initial voxel tookeand every one
of its neighbors (i.e. to one of its 8 or 26 neighbors in the 2B cases, respectively). Setting the neighbor-
ing mode to non-full neightbors mode (by calling the metBetdvbdeToNonFul | Nei ghbor s()) will allow

the path to propagate from a voxel only to one of its non-diadjaeighbors (i.e. to one of its 4 or 6 neigh-
bors in the 2D or 3D cases, respectively). In the examplenpeateei t k: : Short est Pat hl nageFi | ter is

is fed with the input image, start and end voxels and the teighg mode. The last two lines in the code
below activates the filter and outputs the result into th@wauimage pointer.

/| Define the input image

(@) (b)

Figure 2:The shortest path in a 2D vessel image while using two different neighboring modes: (a) 4-neighbors mode
and (b) 8-neighbors mode.

dijkstra->Setlnput (reader->GetQutput ());

/| Define the start and end points
| mgeType:: |l ndexType start, end;

start[0] = 21,
start[1] = 76;
end[0] = 52;
end[1] = 12;

dijkstra->Set Startlndex(start);
dijkstra->Set Endl ndex (end);

/| Define the neighboring mode

dijkstra->Set ModeToFul | Nei ghbors ();

dijkstra->Update();

Out put | mageType:: Pointer resVolume = dijkstra->GetQutput ();

Figure2 presents the effect of the neighboring mode selection oextracted path.

3 Examples

In this section, wepresent two weighting functions, alonghwa proper usage of the main filter,
i tk::ShortestPathl nageFi | t er to extract the shortest path from an image.

To define a new weighting function, we define a new class derifftem the abstract class
i tk::WeightMetricCal cul ator. Itimplements the abstracts methdgs EdgeVi ght andlnitialize
(and can optionally implement more methods, as necessary).

O©oO~NOULD,WNPE

Y
N R O

O~NO UL, WN P

3.1 Gradient based weighting function 6

The methodCGet EdgeVeéi ght inputs two iterators as parameters. The first one points édotise voxel
and is of typeitk:: ShapedNei ghborhoodlterator< TlnputlmgeType >. The second points to
one of the neighbors of the base voxels, therefore it is of tyk: : ShapedNei ghbor hoodl t er at or <
Tl nput | mageType >::1terator. Examples for proper implementation of this method arerglvelow.

3.1 Gradient based weighting function

The class t k: : Wi ght Si npl eMet ri cCal cul at or is derived fromi t k: : Wi ght Metri cCal cul at or and
implements a simple gradient based weighting functionnigglémenting the functiofet Edge\éi ght , as
follows:

templ ate<cl ass Tl nputl mageType >

doubl e

Wei ght Si mpl eMet ri cCal cul at or <Tl nput | mageType >

.. Get EdgeWei ght (const itkShapedNei ghborhoodlteratorType &itl,
const itkShapedNei ghborhoodlteratorforlteratorType &it2)

{
doubl e a, b;
a=itl. Get CenterPixel ();
b=it2. Get();
return (b-a)*(b-a);
}

3.2 Hybrid weighting function

The class t k: : Wi ght GradAngl eMet ri cCal cul at or is derived fromi t k: : Wi ght Met ri cCal cul at or
and implements a hybrid weighting function. The componeitbis weighting functions were previously
presented in Sectioh.

To compute the second term of weighting function, a gradiemige has to be created. There-
fore, two data-members that hold the gradient image and tdnedard deviation of the gradient fil-
ter are defined, and the methoditialize is updated to build the gradient image using the class
i tk:: Gadient RecursiveGaussi anl mageFi | ter <TlnputlmgeType> as follows:

templ ate<class TlInputl mageType >
voi d Wei ght GradAngl eMetricCal cul ator <Tl nput| mageType >
codnitialize()
{
Cradi ent Recur si vePoi nter grad =
itkGradi ent RecursiveGaussi anl mageFilterType:: New()
grad _radius. Fill (1);
grad->Set|nput (m. mge);
grad->SetSigma (m Sigma);
grad->Update();
Set Gradl mage(grad->Get Qut put ());

O~NO O, WN P

To compute the third term of the weighting function, two dduhial data-members that hold the indices of
the start and end voxels of the path (as was entered by thparseadded, and the weighting function is

defined as follows:

templ ate<cl ass Tl nputl mageType >
doubl e
Wei ght Gr adAngl eMet ri cCal cul at or <Tl nput | mageType >
.. Get EdgeWei ght (const itkShapedNei ghborhoodlteratorType &itl, const
it kShapedNei ghbor hoodlteratorforlteratorType &it2)
{
IndexType &indexl=itl. Getlndex();
unsigned int i = it2. GetNeighborhoodlndex();
Pi xel Type a, b;
a=itl. Get CenterPixel ();
b=it2. Get ();
double iDifference=(b-a)*(b-a)
grad radius. Fill (1);
i tkShapedNei ghbor hoodGradlteratorType grad_itl(grad_radius,
m Gradl mage, m Gradl mage->Get Request edRegi on())
grad_itl. SetLocation(indexl);
CGradPi xel Type a _grad=grad _it1l. GetCenterPixel ();
CGradPi xel Type b_grad=grad_itl. GetPixel (i);
doubl e pSmoot hness=fabs((acos((a_grad*b_grad)/(a_grad. Get Norm() *
b _grad. GetNorm())) / MPI))*10000;
Pi xel Type startValue=m | mage->GCetPixel (m Startlndex);
Pi xel Type endVal ue=m | mage - >Get Pi xel (m_Endl ndex);
double sIDifference=(b-startValue)*(b-startValue)+
(b-endVval ue)*(b-endVal ue);
doubl e wei ght =i Di fference+pSmoot hness+s| Difference;
return weight;

}

The user can replace the weighting function with one thathgsspecific requirements of the application.

We include the filei t kDij kstraFi | ter Test 2D. cpp which produces the 2-D results presented in this
paper. Examples of finding the shortest path in a 3-D image lwarfound in the included file
i tkDijkstraFilterTest3D. cpp.

4 Software Requirements
You need to have the following software installed:

e Insight Toolkit 2.4 PJ.
e CMake 2.2 1].

e Boost C++ libraries 3.73).

References 8

References

[1] http://ww. creke. org. 4
[2] http://ww.itk.org. 4
[3] http://ww.boost.org. 2.1, 4

[4] E. W. Dijkstra. A note on two problems in connexion wittaghs.Numerische Mathematik, 1:269-271,
1959.1

[5] D. Mueller. Fast marching minimal path extraction in ITK Insight Journal, 2008.
http://ww.insight-journal.org/browse/publication/213.1

http://www.cmake.org
http://www.itk.org
http://www.boost.org
http://www.insight-journal.org/browse/publication/213

	Introduction
	Proposed class and implementation
	Overview
	Weighting function
	Path information

	Examples
	Gradient based weighting function
	Hybrid weighting function

	Software Requirements

