Information-Theoretic Directly Manipulated

Free-Form Deformation Labeled Point-Set
Registration

Nicholas J. Tustison, Suyash P. Awate and James C. Gee

February 3, 2009

Penn Image Computing and Science Laboratory, University of Pennsylvania, USA

Abstract

Our previous contributions to the ITK community include a generalized B-spline approximation scheme
[3] as well as a generalized information-theoretic measure for assessing point-set correspondence known
as the Jensen-Havrda-Charvat-Tsallis (JHCT) divergence [6]. In this submission, we combine these
two contributions for the registration of labeled point-sets. The transformation model which uses the
former contribution is denoted as directly manipulated free-form deformation (DMFFD) and has been
used for image registration [5]. The information-theoretic approach described not only eliminates exact
cardinality constraints which plague exact landmark matching algorithms, but it also incorporates the
local point-set structure into the similarity measure calculation. Although theoretical discussion of these
two components is deferred to other venues, the implementation details given in this submission should
be adequate for those wishing to use our algorithm. Visualization of results is aided by another of our
previous contributions [4]. Additionally, we provide the rudimentary command line parsing classes used
in our testing routines which were written in the ITK style and also available to use consistent with the
open-source paradigm.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 2

2 Command Line Parser 2

3 Point-Set Registration 5
3.1 Command Line Call for the Testing Routine 5
3.2 Additional ITKClasses e e e e 7

3.3 Miscellany L e e e e 7

4 Examples 8
41 Smileyvs. Frowney e e 8
42 SpheretoCube. e 8

1 Introduction

Various algorithms have been developed for the registration of various geometric primitives, e.g. surfaces,
curves, and points. One such algorithm included in the ITK library is the well-known iterative closest point
(ICP) algorithm of Besl and McKay [2]. Since points are perhaps the simplest of all geometric primitives, the
utility of a good point-set registration algorithm is significant.

There are two theoretical contributions that we make in this work which will be only mentioned briefly as the
theoretical details are, or hopefully will be, delineated elsewhere. In [5], we explain that traditional gradient-
based FFD image registration schemes are intrinsically susceptible to problematic energy topographies. In
the same publication we derive a preconditioned gradient which provides a significant improvement over pre-
vious algorithms. We denote this new FFD registration scheme as directly manipulated free-form deformation
(DMFFD) image registration. Since these susceptibilities are general they also apply to point-set registration
schemes for which the DMFFD remedy is also applicable.

In addition to defining a novel transformation model, we employ a generalized information-theoretic point-set
measure known as the Jensen-Havrda-Charvat-Tsallis (JHCT) divergence [6]. This measure allows for con-
trolling the emphasis between robustness and sensitivity with a single tunable parameter. Also considered
in the assessment of point-set correspondence is the local structure of the point-sets themselves. Theo-
retical details as well as the results from extensive testing on data from medical imagery will (hopefully) be
forthcoming.

2 Command Line Parser

Antecedent to discussion of the point-set algorithm itself we give a brief discussion of our ITK command
line parsing classes as we use them in our testing. In addition to our testing routine, they were originally
developed for and are currently being used in an open-source image registration suite known as Advanced
Normalization Tools (ANTs)[1] which is also ITK-based."

The two relevant command line parsing classes are:

e CommandLineOption

e CommandLineParser

The first class contains the necessary functionality for an individual command line option. An option can
have 0 or more values with each value holding 0 or more parameters. Each option also has a short name

N.B. We are not encouraging people to use our command line parsing routines (although they are certainly welcome to do so).
However, It is merely our preference for the discussed style of command line parsing, as opposed to the routines in getopt.h already
available, that we designed our own. Those who prefer the getopt.h routines are perfectly welcome to wrap the point-set registration
classes in such a framework and it should be straightforward to do so. That is one of the benefits of ITK.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

662
663
664

608
609
610
611
612
613
614
615
616
617

394
395
396
397
398
399
400
401
402

of type char (invoked by *-’), a long name of type std::string (invoked by ‘-), and a description of type
std::string.

For example, suppose we were creating an image registration program which has several transformation
model options such as ‘rigid’, ‘affine’, and ‘deformable’. An instance of the command line option could have
a long name of “transformation”, a short name of ‘t’, and the description “Transformation model—rigid, affine,
or deformable”. The values for this option would be “rigid”, “affine”, and “deformable”. Each value would then
hold parameters that correspond to that value. For example, a possible subsection of the command line for
calling this fictional image registration program could be

--transformation rigid[parameterl]
or
-t affine[parameterl,parameter?2,parameter3]

The parsing class, CommandLineParser, takes as input the standard argc, argv variables, parses the input,
and stores them in a data structure of options. This class also contains routines for converting types including
std::vector using X’ as a delimiter. For example, | can specify the 3-element std: :vector {10, 20, 30}
on my command line as “10x20x30”.

Setting up possible options can perhaps best be understood by viewing the calls in our testing routine
itkDMFFDLabeledPointSetRegistrationFilterTest.cxx. After instantiating the command line parser,
we set the command and command descriptions (for documentation purposes)

itk::CommandLineParser::Pointer parser = itk::CommandLineParser::New();
parser->SetCommand (argv[0]);
parser->SetCommandDescription("DMFFD Labeled Point-Set Registration");

and initialize the command line options. For example, setting up the “optimization” option is carried out as
follows:

std::string description =

std::string("[maximumNumberOfIterationsAtEachLevel,") +
std::string("<gradientScalingFactor (s)>,<lineSearchIterations>,") +
std::string("<lineSearchMaximumStepSize>]");

OptionType::Pointer option = OptionType::New();
option->SetLongName ("optimization");
option->SetShortName('z’);
option->SetDescription(description);
parser->AddOption(option);

Once the parser and command line options are initialized, the user can then extract the values and param-
eters from the parser itself. Again, we return to our “optimization” example. After the command line is read,
the code snippet for reading the “optimization” values and parameters is given in lines 394-449.

Jxx
* Set optimization variables
*/

if(verbose)

{

std::cout << "Setting optimization variables." << std::endl;

}

typename itk::CommandLineParser::OptionType::Pointer optimizationOption =

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

parser->GetOption("optimization");

if(!'optimizationOption || optimizationOption->GetNumberOfParameters() < 1)
{
std::cerr << "Incorrect optimization option specification." << std::endl;
std::cerr << " " << optimizationOption->GetDescription () << std::endl;

return EXIT_FAILURE;

}
std::vector<unsigned int> numIterations = parser->template

ConvertVector <unsigned int>(optimizationOption->GetParameter (0));
typename RegistrationFilterType::ResizableUIntArrayType numberOfIterations;

numberOfIterations.SetSize(numlIterations.size ());

for(unsigned int i = 0; i < numlterations.size(); i++)
{
numberOfIterations[i] = numIterations([i];

}
registrationFilter->SetMaximumNumberOfIterations (numberOflIterations);
if(optimizationOption->GetNumberOfParameters () > 1)
{
std::vector<typename RegistrationFilterType::RealType> gradFactors =
parser->template ConvertVector<typename RegistrationFilterType::RealType>(
optimizationOption->GetParameter(1));
typename RegistrationFilterType::ResizableRealArrayType
gradientScalingFactors;
gradientScalingFactors.SetSize(numIterations.size());
if(gradFactors.size() != numIterations.size())
{
gradientScalingFactors.Fill (gradFactors[0]);
}
else
{
for(unsigned int i = 0; i1 < gradFactors.size(); 1i++)
{
gradientScalingFactors[i] = gradFactors[i];
}
}
registrationFilter->SetGradientScalingFactor (gradientScalingFactors);
}
if(optimizationOption->GetNumberOfParameters () > 2)
{
registrationFilter->SetlLineSearchMaximumIterations (parser->template
Convert <unsigned int>(optimizationOption->GetParameter(2)));
}
if(optimizationOption->GetNumberOfParameters () > 3)
{
registrationFilter->SetlLineSearchMaximumStepSize (parser->template
Convert <float>(optimizationOption->GetParameter(3)));
}

As seen on lines 402-403, we obtain the “optimization” option directly from the parser which has been as-
signed values and parameters based on what was actually written on the command line. Note that we could
have obtained the option using the short name, i.e. optimizationOption = paser->GetOption('z’).
We also include functions to convert types including vector types delimited by the character ‘x’. For example,
in our optimization framework, we allow for multiple B-spline resolution levels. This means that | can start out
with a relatively coarse B-spline grid and increase the resolution during the registration. Suppose | wanted 20
iterations at the first level, 10 iterations at the second level, and 5 iterations at the third and final level. The way
that this would be specified on the command line would be definecolorlistbackgroundgray1.0 --optimization

[30x20x10] The vector corresponding to this parameter could be obtained by using the ConvertVector
function as seen on lines 410-418. Similarly, we have a Convert function for non-vector types as shown on
lines 442-443.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

3 Point-Set Registration

In continuation with previous discussion, we first describe a typical command line call taken from one of
the tests contained in the accompanying CMakeLists.txt file. We then give an accounting of the classes
included in this contribution.

3.1 Command Line Call for the Testing Routine

A sample command line call from our set of tests is the following:

itkDMFFDLabeledPointSetRegistrationFilterTest 3 --point-sets [${CMAKE_SOURCE_DIR}/Data/sphere.vtk, ${
CMAKE_SOURCE_DIR}/Data/square.vtk] --transformation [3,1x1x1,${CMAKE_SOURCE_DIR}/Data/square.nii.gz] --labels
[1,0.5,1] --similarity [1.5,0.97,10,0,50,1,5,10] --optimization [20x10x5,4] --output ${CMAKE_BINARY_DIR}/psr_2 --

verbose

The first two arguments are the executable and the point-set dimension. The subsequent arguments are as
follows (optional parameters are enclosed by <>):

® -—-point-sets [fixedPointSet,movingPointSet, <numberOfFixedSamples>, <numberOfMovingSamples>]

— rfixedpointset! file containing the designated fixed point set. This file can be in the form of a label
image (e.g. ITK-snap segmentation image), a vtk file with scalar labels, or one can read in a
simple text file (the filename suffix must be ".txt") with the following format:

0 0 O 0
X1 1z label,
X2 y» 22 label,

Xn Yo 2Zn label,
0 0 O 0
For 2-D point-sets, the z-value is simply ignored. Specified as a file name.

— movingPointset: file containing the designated moving point set. Same file format possibilities as
for the fixed point-set. Specified as a file name.

— <numberOfFixedSamples>: humber of samples to be generated from the fixed point set. If not specified
the samples are the fixed points themselves. Specified as a scalar.

— <numberOfMovingSamples>: Number of samples to be generated from the moving point set. If not
specified the samples are the moving points themselves. Specified as a scalar.

® —-transformation [splineOrder,meshResolution,<domainImage>]

— splineorder: designates the order of the B-spline basis functions. Default is cubic (3) but projective
and piecewise projective are possible with order = 1, quadratic with order = 2. Higher orders > 3
are also possible. Specified as a scalar.

— meshResolution: Specifies the B-spline mesh resolution at the coarsest resolution level which dou-
bles for each resolution level. A 2-D 3 x 5 mesh resolution would be specified as “3x5” whereas
a 3-D 3 x 4 x 5 mesh resolution would be specified as “3x4x5”. The resolution at the next higher
level would be “6 x 8” (2-D) and “6 x 8 x 10” (3-D). Specified as a vector.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

3.1

Command Line Call for the Testing Routine 6

— <domainImage>: B-spline objects have finite domain support which must be specified. Common

practice for us is specifying this domain via the size, origin, and spacing information of an image.
Note that the image directional information is not used. If the domain image is not specified,
the bounding box is calculated from both point sets and used as the finite domain. If the image
domain is not specified, we arbitrarily chose to divide the resulting bounding box domain into
100 elements in each dimension and the spacing was calculated accordingly. Please note that
this division has no effect on the course of the registration as only the boundary of the domain
matters. However, it will affect the output deformation field as it is calculated based on this
domain. Specified as a file name.

® -—-optimization [maximumNumberOfIterationsAtEachLevel,<gradientScalingFactor(s)>,<lineSearchIterations>,<

lineSearchMaximumStepSize>]

naximunNumberOfIterations: Specifies the maximum number of conjugate gradient descent iterations
at each resolution level. This is designated in vector form, e.g. “10x5x3x1” designates four
resolution levels with the coarsest resolution level having a maximum of 10 iterations, the next
level having a maximum of 5 iterations followed by levels with respective maximums of 3 and 1
iterations. Specified as a vector for multiple levels or a scalar for a single level.

<gradientScalingFactor (s)>: The gradient step taken is based on the voxel spacing of the domain.
The gradient scaling factor(s) allow one to multiply the gradient by a single scalar factor for all
levels of the entire registration or one can specify a set of scalar factors corresponding to the
number of levels, e.g. 2 x 1 x 0.5 x 0.5 specifies a gradient scaling factor of 2 at the base level,
1 at the second level, and 0.5 for each of the top two levels. Specified as a vector or a scalar.

<numberOfLineSearchiterations>: humber of line search iterations for all resolution levels. Specified
as a scalar.

<linesearchMaximunStepSize>: This scalar acts as a governor for the step size taken during the line
search (based on the voxel spacing and gradient scaling factor at the current level). Specified as
a scalar.

® -—-labels [<whichLabels>,<labelPercentages>,<labelGradientWeights>]

— <whichlLabels>: Suppose we had fixed and moving point-sets with labels ‘1°,°5’, ’7’,’3’, and '12’ but

we only want to perform the registration with labels 1’ and 12’ and '3’. This parameter allows
one to do that by specifying this parameter as “1x12x3”. Specified as a vector for multiple labels
or a scalar for a single label.

<labelPercentages>: Given the previous example about registering points only with labels “1x12x3”,
suppose we only want to use 10% of the points with label ‘1°’, 35% of the points with label ‘12’ and
100% of the points with label ‘3’, we can do this by designating this parameter as “0.1x0.35x1.0”.
Specified as a vector for multiple labels or a scalar for a single label.

<labelGradientWeights>: @iven the previous example about registering points only with labels
“1x12x3”, suppose we want to weight the gradient of points with label ‘12’ twice as much as
the other two labels. We can do this by specifying this parameter as “0.5x1.0x0.5” or “1x2x1” or
“25.37x50.74x25.37” which should have equal effect. Specified as a vector for multiple labels or
a scalar for a single label.

® -—-similarity [alpha,annealingRate,pointSetSigma,<useReqularizationTerm>,<evaluationKNeighborhood>,<
useAnisotropicCovariances>, <covarianceKNeighborhood>, <kernelSigma>]: Each of these parameters are
explained in greater detail in our previous submission [6]. Each parameter is specified as a scalar.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]

Distributed under Creative Commons Attribution License

3.2 Additional ITK Classes 7

e ——output filebrefix: prefix for the output files comprised of deformation field component images (.nii.gz)
and warped point vik file. Specified as a string.

e ——verbose: If chosen, the course of the registration is printed to the screen.

3.2 Additional ITK Classes
In addition to the command line parsing classes discussed earlier, we provide the following classes:

e BSplineControlPointImageFilter: auxiliary class which produces a B-spline object from the con-
trol point grid produced as output from our earlier submission [3]. Also contains other useful utilities for
B-spline control point grids.

e DMFFDLabeledPointSetRegistrationFilter: main class for labeled point set registration.

e JensenHavrdaCharvatTsallisLabeledPointSetMetric: wrapper class for our earlier submission
[6] to accommodate labeled point-sets.

e VectorImageFileReader/Writer: IO classes for reading/writing vector component images.

We have also included the necessary JHCT classes from [6] as well as a grid producing class [4] for defor-
mation visualization purposes and a utility which generates a deformed grid from a deformation field.

3.3 Miscellany

There are a couple of miscellaneous items of which we would like to inform the user. As we get feedback
from the users, we expect this section to grow.

e We would recommend that you compile in Release mode. This is done in the traditional manner using
the cmake menu.

e In specifying the fixed and moving points, the resulting output deformation field will be that sampled
field (from a continuous B-spline object) which ‘pushes’ the moving points to the ‘fixed’ points. However,
one might want to ‘pull’ one image into another image using point-sets derived from the image. This is
easily done by switching the fixed and moving point-sets. The user then has a deformation field which,
when applied by the itk::WarpImageFilter, can warp the image in the appropriate fashion. This is
used in one of our examples.

e We found it easiest to output the deformation field as component images. For example, if one specifies
the output prefix to be ‘psr’ the output will consist of two or three scalar images (dependent upon the
dimensionality) with the names given as psrilarpxvec.nii.gz, psrWarpyvec.nii.gz, and possibly
psrWarpzvec.nii.gz.

e The warped images used in the visualization of the Examples section are created using the
CreatellarpedGridImage utility that we have included in this submission. It’s fairly easy to use and is
derived from our earlier submission [6]. The call is as follows

Usage: CreateWarpedGridImage ImageDimension deformationField outputImage [directions,e.g. 1x0x0] [

gridSpacing] [gridSigma]

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

(b)
Figure 1:

So, given our earlier deformation field example, a sample call would be
Usage: CreateWarpedGridImage 3 psrWarp.nii.gz psrWarpedGrid.nii.gz

where we have omitted the components in our deformation field file name.

4 Examples

The following 2-D and 3-D examples are reproduced using the tests in CMakeLists.txt. The second one
has been commented out due to timeout concerns during testing. However, the individual user should be able
to run the tests by uncommenting the lines or reproducing the appropriate command line calls themselves.
The examples should give the user a feel for the approximate parameter values used for various problems
although it is by no means exhaustive.

4.1 Smiley vs. Frowney

The following 2-D example (test PSR_1 in CMakeLists.txt) uses label images of a smiley face (Figure 1(a))
and and a frowney face (Figure 1(b)) created using ITK-SNAP. Note that there are five labels corresponding
to the sparse anatomical features in both faces. The smiley face is comprised of 3354 total points whereas
the frowney face is comprised of 3459 points where each labeled voxel constitutes a point.

After designating the frowney face as the moving point-set and the smiley face as the fixed point-set, we ran
the registration and obtained the results given in Figure 2. As we noted in our Miscellany section, we can
warp the smiley face image into the frowney face image using the resulting deformation field which is shown
in Figure 2(a). The corresponding warped grid image is given in Figure 2(b). We also show the warped
frowney face points in Figure 2(c) which were ‘pushed’ into the space of the smiley face points.

4.2 Sphere to Cube

Our second example illustrates the registration capabilities for two 3-D point-sets. Given the sampled cube
and sphere in Figure 3, we choose to register the cube to the sphere such that the cube comprises the
‘moving’ point-set and the the sphere comprises the ‘fixed’ point-set. In addition to displaying the registration

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

References 9

L -
L
r f'f‘
F i -
=
=1
- ::
am
_:h::
nv-::--
e
1 -]
|- -
(b) ()
Figure 2:

result in Figure 4(a), we show the resulting warped grid image showing the inverse deformation which pulls
the circle into the square.

References

[1] B. B. Avants, N. J. Tustison, G. Song, S. Das, J. Das, J. Pluta, and J. C. Gee. Ants: Advanced open
source tools for normalization and neuroanatomy. Available at: http://www.picsl.upenn.edu/ANTS/. 2

[2] Paul J. Besl and Neil D. McKay. A method for registration of 3-D shapes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 14(2):239-256, 1992. 1

[3] N.J. Tustison and J. C. Gee. N-d C¥ B-spline scattered data approximation. The Insight Journal, 2005.
(document), 3.2

[4] Nicholas J. Tustison, Brian A. Avants, and James C. Gee. Gridding graphic graticules. Insight Journal,
2007. (document), 3.2

[5] Nicholas J. Tustison, Brian B. Avants, and James C. Gee. Directly manipulated free-form deformation

image registration. IEEE Transactions on Image Processing, 2009. accepted for publication. (document),
y

[6] Nicholas J. Tustison, Suyash P. Awate, and James C. Gee. A novel information-theoretic point-set mea-

sure based on the Jensen-Havrda-Charvat-Tsallis divergence. Insight Journal, 2008. (document), 1, 3.1,
3.2,3.3

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

References 10

Figure 4: Registration results: (a) The cube (blue) and sphere (red) point-sets after registration. The warped
grid image showing the inverse deformation (‘pulling’ the sphere to the square).

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1452]
Distributed under Creative Commons Attribution License

