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We implement a warping method which is using the properties of elastic materials to compute the 

deformation between two images. The proposed elastic registration method incorporates the L2 

Kantorovich-Wasserstein distance, also known as the Earth Mover’s Distance (EMD), as a similarity 

measure. The implemented paper presents an efficient partial differential equation approach for a first-

order solution of this problem that is simpler than existing works suggested high-order solutions and is 

computationally simpler than existing works based on linear programming. 

 

Specifically, we implement the following paper 

Steven Haker, Lei Zhu, Allen Tannenbaum, and Sigurd Angenent, “Optimal mass transport for 

registration and warping”, International Journal of Computer Vision, 60(3), p. 225-240, 2004. 

 

1. Introduction 

 
Image to image registration is the process of aligning the different coordinate systems of two 

or more image data sets by computing a common reference frame between them. The 

registration allows the integration of multiple image data sets acquired with different 

modalities (MRI, CT, etc.), at different times and under varying patient pose and position. 

Normally, the registration transformation is computed to minimize a predefined similarity 

measure which quantifies how close an image set is from the other one. The implemented 
paper [1] presents a warping method, which is using the properties of elastic materials to 

compute the deformation between two images. The proposed elastic registration method 

incorporates the L2 Kantorovich-Wasserstein distance, also known as the Earth Mover’s 

Distance (EMD), as a similarity measurement. This similarity measure has 5 key advantages: 

1. It is parameter free; 2. it is symmetrical; 3. it requires no landmarks selection; 4. the 

solution is unique, and; 5. it considers changes in density that are resulted from changes in 

area or volume. The implemented paper presents an efficient partial differential equation 
approach for a first-order solution of this problem. The method is simpler than existing works 

suggested high-order solutions and is computationally simpler than existing works based on 

linear programming.  Next, we briefly describe the proposed method and afterwards we 

describe its implementation and present experimental results. 

 

2. Methods 

 

2.1 Formal description of the problem 
 

Let 
0Ω and 

1Ω be two sub-domains of
dR , with smooth boundaries, each with a positive 

density function, 0µ and 1µ , respectively. The following property is assumed: 

1)                                         ( ) ( )
0 1

0 1  x dx x dxµ µ
Ω Ω

=∫ ∫  

Mass Preservation (MP) property is defined as follows. 

2)                                            0 1( ) ( ( ))x Du u xµ µ=  

Where u is a diffeomorphism map from
0Ω to

1Ω , and Du is its Jacobian.  
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Note that, if a small region in 
0Ω is mapped to a large region in 

1Ω then the density will be 

decreased. In this paper, an optimal MP map u� is computed to minimize the L
2
 Kantorovich-

Wasserstein metric defined as follows. 

 

3)                               ( )
0
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where u is a MP map. It turns out that the optimal solution u� is unique and is characterized as 

a gradient of a convex functionω . 

4)                                                     u ω= ∇�  

To avoid large differences in corresponding pixels intensities a comparison term penalizing 

the changing of intensity is introduced. 

5)                                  
2

0 1 0 1( , , ) ( , , )M C I I u d uα µ µ≡ + ⋅  

Noteworthy, 0 1( , , )C I I u  may be any comparison term, like the squared error, normalized 

correlation or mutual information. 

 

2.2 The proposed solution 
 
A. Polar factorization and Rearrangement maps 

 

Given ( ) ( )0 0 1 1: , ,u µ µΩ → Ω , which is an initial diffeomorphic map that preserves the MP 

property, then the Polar Factorization of  u  with respect to 
0µ  is defined as  

6)                                                  ( )  ( ( ))u x s xω= ∇ , 

Where ( )s x  is a MP mapping ( ) ( )0 0 0 0: , ,s µ µΩ → Ω . 

Since the optimal MP map that is minimizing the L
2
 Kantorovich-Wasserstein metric has the 

form 
1( ) ( )  ( ( ))u x x u s xω −= ∇ =� , it is equivalent to the Polar Factorization problem.  

The solution strategy is as follows. The algorithms starts with an initial MP maps 0u  and s , 

and define the current-iteration optimal solution as  

7)                                            
1

0( ) ( )  ( ( ))u x x u s xω χ −= ∇ + =�  

Where χ is a vector field with ( ) 0div χ = . Then, the algorithm is iteratively computes a 

mapping s such that finally we get ( ) ( )u x xω≈ ∇� , a curl free vector field.  

 

B. Finding an initial mapping 
 

The authors suggest computing the initial mapping 0u  with an iterative algorithm that solves 

the optimal-mass transport in one dimension along lines parallel to the axes, iteratively - axis 

after axis. In the 2D case, the initial mapping 0u is computed as a combination of the optimal 

mass transport map along the x-axis, denoted as ( )a x and the optimal mass transport map 

along the y-axis, denoted as ( , )b x y , such that 
0 ( ( ), ( , ))u a x b x y= . 

 

C. Removing the curl 

 

The authors solve the Polar Factorization problem via gradient descent. ( )s x  and ( )u x  are 

defined as a function of time and the value of 
s

t

∂
∂

and 
u

t

∂
∂

that decreases the L2 Kantorovich-

Wasserstein metric is derived as follows.  



To preserve the MP property the derivatives are of the form: 
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Where ς is a vector field on 
0Ω with ( ) 0div ς = and , 0nς =

�
on 

0∂Ω , n
�

 is the normal to 

the boundary of 0Ω . 

Now, if we take the derivative of the L2 Kantorovich-Wasserstein functional, denoted as M , 

we get 

9)                                 

0

1

0

1
( ), ( ( ( )))  

2

M s
u x s x dx

t t
µ −

Ω

∂ ∂
− =

∂ ∂∫  

Following equations (7) and (8), and the divergence theorem, the authors show that 
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Therefore, definingς χ= in formula (8) will decrease M . 

Next the authors show how to decompose u as u ω χ= ∇ + . 

For the general case of 
0

d
RΩ ⊂ , ω  is defined as the solution for the Neumann type 

boundary problem 

11)                                                     ( )div uω∆ =  

12)                                             , ,n u nω∇ =
� �

 on 
0∂Ω  

If we define uχ ω= −∇ it satisfies the requirements of ς in equation (8). 

With this definition and equation (8), we get  
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1

0

1
 (u- ( div(u)))

u
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t µ
−∂

= − ∇ ∆
∂

 

Where 
1div(u)−∆  denotes the solutionω .  

In the simpler case of 
0

d
RΩ ⊂ , χ  can be written as ,

f f
f

y x
χ ⊥  ∂ ∂
= ∇ = − ∂ ∂ 

 for 

some scalar function f , and u is decomposed into u fω ⊥= ∇ +∇ . 

f  is found as the solution for the Dirichlet  type boundary problem as follows. 

14)                                             ( )f div u
⊥∆ = −  

15)                                             0f =  on 0∂Ω  

With equation (8), we get  
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∂

 

The second order local evolution equation for u is derived as follows. 

17)                                           
0

1
 div(u )

u
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t µ
⊥ ⊥∂

= − ∇
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D. Adding a comparison term 

 

A comparison term is added to avoid undesired situations, like a mapping of a small high 

intensity region into a large low-intensity region.  

Therefore, the minimization of the following functional is desired. 

18)          ( )( ) ( )( ) ( )
0 0
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The authors suggest minimizing it with the gradient descent method as before, but this time 

defines: 
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 - for the non-local flow 

And 
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       - for the local flow 

 

Where P is defined as: 

21)           ( ) ( )2 2 2
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E. The proposed algorithm for computing the optimal MP map is as follows: 

 

1. Compute the initial mapping
0u . 

2. Set 0_current u u=  

3. Compute P as _P current u=  for pure optimal mass computation or as suggested 

in equation (21) to incorporate a comparison term. 

4. Solve the appropriate Poisson’s equation for the non-local flow problems. 

5. Compute the appropriate 
tu value. 

6. update: _ _ tcurrent u current u t u= − ∆ ⋅  

7. go to (3) 

 
The method stops when the energy is decreasing sufficiently slowly. 

The time step t∆  can be chosen to be less than ( )
1

1

,
0

1
min ( div(P ))

ix i µ

−

⊥ − ⊥∇ ∆ where i stands 

for the component of the vector. 

 

F. Defining the warping map 
 

The warping map is defined as follows. 

22)                                        ( , ) ( ( ) )X x t x t u x x= + −�  

Where, u� is the optimal mass transport mapping, and t  is a time parameter in the range of 0 

to 1. The justification of this warping method is outlined in the text. 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 



3 Implementation and experiments 

 
3.1 Computing an initial mapping  

 

Implementation 

 

0 ( ( ), ( , ))u a x b x y=  is computed with a simple numerical integration technique that 

iteratively guarantees that 

( ) ( , )

0 1

0 0 0 0

( , )  ( , )  

a x b x y yx

d d x y dx d yµ β λ β λ µ=∫ ∫ ∫ ∫ .  

See ‘compute_initial_mapping.m’ for the actual code. 

 

Experiments 

 

We have performed three experiments to test the computation of 
0u .  

To run the experiments please use the commands: run_tests(1), run_tests(2) or run_tests(3). 

The code is found at run_tests.m 

 

The inputs for the first three experiments are two images of horizontal or vertically sine 

waves with a phase difference between them normalized to the range of [0,1]. The tests 

compare the integrals values at different a(x) and their correlated x locations and at different 

b(y) and their correlated y locations. In addition we use the computed deformation map to 
warp one image towards the other, but using only the intensity values of the first image.  

The first experiment inputs are two horizontal sine waves, the second and third experiments 

inputs are two vertical sine waves. The difference between the second and the third tests is the 

method used to equalize the total mass of the density maps. While in the second method the 

integrals ratio is used, in the third experiment the mass distribution is evenly equalized over 

the image domain (using histeq). 

 

Results 

 

 
This result (run_tests(1)) shows that the initial mapping computation approximately fulfills 

the MP property (the integrals equation is preserved). Total mass is preserved by multiplying 

by the integrals ratio. Similar results were observed in  run_tests(2) and run_tests(3).  

 



 
 

Result of run_tests(1). Image 1 is deformed towards image 0 with the computed initial 

mapping (the intensities are of image 1 and are not mixed). we think that the undesired grey 

colors between the left and the middle white columns are due to the small numerical errors of 

the integrals approximation method. A better integral approximation method may result with 

more convincing results.  Total mass equality is preserved by multiplying by the integrals 

ratio. 

 

 
Result of run_tests(2). Image 1 is deformed towards image 0 with the computed initial 

mapping (the intensities are of image 1 and are not mixed). Total mass equality is preserved 
by multiplying by the integrals ratio. 

 

 
Result of run_tests(3). Image 1 is deformed according image 0 with the computed initial 

mapping (the intensities are of image 1 and are not mixed). Total mass equality is preserved 

by histogram equalization method. 

 

Note that the method used to fulfill the “same total mass” property has an effect on the 

deformation outcome. 

 

3.2 Computing the optimal MP map 

 

Implementation 
The method was implemented as in the text. Next, we shortly describe the implemented 

modules. 

 

A Reading an image  

imread_to_gray.m – reads indexed or RGB images and converts them to a double precision 

grey level image. 



 

 

B Creating the density maps 

For efficiency, the images are divided into a number of blocks of a predefined size (a 

parameter of the method) – see compute_density_map.m.  
 

C Computing initial mapping 

As described previously this is done with compute_initial_mapping.m 

 

D Computing the optimal mapping 

The optimal map is computed at compute_optimal_mass_transport.m 

The method implements the described paper. Two parameters of the methods are: 1. is it pure 

optimal mass transport or includes a comparison term, and 2. what method is used to fulfil 

“same total mass” property (multiplication by the integrals ratio or histogram equalization). 

After reading the images and computing an initial map, it calls to the gradient descent method 

(see gradient_descent.m). At each iteration tu and the time step size are computed (see 

compute_ut.m). 

 

The Jacobian elements, the gradient and the divergence are computed using standard central 

differences (I describe the Jacobian is a diagonal matrix), see modules: compute_gradient.m, 

compute_devergance.m and compute_jacobian, respectively. 
We used poicalc (MATLAB function) to solve the Poisson’s equation. 

 

E Warping the images and presenting the results 

Two warping methods are implemented to warp images based on the resulted optimal 

mapping between two images. The first method (transform.m) deforms an image with its own 

intensity values (without mixing intensity values of the two images), and the second method 

warps also the intensities (transform_intensity.m).    
 

I also programmed a method to create a series of warped images (see create_image_series.m), 

and to superimpose a deformation map on an image (see superimpose.m). 

 

Experiments 
 

Three pairs of cloud, flame and water images are tested. For each pair the optimal mass 

transport map was computed and intermediate images were created. (run: run_tests(4), 

run_tests(5), run_tests(6)) 

In the last experiment we have examined the effect of the “same total mass” property method 

(integral ratio vs. histogram equalization).  

 

Results 

 

  

 
 

Experiment 4 (includes intensities mixture, result of run_tests(4)) . 

 



 
Experiment 5 (includes intensities mixture, result of run_tests(5)). 

 
Experiment 6 (includes intensities mixture, result of run_tests(6)). 

 

 
Experiment 7  

In each image series the left image is the source, the right is the target and the middle image is 

the source image deformed towards the target with its own intensity values (no intensity 

mixture is allowed between the images). When the “total mass” assumption is fulfilled by 

simply multiplying by the integrals ratio the result was better (upper series), than the 

histogram equalization method. 

 

4 Conclusions 
We have implemented a warping method which is using the properties of elastic materials to 

compute the deformation between two images. The proposed elastic registration method 

incorporates the L2 Kantorovich-Wasserstein distance, also known as the Earth Mover’s 

Distance (EMD), as a similarity measurement. The implemented paper presents an efficient 

partial differential equation approach for a first-order solution of this problem that is simpler 

than existing works suggested high-order solutions and is computationally simpler than 
existing works based on linear programming. The method was verified and tested and usage 

examples are provided in run_tests.m. 
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