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We implement a warping method which is using the properties of elastic materials to compute the
deformation between two images. The proposed elastic registration method incorporates the L2
Kantorovich-Wasserstein distance, also known as the Earth Mover’s Distance (EMD), as a similarity
measure. The implemented paper presents an efficient partial differential equation approach for a first-
order solution of this problem that is simpler than existing works suggested high-order solutions and is
computationally simpler than existing works based on linear programming.

Specifically, we implement the following paper
Steven Haker, Lei Zhu, Allen Tannenbaum, and Sigurd Angenent, “Optimal mass transport for
registration and warping”, International Journal of Computer Vision, 60(3), p. 225-240, 2004.

1. Introduction

Image to image registration is the process of aligning the different coordinate systems of two
or more image data sets by computing a common reference frame between them. The
registration allows the integration of multiple image data sets acquired with different
modalities (MRI, CT, etc.), at different times and under varying patient pose and position.
Normally, the registration transformation is computed to minimize a predefined similarity
measure which quantifies how close an image set is from the other one. The implemented
paper [1] presents a warping method, which is using the properties of elastic materials to
compute the deformation between two images. The proposed elastic registration method
incorporates the L Kantorovich-Wasserstein distance, also known as the Earth Mover’s
Distance (EMD), as a similarity measurement. This similarity measure has 5 key advantages:
1. It is parameter free; 2. it is symmetrical; 3. it requires no landmarks selection; 4. the
solution is unique, and; 5. it considers changes in density that are resulted from changes in
area or volume. The implemented paper presents an efficient partial differential equation
approach for a first-order solution of this problem. The method is simpler than existing works
suggested high-order solutions and is computationally simpler than existing works based on
linear programming. Next, we briefly describe the proposed method and afterwards we
describe its implementation and present experimental results.

2. Methods

2.1 Formal description of the problem

Let Q,and Q, be two sub-domains of R? , with smooth boundaries, each with a positive

density function, 4, and g , respectively. The following property is assumed:

1) Iy()(x) dx = Jyl(x) dx
Q(l Ql

Mass Preservation (MP) property is defined as follows.

2) Ho(x) = | D] g1, (u(x))

Where u is a diffeomorphism map fromQ, to€2,, and Du s its Jacobian.
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Note that, if a small region in €3 is mapped to a large region in €, then the density will be

decreased. In this paper, an optimal MP map 7 is computed to minimize the L* Kantorovich-
Wasserstein metric defined as follows.

3) Aty pyo10) = [ () = o] g1y 0) dlx

QO
where u is a MP map. It turns out that the optimal solution # is unique and is characterized as
a gradient of a convex function @ .
4) u=Vo
To avoid large differences in corresponding pixels intensities a comparison term penalizing
the changing of intensity is introduced.

5) M =C(,,1,,u)+a-d* (i, 1, u)
Noteworthy, C(I,,1,,u) may be any comparison term, like the squared error, normalized

correlation or mutual information.
2.2 The proposed solution

A. Polar factorization and Rearrangement maps

Given u: (QO, yo) - (Qw yl) , which is an initial diffeomorphic map that preserves the MP
property, then the Polar Factorization of # with respect to z4, is defined as

6) u(x) =V (s(x)),

Where s(x) is a MP mapping s : (Qo,luo) - (Qo,luo) .

Since the optimal MP map that is minimizing the L* Kantorovich-Wasserstein metric has the
form 7i(x) = Va(x) =u (s~'(x)), it is equivalent to the Polar Factorization problem.

The solution strategy is as follows. The algorithms starts with an initial MP maps u, and s,
and define the current-iteration optimal solution as

7) i(x)=Vao(x)+y=u, (s"(x))

Where y is a vector field with div ( ;() =0. Then, the algorithm is iteratively computes a

mapping s such that finally we get it(x) =~ Vw(x), a curl free vector field.
B. Finding an initial mapping

The authors suggest computing the initial mapping i, with an iterative algorithm that solves
the optimal-mass transport in one dimension along lines parallel to the axes, iteratively - axis
after axis. In the 2D case, the initial mapping u, is computed as a combination of the optimal

mass transport map along the x-axis, denoted as a(x)and the optimal mass transport map

along the y-axis, denoted as b(x, y), such that u, = (a(x),b(x,y)).

C. Removing the curl

The authors solve the Polar Factorization problem via gradient descent. s(x) and u(x) are

%) 0
defined as a function of time and the value of 8_S and a—u that decreases the L*> Kantorovich-
t t

Wasserstein metric is derived as follows.



To preserve the MP property the derivatives are of the form:
16} 0 1

8) S_| £ O(S(x)) and —Mz——Du o
ot A ot A

Where ¢ is a vector field on Q, with div(¢) = 0and <g,ﬁ> =0on 0Q,, n is the normal to

the boundary of €.

Now, if we take the derivative of the L? Kantorovich-Wasserstein functional, denoted as M ,
we get

1 oM os .
9 ———= | {u(x), 1, (— (s (x dx
) > i<<>uo<at< <)))>
Following equations (7) and (8), and the divergence theorem, the authors show that
1oM
10 ———= ,¢) dx
) o= [(29)

Q()
Therefore, defining ¢ = y in formula (8) will decrease M .
Next the authors show how to decompose uas u=Vao+ y.
For the general case of Q) R, o is defined as the solution for the Neumann type
boundary problem
11) Aw = div(u)
12) (Vao,ii) = (u,ii) on 0Q,
If we define y =u — V wit satisfies the requirements of ¢ in equation (8).

With this definition and equation (8), we get

3 %~ L pu u-veadivw))
ot Hy

Where A”'div(u) denotes the solution @ .

of 0

In the simpler case of Q, — R, y canbe writtenas y = V' f = | — i, o for
oy Ox

some scalar function f, and u is decomposed intou = Vo + V" f .

f is found as the solution for the Dirichlet type boundary problem as follows.

14) Af =—div(u™)
15) f=0o0n 0Q,
With equation (8), we get

0 1 .
16) A _ L pu V(A div(ut))

o,
The second order local evolution equation for u is derived as follows.
17) % = —iDu Vidiv(u®)

ot Hy

D. Adding a comparison term

A comparison term is added to avoid undesired situations, like a mapping of a small high
intensity region into a large low-intensity region.
Therefore, the minimization of the following functional is desired.

18) M(a,u)= 'f (I1 (u (x))— I, (x))2 dx + a* J ||u(x)— x”2 Lo (x) dx

Q



The authors suggest minimizing it with the gradient descent method as before, but this time
defines:

ou 1

19) — =—Du V*(A"'div(P")) - for the non-local flow
o,
And
ou 1 Lo ol
20) —=——Du V-div(P") - for the local flow
ot Hy
Where P is defined as:
1 2
21) P= ?(Il(u(x)) —1,) Vi, (x) +7(Il(u(x)) —1,)" VI, (x) +2a%u
0 0

E. The proposed algorithm for computing the optimal MP map is as follows:

1. Compute the initial mapping i, .

Set current _u = u,
Compute P as P = current _u for pure optimal mass computation or as suggested

in equation (21) to incorporate a comparison term.
Solve the appropriate Poisson’s equation for the non-local flow problems.

Compute the appropriate u, value.
update: current _u = current _u—At-u,
go to (3)

N s

The method stops when the energy is decreasing sufficiently slowly.
-1

|1 e .
The time step At can be chosen to be less than min —(VL (A”'div(P* ))) where i stands
X0 lLlO i

for the component of the vector.
F. Defining the warping map

The warping map is defined as follows.

22) X (x,t)=x+t(u(x)—x)

Where, i is the optimal mass transport mapping, and ¢ is a time parameter in the range of 0
to 1. The justification of this warping method is outlined in the text.



3 Implementation and experiments

3.1 Computing an initial mapping
Implementation

u, = (a(x),b(x,y)) is computed with a simple numerical integration technique that
a(x) b(x,y) xy

iteratively guarantees that J J (B A)dP dA = Jjul(x, y)dxdy.
0 0 00

See ‘compute_initial_mapping.m’ for the actual code.

Experiments

We have performed three experiments to test the computation of u,, .

To run the experiments please use the commands: run_tests(1), run_tests(2) or run_tests(3).
The code is found at run_tests.m

The inputs for the first three experiments are two images of horizontal or vertically sine
waves with a phase difference between them normalized to the range of [0,1]. The tests
compare the integrals values at different a(x) and their correlated x locations and at different
b(y) and their correlated y locations. In addition we use the computed deformation map to
warp one image towards the other, but using only the intensity values of the first image.

The first experiment inputs are two horizontal sine waves, the second and third experiments
inputs are two vertical sine waves. The difference between the second and the third tests is the
method used to equalize the total mass of the density maps. While in the second method the
integrals ratio is used, in the third experiment the mass distribution is evenly equalized over
the image domain (using histeq).

Results
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This result (run_tests(1)) shows that the initial mapping computation approximately fulfills
the MP property (the integrals equation is preserved). Total mass is preserved by multiplying
by the integrals ratio. Similar results were observed in run_tests(2) and run_tests(3).



image 1 deformed image: from 1 to 0 image 0

Result of run_tests(1). Image 1 is deformed towards image 0 with the computed initial
mapping (the intensities are of image 1 and are not mixed). we think that the undesired grey
colors between the left and the middle white columns are due to the small numerical errors of
the integrals approximation method. A better integral approximation method may result with
more convincing results. Total mass equality is preserved by multiplying by the integrals
ratio.

image 1 deformed image: from 1 to 0 image 0

Result of run_tests(2). Image 1 is deformed towards image 0 with the computed initial
mapping (the intensities are of image 1 and are not mixed). Total mass equality is preserved
by multiplying by the integrals ratio.

image 1 deformed image: from 1to 0 image 0

Result of run_tests(3). Image 1 is deformed according image 0 with the computed initial
mapping (the intensities are of image 1 and are not mixed). Total mass equality is preserved
by histogram equalization method.

Note that the method used to fulfill the “same total mass” property has an effect on the
deformation outcome.

3.2 Computing the optimal MP map

Implementation
The method was implemented as in the text. Next, we shortly describe the implemented
modules.

A Reading an image
imread_to_gray.m — reads indexed or RGB images and converts them to a double precision
grey level image.




B Creating the density maps
For efficiency, the images are divided into a number of blocks of a predefined size (a
parameter of the method) — see compute_density_map.m.

C Computing initial mapping
As described previously this is done with compute_initial_mapping.m

D Computing the optimal mapping

The optimal map is computed at compute_optimal_mass_transport.m

The method implements the described paper. Two parameters of the methods are: 1. is it pure
optimal mass transport or includes a comparison term, and 2. what method is used to fulfil
“same total mass” property (multiplication by the integrals ratio or histogram equalization).
After reading the images and computing an initial map, it calls to the gradient descent method

(see gradient_descent.m). At each iteration u, and the time step size are computed (see

compute_ut.m).

The Jacobian elements, the gradient and the divergence are computed using standard central
differences (I describe the Jacobian is a diagonal matrix), see modules: compute_gradient.m,
compute_devergance.m and compute_jacobian, respectively.

We used poicalc (MATLAB function) to solve the Poisson’s equation.

E Warping the images and presenting the results

Two warping methods are implemented to warp images based on the resulted optimal
mapping between two images. The first method (transform.m) deforms an image with its own
intensity values (without mixing intensity values of the two images), and the second method
warps also the intensities (transform_intensity.m).

I also programmed a method to create a series of warped images (see create_image_series.m),
and to superimpose a deformation map on an image (see superimpose.m).

Experiments

Three pairs of cloud, flame and water images are tested. For each pair the optimal mass
transport map was computed and intermediate images were created. (run: run_tests(4),
run_tests(5), run_tests(6))

In the last experiment we have examined the effect of the “same total mass” property method
(integral ratio vs. histogram equalization).

Results

Experiment 4 (includes intensities mixture, result of run_tests(4)) .
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Experiment 6 (includes intensities mixture, result of run_tests(6)).

image 1 deformed image: from 1to 0 image 0

image 1

Experiment 7

In each image series the left image is the source, the right is the target and the middle image is
the source image deformed towards the target with its own intensity values (no intensity
mixture is allowed between the images). When the “total mass” assumption is fulfilled by
simply multiplying by the integrals ratio the result was better (upper series), than the
histogram equalization method.

4 Conclusions

We have implemented a warping method which is using the properties of elastic materials to
compute the deformation between two images. The proposed elastic registration method
incorporates the L2 Kantorovich-Wasserstein distance, also known as the Earth Mover’s
Distance (EMD), as a similarity measurement. The implemented paper presents an efficient
partial differential equation approach for a first-order solution of this problem that is simpler
than existing works suggested high-order solutions and is computationally simpler than
existing works based on linear programming. The method was verified and tested and usage
examples are provided in run_tests.m.
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