Creation and Demonstration of a Framework for
Handling Paths in ITK

John Galeotti and George Stetten

Carnegie Mellon University
galeotti+miccai@cs.cmu.edu

Abstract. A hierarchy of path data types and basic path filters were added to
ITK, providing a general framework for curves that map a scalar value to a
point in n-dimensional space. The framework supports curves that are either
continuous (parametric curves) or discrete (chain-codes). Example usage of the
entire framework is demonstrated using a previously published 2D active con-
tour algorithm that was converted to ITK.

Introduction

ITK was originally designed to operate on image and mesh data types. A significant
number of segmentation algorithms, however, utilize active contours or other path-
type data objects [1-3]. Our research required the extensive use of paths as well. Un-
fortunately, at the onset of our path-based research such support was completely lack-
ing in ITK. Therefore, Galeotti created a general-purpose hierarchy of path classes in
ITK, as well as filters to operate on them. He also created specialized classes to meet
our specific research requirements.

The present paper reviews the process undergone to add generic support for paths
to ITK and explains the general usage of the path framework within ITK. An exam-
ple implementation of a previously published 2D active contour algorithm is then pre-
sented.

How We Began

Due to the general-purpose, foundational nature of this work, we consulted with the
ITK developers’ community to insure the general usefulness of the path hierarchy we
were developing. The suggestions and criticisms that arose both at the ITK working
conferences and in ongoing discussions across the ITK developers’ email list were in-
valuable to this end.

It was decided that to be as generally useful as possible, the only assumptions that
should be made by the basic path API should be that (1) a path maps a scalar input to
a point along a contiguous ND curve (although the curve dimension may be fixed in
some path types) and that accordingly (2) any path can be mapped to a linearly-
ordered sequence of connected indices in ND image space. We choose to enforce



both of these assumptions by use of an abstract path base class. We placed no other
conceptual restrictions on the algorithms and data types used to represent a path. A
path may be open, closed, or self-crossing.

Based on feedback obtained from other developers, it was also decided that paths
should follow the ITK FunctionBase API. To enable path filters, however, the Path
base class was made to descend from the ITK DataObject class rather than the Func-
tionBase class. Therefore, compliance with the FunctionBase API had to be manually
implemented to allow path usage in template arguments requiring data-types compli-
ant with the FunctionBase APIL.

Path Types

For the authors’ purposes, two basic types of paths were required: chain-codes and
parametric paths. These have very different algorithmic representations and associ-
ated data structures, and so a base class was created for each (both base classes de-
scend from the abstract path base class). Figure 1 shows the final hierarchy of path
classes that we implemented in ITK.

PathConstlterator
T <Tlmage, TPath>

f

Pathlterator
/\ <Tlmage, TPath>

......
......
.y
......
ey

I ChainCodePath<VDimension> I IParametr/‘cPath<\/Dimension>I
A

OrthogonallyCorrected

I FourierSeriesPath<VDimension> I oDParametricPath

ChainCodePath2D

I PolyLineParametricPath<VDimension> I

Fig. 1. Path data types added to ITK. The two classes at the top with light gray text were al-
ready a part of ITK. Classes diagrammed in boxes with thin borders are abstract base classes
that were created to unify the framework and to simplify the development of additional path
classes by others. Classes diagrammed in boxes with thick, bold borders are complete (instan-
tiatable) classes that were created to be directly used by others. Boxes with dashed borders are
used to show the template parameters used by the two basic path types.

Chain Codes

Chain-codes represent a path as a sequence of offsets between adjoining locations
on a rectangular lattice. Whether these locations represent voxel-centers or voxel-



vertices is unspecified. Both of these interpretations are equally valid, so long as one
or the other interpretation is used consistently for the creation, processing, utilization,
and visualization of a given chain-code. Chain-codes can, therefore, be used both to
segment between voxels and to trace through the centers of voxels. In ITK, the loca-
tions visited by a chain-code were implemented using offsets, which are vectors in in-
teger space. A chain-code with n offset-steps can be denoted as a sequence

P=(u,u,u,, .u,) 1)

whose elements are the individual step vectors. An arbitrary step u, is a vector from a
given index to one of its neighbors.

u, Ax, (2)
: ., Ax, €{-10,1}

=
I
I

u, Axy
For a 2D chain-code,

u, € {CREMAMMEMEMEM} ®

as illustrated in Figure 2.

(-1,1) 0,1) (1,1

NI

('150)4_ ui — (170)

1N

(_19_1) (05_1) (1’_1)
Fig. 2. Step u, in a 2D chain-code.

The individual offset vectors (or steps) of a specific chain-code P may be repre-
sented by adding an index to P as P, =u,, where u, is the ith step of P. Note that P
(without an index) is an entire chain-code, but P, (with an index) is only one step of

P.
The matrix P and its constituent steps P, are relative displacements from a starting

index location s, resulting in a terminal location e.
< “4)
e=s+ EPI.
i=1

The combination of a chain-code P and a starting location s is designated as P*.
P’ designates a specific step of a specific chain-code placed at a specific starting loca-

tion. Like P, P/ is the offset value of a step, but unlike P, the location of P? can be

calculated because the starting location of the step’s chain-code is known. The abso-
lute location in an image of the chain-code step P’ can be represented as



ol s)

Note that capital P is used either by itself to denote an entire chain-code or with a
subscript to denote the offset vector of a single step of a chain-code, while lowercase
p is used to denote the location to which a single step of a chain-code points (and
therefore requires that the starting location of that chain-code be specified). Because
p; is defined by a sequential iterative process, chain-code location is optimized for
sequential access rather than random access.

A chain-code can be open or closed. If a chain-code is closed, it begins and
ends on the same pixel,

e=s (6)
or, put another way, the sum of its steps is the zero-vector,
n (7)
2P =0
i=1

Chain-codes may cross themselves, in which case, for some ; and k, j=k,
p’ =p;- If apath is closed and does not cross itself, it can be constrained to proceed

in a clockwise or counterclockwise direction, permitting unambiguous determination
of inside vs. outside for any given step.

The ITK ChainCodePath base class is fully defined, and supports all of the func-
tionality described by the math above. We only implemented one specialized child of
the ChainCodePath class. It is a 2D chain-code that stores offsets using Freeman
Codes [4], which sequentially enumerate all possible offsets and then store the offsets
using their integer labels. Freeman codes require less storage capacity than normal
chain codes and can simplify the rotation of individual path offsets (rotation is done
by addition modulo 8). Freeman codes are also very useful for debugging, since a
Freeman code can be printed to a terminal with a single character used for each step
of the path.

Parametric paths

Parametric paths are represented by an algebraically defined curve parameterized over
a scalar input. As opposed to chain-codes, parametric paths provide efficient random
access but comparatively poor sequential access to image indices, due to the difficulty
of knowing how much to increment the parametric input to reach the next sequential
voxel along the path. Because of their algebraic nature, most parametric paths have a
generally well-defined derivative with respect to their input. The ParametricPath ab-
stract base class establishes a specialized API, complete with many default member-
function implementations. The default member functions can greatly simplify the
creation of other parametric path types by others. New parametric path types can,
however, override the default implementations to take advantage of any efficiency
gains that new path types may make possible. The ParametricPath base class cur-



rently has three fully defined instantiatable children. FourierSeriesPath represents a
closed path by its Fourier coefficients in each dimension; it has continuous well-
defined derivatives with respect to its input. PolyLineParametricPath represents a
path as a series of vertices connected by line segments; it provides a simple means of
creating a path that can then be converted to other path types. Finally, Orthogonally-
Corrected2DParametricPath represents a path by the combination of another 2D pa-
rametric path and a list of orthogonal offsets to be evenly spaced along the other path.
It simplifies the deformation of some types of 2D paths to ease path-based segmenta-
tions. The orthogonally corrected path implements the orthogonal corrections on-the-
fly by linearly interpolating an offset value for a requested input value and evaluating
the original path at the requested input; the interpolated offset is then added to the
evaluated path position to produce the new, corrected path position, as shown in Fig-
ure 3.

Interpolated
length offset

Orthogonal Desired
offsets from
offset list Original

Fig. 3. Orthogonally corrected path.

Path Iterators

While a path must store some representation of a sequence of connected indices, it
was decided that a path should not store a current input value corresponding to a cur-
rent position along itself. Instead, the notion of path position was delegated to a new
path iterator class, capable of sequentially visiting each index along a path. The pri-
mary reason for doing so was to make possible the creation of constant (read only)
path objects that can still be traced. Path iterators also allow different pieces of code
to easily iterate concurrently over a single path. Operations such as testing for path
equality are also simplified.

For the purpose of simplicity to the user, it was decided that a single path iterator
class should be able to iterate over any type of path. To enable this, the path API re-
quires all path classes to have an input incrementing function. The idea is that while a
path does not store a current input value, a path should know how much to increment
any given input value to make the path’s output move to the next discrete index along
the path. For chain-codes, such a function trivially returns the value of 1; for generic
parametric paths, such a function must iterate over a converging region of input in a
manner similar to Bresenham’s algorithm [5]. For efficiency, the input incrementing
function returns the index-space offset resulting from its increment of the input.



Path Filters

To integrate paths into the ITK pipeline architecture, it was necessary to expand the
architecture to handle the new path data types. We added several basic path filters to
ITK (as well as a complete and previously published path-based segmentation algo-
rithm that demonstrates ITK path usage). Figure 4 shows the final hierarchy of path
filters that we implemented in ITK.

I PathSource<TOutputPath> I

_—

IPath ToPathFilter<TInputPath, TOutputPath> I PathTolmageFilter
<TInputPath, TOutputimage>

pa

ImageAndPathTolmageFilter
<TInputlmage, TinputPath, TOutputimage>

___t___

PathToChainCodePath
Filter<TInputPath,
[TOutputChainCodePath>

ChainCodeToFourierSeriesPath
Filter<TInputChainCodePath,
TOutputFourierSeriesPath>

PathAndlmageToPathFilter I_ ImageAndPath TolmageFilter I
<TInputPath, Tinputimage, TOutputPath> L <Tlmage,ParametricPath<2>, Timage> J
—_—— Va

PathAndlmageToPathFilter "
<TFourierSeriesPath, TSwathMeritimage, I I ExtractOrthogonalSwath2DImageFilter<TImage> I

OrthogonalSwath2DPathFilter
<TFourierSeriesPath, TSwathMeritimage>

Fig. 4. Path filters added to ITK. The classes at the top with light gray text were already a part
of ITK. Classes diagrammed in boxes with thin borders are abstract base classes that were cre-
ated to unify the framework and to simplify the development of additional path-filter classes by
others. Filter classes diagrammed in boxes with thick, bold borders are complete (instantiat-
able) filters that were created to be directly used by others. Boxes with dashed borders are used
to show the template parameters used by children classes.

ITK’s design places a large burden on the developer of low-level code in order to
ease the use and extension of ITK by most typical users. Therefore, it is not surpris-
ing that the main difficulty in supporting path filters was the creation of the path
source and path-to-path filter base classes. Other filter base classes that required im-
plementation were the path-and-image-to-path filter and the image-and-path-to-image
filter. These four base classes added the necessary code and API to ITK to support
the pipelining of path objects through ITK filters, and almost any filter that utilizes
paths will descend from one of these classes. One additional “foundational” filter,
used to convert a path to an image, was added to enable path visualization.

In addition to the above filters, two conversion filters were written to convert be-
tween different types of paths. One converts any type of path into a chain-code. It al-
lows the user to specify whether the resulting chain-code must be maximally con-



nected or whether it can be minimally (vertex) connected. In 3D, the voxels of a
maximally-connected chain-code will have adjoining faces (6 neighbors) while the
voxels of a minimally connected chain-code may only be connected at their vertices
(26 neighbors).

The other conversion filter converts any closed chain-code into a Fourier series
path, making it very useful for path smoothing. Although the filter could have been
implemented to directly convert from any type of closed path into a Fourier series
path, a much more efficient implementation was possible by requiring that non-chain-
code-type paths be converted into chain-code paths before being passed to the filter.
The filter allows the specification of the number of Fourier series harmonics that
should be calculated from the input chain-code; a higher number of harmonics results
in a more accurate conversion while a lower number of harmonics results in more
path smoothing. Regardless of the number of harmonics used, conversion of a chain
code into a Fourier series path is a very useful way to acquire the advantages of para-
metric paths for a path originally computed as a chain code.

One more basic filter was added to ITK to extract an orthogonal “swath” image
from an input path through an input image. The orthogonal-swath filter traverses
along a parametric path, interpolating image pixels orthogonal to the path at regularly
spaced intervals of the path’s input (see Figure 5). Each interval corresponds to a sin-
gle location on the x-axis of the swath image. The y-axis of the swath image corre-
sponds to orthogonal signed distance from the path to an interpolated pixel; positive
y-values correspond to points to the left when walking down the path, and the center
row of the swath image (y=0) corresponds to pixels that lie directly on the path. A
swath image can be very useful for examining the neighborhood around a path, as
would typically be necessary when deforming a path to segment an object.

29

Fig. 5. A path around a white box (above) and the path’s orthogonal swath (below).

Example Implementation of a 2D Active Contour Algorithm

A previously published 2D active contour algorithm [6] was added to ITK to pro-
vide example usage of the path framework. The algorithm works by finding the op-



timal orthogonal offsets for evenly spaced points along the initial path, with the re-
quirement that neighboring offsets differ in value by at most one.

The algorithm is implemented in OrthogonalSwath2DPathFilter, with example us-
age code now available in the ITK file itkOrthogonalSwath2DPathFilterTest.cxx. To
use the algorithm, first ExtractOrthogonalSwath2DImageFilter filter must used to ex-
tract a swath image from around a Fourier-smoothed initial closed path. Each pixel in
the swath image is then evaluated by a merit function image filter (such as a ITK’s
vertical derivative filter) to produce a merit swath image, which is used as input for
OrthogonalSwath2DPathFilter. Within that filter, dynamic programming [7] is used
to find the optimum connected sequence of rows that the path should follow through
the (merit) swath image. The resulting optimal contour is returned as an orthogonally
corrected parametric path.

In a typical usage application, a user may use a pointing device to input a poly-line
path that is converted to an intermediate chain-code and then converted to a Fourier
series path to use as input to the swath-extraction filter. A sequence of ITK image fil-
ters may then be used to produce a merit swath image from the swath image. The
merit swath image is fed to OrthogonalSwath2DPathFilter, which will produce a or-
thogonally-corrected parametric path. Finally, the initial and final paths can be con-
verted into images for visualization with the path-to-image filter. The resultant output
for the data shown in Figure 5 is shown in Figure 6.

Fig. 6. Result of applying the example algorithm to the data shown in Figure 5.

Conclusion

In this paper we have presented a hierarchy of path data types and basic path filters
that were added to ITK to provide a general framework for handling curves. Two
types of curves were implemented. Curves that are continuous (parametric curves)
provide efficient random access but comparatively poor sequential access to image
indices. Discrete curves (chain-codes) are optimized for sequential access rather than
random access. Filters were implemented to convert from one type of path to the
other, and to integrate paths with the rest of the image-processing framework in ITK.
A previously published 2D active contour algorithm was also converted to ITK, and
its usage demonstrates the usage of the entire path framework.



Acknowledgements

The authors would like to thank everyone who has contributed to ITK, and espe-
cially Luis Ibafiez for his guidance in creating the path data types. This work has
been supported in part by a contract with the National Library of Medicine and a NSF
Graduate Student Fellowship.

References

1. Chen, C., Huang, T., and Arrot, M., 1994. Modeling, Analysis, and Visualization of Left
Ventricle Shape and Motion by Hierarchical Decomposition, PAMI, 16(4), pp. 342-356.

2. Geiger, D., Gupta, A., Costa, L., and Vlontzos, J., 1995. Dynamic Programming for Detect-
ing, Tracking, and Matching Deformable Contours, PAMI 17(3), pp. 294-302.

3. Gunn, S., Nixon, M., 1997. A Robust Snake Implementation: A Dual Active Contour,
PAMI 19(1), pp. 63-68.

4. Freeman, H., 1961. On the encoding of arbitrary geometric configurations, IRE Trans. Elec-
tronic Computers EC-10, pp. 260-268.

5. Bresenham, J., 1965. Algorithm for Computer Control of a Digital Plotter, IBM Systems
Journal, 4 (1), pp. 25-30.

6. Stetten, G., Drezek, R., 2001. Active Fourier Contour Applied to Real Time 3D Ultrasound
of the Heart, International Journal of Image and Graphics, 1(4), pp. 647-658.

7. Montanari, U., 1971. On the optimal detection of curves in noisy pictures. Communica-
tions of the ACM, 14(5), pp. 335-345.



