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Abstract. An Insight Toolkit (ITK) implementation of our knowledge-
based segmentation algorithm applied to brain MRI scans is presented
in this paper. Our algorithm is a refinement of the work of Teo, Saprio,
and Wandall. The basic idea is to incorporate prior knowledge into the
segmentation through Bayes’ rule. Image noise is removed via an affine
invariant anisotropic smoothing of the posteriors as in Haker et. al.

We present the results of this code on two different projects. First, we
show the effect of applying this code to skull-removed brain MRI scans.
Second, we show the effect of applying this code to the extraction of the
DLPFC from a user-defined subregion of brain MRI data. We present our
results on brain MRI scans, comparing the results of the knowledge-based
segmentation to manual segmentations on datasets of schizophrenic pa-
tients.

1 Introduction

In this paper, we present an Insight Toolkit (ITK) implementation of our knowledge-
based segmentation algorithm applied to brain MRI scans. Our algorithm is a
refinement of the work of Teo, Saprio, and Wandall [1]. The basic idea is to
incorporate prior knowledge into the segmentation through Bayes’ rule. Image
noise is removed via an affine invariant anisotropic smoothing of the posteriors
as in Haker et. al. [2].

This paper provides details about the inclusion of our knowledge-based seg-
mentation algorithm into ITK. In section 2, we provide a high-level overview of
our algorithm. Since this is an ongoing project that will experience future paper
and code revisions, we include in section 3 the current project status. In section
4, we give an explanation of the filter from the user’s point of view. In section
5, we discuss the role of open source development in this project. In section 6,
we share an example of the application of our filter in the segmentation of en-
tire brain MRI scans into three classes: white matter, gray matter, and cerebral
spinal fluid (CSF). In section 7, we share an example of the application of our
filter in the segmentation of the dorsolateral prefrontal cortex (DLPFC).

Due to space constraints, further algorithmic details are currently in submis-
sion [3]. In the algorithm paper, it will be shown that removing the skull in
the MRI data can help the method of Teo, Saprio, and Wandall [1] give more



accurate results, eliminating the need to grow gray matter from the boundary
of the white matter.

2 Algorithm Details

In this section, we provide a high-level description of the knowledge-based seg-
mentation algorithm. The algorithm is built upon foundational work found in
[1,2,4].

We assume that the value of each voxel intensity in a given class can be con-
sidered as a random variable, independent across pixels. In the following results,
we assume that the voxel intensities are normally distributed. This assumption
may be modified to support other distributions that may better fit the data.
With a large set of training data, the distributions may also be learned a priori.
The application of the statistical distributions to the voxel intensities produces
the data term, Pr(Vi = v|Ci = ¢). We also assume that the prior likelihood,
Pr(Ci = c¢), of a pixel belonging to a particular class is uniform across all classes.
This assumption too may be modified to incorporate other prior knowledge, such
as shape priors. With the data and prior terms, we generate the posteriors via
Bayes’ Rule. The posteriors are then smoothed for 5 iterations using a 3D version
of the affine invariant smoother of Olver et. al [5]. Finally, we use the maximum
a posteriori estimate to achieve our final segmentation.

The following is a concise description of the algorithm:

Algorithm 1 Bayesian Segmentation High-level Algorithm

Require: User specifies number of classes: 'N’ (default N = 2)

Find N initial class means and standard deviations using K-Means clustering
Generate N images of prior terms, assuming initially prior uniformity
Generate N images of data terms, assuming initially Gaussian distributions
Apply Bayes’ Rule to prior and data images to obtain N posterior images
Smooth the posterior images for several iterations using an anisotropic, edge-
preserving PDE based on the geometric heat equation and renormalize the
posterior images after each smoothing iteration

6: Apply maximum a posteriori rule to achieve segmentation labeling

3 Project Status

Several files have been submitted in conjunction with this paper. The current
version of the code can be found in KnowledgeBasedSegmentation.cxx. This code
is run with 4 command line parameters: input file path, output file path, the
number of smoothing iterations, and the number of classes. We are currently
writing the ITK filter version of this code.



We have also developed accessory filters to support various segmentation fea-
tures. Accompanying this paper are itkHistogramDensityFunction.h and itkHis-
togramDensityFunction.txx which may be used to relax the assumption of nor-
mal distribution and apply an arbitrary distribution to the data as discussed in
section 2. In order to handle low level image operations, it was also necessary
for us to write code to convert from several images of scalars to a single image
of vectors. This can be found in itkImageCastVectorIndexSelectionFilter.h.

In the future, a filter version of this code will be available in the Code/Algorithms/
directory of the ITK source tree. We are also in the process of writing accompany-
ing ITK testing and example code, to be included in the ItkSoftwareGuide. Note
that the filter uses 12 additional ITK files which can be accessed at http://www.itk.org.

4 User Details

In this section, we provide the ITK user with details about the use of this segmen-
tation filter. The knowledge-based segmentation filter minimally requires that
the user only set the input with an image. All other user accessible parameters
are optionally set or accessed and have default values.

4.1 Number of Classes

Most important among the optional parameters is the parameter 'nClasses’
which may be accessed via Set() and Get() methods. This parameter is an inte-
ger that determines the number of classes into which the algorithm will segment
the input imagery. This algorithm does not attempt to guess the optimal num-
ber of classes into which the imagery should be segmented. Note that due to
the use of the itkScalarlmageKmeansImageFilter, the actual output image may
contain less classes than the user initially requests, but this is a rare condition.
The default value for 'nClasses’ is 2, resulting in a binary image labeling only
foreground and background classes.

4.2 Posterior Smoothing

The user will also have access to the Set() and Get() methods of the smoothing
parameters in order to control the smoothing of the posteriors. These parameters
include 'nSmoothinglterations’, 'timeStep’, and 'conductance’. The parameter
‘nSmoothinglterations’ is an integer which determines the number of smoothing
iterations to perform on the posteriors at step 5 of the algorithm. The default
value of 'nSmoothinglterations’ is 10.

The parameters ’'timeStep’ and ’conductance’ are used by the anisotropic
smoothing filter to determine the amount of smoothing to perform on a given
iteration. For stability reasons, the time step should typically be less than 0.25.
The higher the value, the more smoothing that will occur with each iteration.
The default value of ’timeStep’ is 0.1. The default value of ’conductance’ is 3.0.



5 Results

We present the results of this code on two different projects. First, we show
the effect of applying this code to skull-removed brain MRI scans. Second, we
show the effect of applying this code to the extraction of the DLPFC from a
user-defined subregion of brain MRI data.

We present our results on brain MRI scans, comparing the results of the
knowledge-based segmentation to manual segmentations on datasets of schizophrenic
patients. The patients’ heads were imaged in the coronal plane with a 1.5 T
MRI system ! and a postcontrast 3D sagittal spoiled gradient recalled (SPGR)
acquisition with contiguous slices. The resolution is 0.975 x 0.975 x 1.5 mm
(256 x 256 x 123 voxels). The knowledge-based segmentations were obtained
with the ITK code, which has been submitted in conjunction with this paper.

All segmentations were done on 2D slices. We compare the knowledge-based
segmentation (S) to the ground truth manual segmentation (G) using the DICE

coefficient [6]: DSC(S,G) := %, where Vy is the volume (number of
2

voxels) of segmentation X. DSC values greater that 0.7 are regarded as good in
the literature [6].

5.1 Brain Volumes

Here we applied the knowledge-based segmentation to 10 datasets of skull-
removed imagery. For each case we picked the coronal slice immediately anterior
to the temporal lobe tip. The results (white matter mean DSC=0.8842 and gray
matter mean DSC=0.8952 for N = 10 cases) show that the knowledge-based
segmenter gives good results in white matter and gray matter (see Table 1). The
results of a typical knowledge-based segmentation compared with the manual-
based segmentations for Case 1 are shown in Figure 1(a),1(b) and for Case 2 in
Figure 1(c),1(d).

Case 1|Case 2|Case 3|Case 4| Case 5
Slice 96 98 101 104 98
WM DSC| 0.8996 | 0.8558 | 0.8930 | 0.8820 | 0.8910
GM DSC| 0.9053 | 0.8782 | 0.9114 | 0.8953 | 0.9071

Case 6|Case 7|Case 8|Case 9|Case 10
Slice 101 98 97 98 99
WM DSC| 0.8916 | 0.8645 | 0.9167 | 0.8885 | 0.8593
GM DSC|0.8922 | 0.8991 | 0.9276 | 0.8987 | 0.8372

Table 1. DICE validation measures for white (WM) and gray (GM) matter
segmentations on 10 datasets

! Signa, GE Medical Systems, Milwaukee, WI.



(¢) Manual (Case 2) (d) Knowledge-Based (Case 2)

Fig. 1.

5.2 DLPFC

The results presented here are from the application of the knowledge-based seg-
mentation as part of a larger algorithm for the semi-automatic segmentation
of the dorsolateral prefrontal cortex (DLPFC) [7]. A region of interest (ROI)
encapsulating the DLPFC is defined in the raw data during the user-driven,
semi-automatic portion of the DLPFC algorithm. Here we show the results of
applying the knowledge-based ITK segmentation to the ROI. The DLPFC is the
resulting gray matter.

The semi-automatic DLPFC segmentation algorithm is currently being coded
into 3D Slicer and our knowledge-based ITK filter will be wrapped in VTK and
used in the 3D Slicer module. The results (gray matter mean DSC=0.8230 for
N =5 cases) show that the knowledge-based segmenter gives good results (see
Table 2). The results of a typical knowledge-based segmentation compared with
the manual-based segmentations for Case 1 are shown in Figure 2(a),2(b).



(a) Manual (Case 1) (b) Knowledge-Based (Case 1)

Fig. 2.

Case 1|Case 2|Case 3|Case 4|Case 5
GM DSC| 0.8119 | 0.7997 | 0.8326 | 0.8344 | 0.8365

Table 2. DICE validation measures for gray (GM) matter segmentations on 5
datasets

6 Open Source Discussion

The open source nature of this project greatly facilitated the creation of this
filter. We were able to leverage existing ITK code to quickly achieve image I/0
and iteration functionality. The ITK framework was already in place to handle
a myriad of input and output types, greatly extending the usefulness of our
code to a variety of image types. Furthermore, existing ITK filters were used
to perform K-Means classification, evaluate Gaussian density functions, smooth
the posteriors, and convert the labelmap image into "N’ histograms (one for each
class). The utilization of these files can be seen in the 12 separate included ITK
files.

7 Conclusion

We have presented our ITK knowledge-based segmentation code and shown pos-
itive results in two separate applications. User details and project status sections
provide the reader with the information necessary to run the accompanying code.
Future work will port this code from its current state into an ITK filter.
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Abstract. An Insight Toolkit (ITK) implementation of our knowledge-
based segmentation algorithm applied to brain MRI scans is presented
in this paper. Our algorithm is a refinement of the work of Teo, Saprio,
and Wandall. The basic idea is to incorporate prior knowledge into the
segmentation through Bayes’ rule. Image noise is removed via an affine
invariant anisotropic smoothing of the posteriors as in Haker et. al.

We present the results of this code on two different projects. First, we
show the effect of applying this code to skull-removed brain MRI scans.
Second, we show the effect of applying this code to the extraction of the
DLPFC from a user-defined subregion of brain MRI data. We present our
results on brain MRI scans, comparing the results of the knowledge-based
segmentation to manual segmentations on datasets of schizophrenic pa-
tients.

1 Introduction

In this paper, we present an Insight Toolkit (ITK) implementation of our knowledge-
based segmentation algorithm applied to brain MRI scans. Our algorithm is a
refinement of the work of Teo, Saprio, and Wandall [1]. The basic idea is to
incorporate prior knowledge into the segmentation through Bayes’ rule. Image
noise is removed via an affine invariant anisotropic smoothing of the posteriors
as in Haker et. al. [2].

This paper provides details about the inclusion of our knowledge-based seg-
mentation algorithm into ITK. In section 2, we provide a high-level overview of
our algorithm. Since this is an ongoing project that will experience future paper
and code revisions, we include in section 3 the current project status. In section
4, we give an explanation of the filter from the user’s point of view. In section
5, we discuss the role of open source development in this project. In section 6,
we share an example of the application of our filter in the segmentation of en-
tire brain MRI scans into three classes: white matter, gray matter, and cerebral
spinal fluid (CSF). In section 7, we share an example of the application of our
filter in the segmentation of the dorsolateral prefrontal cortex (DLPFC).

Due to space constraints, further algorithmic details are currently in submis-
sion [3]. In the algorithm paper, it will be shown that removing the skull in



the MRI data can help the method of Teo, Saprio, and Wandall [1] give more
accurate results, eliminating the need to grow gray matter from the boundary
of the white matter.

2 Algorithm Details

In this section, we provide a high-level description of the knowledge-based seg-
mentation algorithm. The algorithm is built upon foundational work found in
[1,2,4].

We assume that the value of each voxel intensity in a given class can be con-
sidered as a random variable, independent across pixels. In the following results,
we assume that the voxel intensities are normally distributed. This assumption
may be modified to support other distributions that may better fit the data.
With a large set of training data, the distributions may also be learned a priori.
The application of the statistical distributions to the voxel intensities produces
the data term, Pr(Vi = v|Ci = ¢). We also assume that the prior likelihood,
Pr(Ci = c¢), of a pixel belonging to a particular class is uniform across all classes.
This assumption too may be modified to incorporate other prior knowledge, such
as shape priors. With the data and prior terms, we generate the posteriors via
Bayes’ Rule. The posteriors are then smoothed for 5 iterations using a 3D version
of the affine invariant smoother of Olver et. al [5]. Finally, we use the maximum
a posteriori estimate to achieve our final segmentation.

The following is a concise description of the algorithm:

Algorithm 1 Bayesian Segmentation High-level Algorithm

Require: User specifies number of classes: 'N’ (default N = 2)

Find N initial class means and standard deviations using K-Means clustering
Generate N images of prior terms, assuming initially prior uniformity
Generate N images of data terms, assuming initially Gaussian distributions
Apply Bayes’ Rule to prior and data images to obtain N posterior images
Smooth the posterior images for several iterations using an anisotropic, edge-
preserving PDE based on the geometric heat equation and renormalize the
posterior images after each smoothing iteration

6: Apply maximum a posteriori rule to achieve segmentation labeling

3 Project Status

Several files have been submitted in conjunction with this paper. The current
version of the code can be found in KnowledgeBasedSegmentation.cxx. This code
is run with 4 command line parameters: input file path, output file path, the
number of smoothing iterations, and the number of classes. We are currently
writing the ITK filter version of this code.



We have also developed accessory filters to support various segmentation fea-
tures. Accompanying this paper are itkHistogramDensityFunction.h and itkHis-
togramDensityFunction.txx which may be used to relax the assumption of nor-
mal distribution and apply an arbitrary distribution to the data as discussed in
section 2. In order to handle low level image operations, it was also necessary
for us to write code to convert from several images of scalars to a single image
of vectors. This can be found in itkImageCastVectorIndexSelectionFilter.h.

In the future, a filter version of this code will be available in the Code/Algorithms/
directory of the ITK source tree. We are also in the process of writing accompany-
ing ITK testing and example code, to be included in the ItkSoftwareGuide. Note
that the filter uses 12 additional ITK files which can be accessed at http://www.itk.org.

4 User Details

In this section, we provide the ITK user with details about the use of this segmen-
tation filter. The knowledge-based segmentation filter minimally requires that
the user only set the input with an image. All other user accessible parameters
are optionally set or accessed and have default values.

4.1 Number of Classes

Most important among the optional parameters is the parameter 'nClasses’
which may be accessed via Set() and Get() methods. This parameter is an inte-
ger that determines the number of classes into which the algorithm will segment
the input imagery. This algorithm does not attempt to guess the optimal num-
ber of classes into which the imagery should be segmented. Note that due to
the use of the itkScalarlmageKmeansImageFilter, the actual output image may
contain less classes than the user initially requests, but this is a rare condition.
The default value for 'nClasses’ is 2, resulting in a binary image labeling only
foreground and background classes.

4.2 Posterior Smoothing

The user will also have access to the Set() and Get() methods of the smoothing
parameters in order to control the smoothing of the posteriors. These parameters
include 'nSmoothinglterations’, 'timeStep’, and 'conductance’. The parameter
‘nSmoothinglterations’ is an integer which determines the number of smoothing
iterations to perform on the posteriors at step 5 of the algorithm. The default
value of 'nSmoothinglterations’ is 10.

The parameters ’'timeStep’ and ’conductance’ are used by the anisotropic
smoothing filter to determine the amount of smoothing to perform on a given
iteration. For stability reasons, the time step should typically be less than 0.25.
The higher the value, the more smoothing that will occur with each iteration.
The default value of ’timeStep’ is 0.1. The default value of ’conductance’ is 3.0.



5 Results

We present the results of this code on two different projects. First, we show
the effect of applying this code to skull-removed brain MRI scans. Second, we
show the effect of applying this code to the extraction of the DLPFC from a
user-defined subregion of brain MRI data.

We present our results on brain MRI scans, comparing the results of the
knowledge-based segmentation to manual segmentations on datasets of schizophrenic
patients. The patients’ heads were imaged in the coronal plane with a 1.5 T
MRI system 2 and a postcontrast 3D sagittal spoiled gradient recalled (SPGR)
acquisition with contiguous slices. The resolution is 0.975 x 0.975 x 1.5 mm
(256 x 256 x 123 voxels). The knowledge-based segmentations were obtained
with the ITK code, which has been submitted in conjunction with this paper.

All segmentations were done on 2D slices. We compare the knowledge-based
segmentation (S) to the ground truth manual segmentation (G) using the DICE

coefficient [6]: DSC(S,G) := %, where Vy is the volume (number of
2

voxels) of segmentation X. DSC values greater that 0.7 are regarded as good in
the literature [6].

5.1 Brain Volumes

Here we applied the knowledge-based segmentation to 10 datasets of skull-
removed imagery. For each case we picked the coronal slice immediately anterior
to the temporal lobe tip. The results (white matter mean DSC=0.8842 and gray
matter mean DSC=0.8952 for N = 10 cases) show that the knowledge-based
segmenter gives good results in white matter and gray matter (see Table 1). The
results of a typical knowledge-based segmentation compared with the manual-
based segmentations for Case 1 are shown in Figure 1(a),1(b) and for Case 2 in
Figure 1(c),1(d).

Case 1|Case 2|Case 3|Case 4| Case 5
Slice 96 98 101 104 98
WM DSC| 0.8996 | 0.8558 | 0.8930 | 0.8820 | 0.8910
GM DSC| 0.9053 | 0.8782 | 0.9114 | 0.8953 | 0.9071

Case 6|Case 7|Case 8|Case 9|Case 10
Slice 101 98 97 98 99
WM DSC| 0.8916 | 0.8645 | 0.9167 | 0.8885 | 0.8593
GM DSC|0.8922 | 0.8991 | 0.9276 | 0.8987 | 0.8372

Table 1. DICE validation measures for white (WM) and gray (GM) matter
segmentations on 10 datasets

3 Signa, GE Medical Systems, Milwaukee, WI.



(¢) Manual (Case 2) (d) Knowledge-Based (Case 2)

Fig. 1.

5.2 DLPFC

The results presented here are from the application of the knowledge-based seg-
mentation as part of a larger algorithm for the semi-automatic segmentation
of the dorsolateral prefrontal cortex (DLPFC) [7]. A region of interest (ROI)
encapsulating the DLPFC is defined in the raw data during the user-driven,
semi-automatic portion of the DLPFC algorithm. Here we show the results of
applying the knowledge-based ITK segmentation to the ROI. The DLPFC is the
resulting gray matter.

The semi-automatic DLPFC segmentation algorithm is currently being coded
into 3D Slicer and our knowledge-based ITK filter will be wrapped in VTK and
used in the 3D Slicer module. The results (gray matter mean DSC=0.8230 for
N =5 cases) show that the knowledge-based segmenter gives good results (see
Table 2). The results of a typical knowledge-based segmentation compared with
the manual-based segmentations for Case 1 are shown in Figure 2(a),2(b).



(a) Manual (Case 1) (b) Knowledge-Based (Case 1)

Fig. 2.

Case 1|Case 2|Case 3|Case 4|Case 5
GM DSC| 0.8119 | 0.7997 | 0.8326 | 0.8344 | 0.8365

Table 2. DICE validation measures for gray (GM) matter segmentations on 5
datasets

6 Open Source Discussion

The open source nature of this project greatly facilitated the creation of this
filter. We were able to leverage existing ITK code to quickly achieve image I/0
and iteration functionality. The ITK framework was already in place to handle
a myriad of input and output types, greatly extending the usefulness of our
code to a variety of image types. Furthermore, existing ITK filters were used
to perform K-Means classification, evaluate Gaussian density functions, smooth
the posteriors, and convert the labelmap image into "N’ histograms (one for each
class). The utilization of these files can be seen in the 12 separate included ITK
files.

7 Conclusion

We have presented our ITK knowledge-based segmentation code and shown pos-
itive results in two separate applications. User details and project status sections
provide the reader with the information necessary to run the accompanying code.
Future work will port this code from its current state into an ITK filter.
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