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Abstract. Dynamic magnetic resonance imaging (DCE-MRI) carried
out with contrast media such as Gd-chelate complex (Gd-DTPA) allows
the non-invasive assessment of microcirculatory characteristics of ma-
lignant lesions. Quantitative estimation of lesion parameters from the
passage of the contrast media requires the use of pharmacokinetic two-
compartment model. The input to the model is the time-intensity plot
from a region of interest (ROI) covering the lesion extent. The lengthy
imaging process, elasticity of the organs and patient movement result in
complex deformations in the subject requiring 3D motion correction for
ROI alignment. This paper presents results on applying the Thirion De-
mon’s 3D elastic matching procedure in the ITK framework on the two-
compartment lesion parameters. Registration, meanwhile involves inter-
polation and smoothing operations thereby affecting the time-intensity
plots. We explore the trade-offs that arise between registration and lesion
parameter estimation. Experiments on synthesized and real deformation
are presented.

1 Introduction

In oncological imaging, magnetic resonance imaging (MRI) allows for consider-
able tissue characterization based on its proton/water or fatty tissue content.
Therefore, a three dimensional delineation of the lesion morphology is achieved.
Meanwhile, the clinical implementation of functional assessment techniques such
as the dynamic contrast-enhanced MRI (DCE-MRI) [1] have resulted in ma-
jor advances in oncological applications. DCE-MRI allows for the non-invasive
imaging of therapy response and diagnosis for the functional characterization of
lesions [2].

DCE-MRI is achieved through the acquisition of sequential MRI images
during the passage of a contrast agent through the tissue of interest. Intra-
venously injected extracellular contrast such as the Gadolinium chelate agents
(Gd-DPTA) have been essential for the detection and delineation of tumors.
Owing to their small molecular size, the contrast permits the characterization
of lesion vasculature by diffusing and re-diffusing back through the altered cap-
illary wall. Recent studies also show that the changes in signal intensity within
a tumor reflects its angiogenic properties [1]. The quantification of the temporal



intensity signal in the tumor region relates to its vascular density and the rate of
enhancement characterizes the arrangement and functional permeability within
[3].

Fig. 1. A: Monitoring evaluation by DCE-MRI in a patient with invasive ductal carci-
noma in the breast. The tumor ROI (A) reveals strong and intense enhancement with
a typical time-intensity curve (B).

The pharmacokinetic two-compartment model describes the diffusion process
of the contrast agent. The input is the temporal signal intensity observable from
a suitably selected region-of-interest (ROI) encompassing an entire or portion of
the lesion. The output of the model is composed of parameters of the intensity
time curve. Model parameters are computed that can be used to relate to the
lesion specific physiological concepts as shown in Figure 1.

Image acquisition in DCE-MRI involves 20-32 time-points each containing
about 14-32 transversal slices of a 3D volume. The challenging aspect in quan-
tification is the positioning of the ROI consistently to cover a lesion across all
the epochs. The time required for imaging usually allows considerable motion
by subject movement. While stationary organs like the central nervous system,
bone marrow, the musculoskeletal system and the breast are more readily im-
aged, organs such as kidney, liver and lung can be burdened by motion artifacts.
Further, organs such as the female breast are scanned in a pendant position and
therefore amenable to non-linear deformation. Involuntary movement such as
rolling of the patient, breathing, gravitation effects also cause motion [3].

Therefore, quantification of DCE-MRI data requires elastic 3D motion-correction
procedures. Improper placement of the ROI in the motion affected time-points
can affect the correct evaluation of the lesion parameters and hence its functional
assessment. However, co-registration is also concomitant with image transforma-
tions leading to interpolation of the image field on a grid. Interpolation is akin to
a low-pass filtering operation and hence pixel intensities are affected. Reduction
in pixel intensities affect the amplitude, rise and wash-in or wash-out gradients
of the time-intensity curves and hence the parameters.



In this paper, we describe the improvement in lesion parameter estimation
as a result of using motion correction through the Thirion’s demons registra-
tion method [4]. We especially explore artifacts of registration such as intensity
smoothing in images and propose corrections. We present the comparative eval-
uation of the impact of registration parameters settings on the lesion pharma-
cokinetic parameter estimations. Experiments are performed using stationary
datasets with induced artificial motion and on clinical datasets having complex
motion. It should be noted that significant improvements are obtained from using
our framework.

In what follows, Section 2 explains briefly the Demon’s Deformable regis-
tration and its implementation in the National Library of Medicine NLM/NIH
Segmentation and Registration Toolkit (ITK). Section 3 details our comparative
evaluation study with results. Finally, we report our conclusions and outline our
plans for the future in Section 4.

2 3D Elastic Co-registration: Thirion’s Demons

Thirion [5, 6] introduced the concept of diffusing models to perform image match-
ing, an essential component of this study. Image matching is performed through
the movement of a deformable grid through a semi-permeable contour of an ob-
ject surface in the other image. The idea is derived from an analogy of Maxwell’s
demons aiding the diffusion of fluid through a semi-permeable membrane. Vali-
dated results were presented with synthesized deformations on real medical im-
ages. The method was applied successfully to track heart-motion which is similar
to the motion in DCE-MRI images. Additionally, the method was also applied
to three-dimensional inter-patients matching of brain images [7] with different
shapes and intensities. In [4], a study of evaluating the temporal variations of
lesion volumes for practical applications such as therapeutic intervention effects,
decision making for drug treatment and pharmaceutical trials was conducted.
This places our work in perspective. We seek to apply Thirion’s method to the
co-registration of DCE-MRI images. Now, we describe the ITK implementation
of the method.

Fig. 2. ITK pipeline for the Demon’s deformable registration

The input is a pair of stationary (S) and moving (M) images. Every object
surface in S is defined by pixels on its boundary contour, also called demons.



The demons are responsible for applying force vectors on the deformable grid in
M . Based on the location of the grid point in M with respect to the contours
in S, the demons decide the polarity (direction) of the force vectors. Iteratively,
the force created by the demons cause motion that is applied to the model. As
the model draws closer to the contours (demons), the forces applied decreases
gradually after each iteration. At convergence, the determined deformation field
in M is applied to warp into S. For the DCE-MRI images, each of the epochs
provides a 3D volume which is registered to a pre-determined base 3D volume.

Registration Framework Components The demons algorithm relies on the as-
sumption that pixels representing the same geometric point on both the images
have the same intensity on both the fixed and moving images to be registered.
In DCE-MRI, there is a non-uniform uptake of the contrast medium affecting
only the intensity in tissue pixels with the background being unaffected. There-
fore, to obtain optimal results, we apply a itk::HistogramMatchingImageFilter.
The parameters for this ITK filter include the histogram bins and the number
of match points. The background pixels are eliminated during histogram com-
putation in both the images by thresholding at the mean intensity. Hence, only
those points affected by the contrast media are scaled back to the intensities in
the base volume.

The itk::DemonsRegistrationFilter outputs a deformation field. The conver-
gence is user-specified by the number of iterations. The deformation in each
iteration is filtered by convolving with a Gaussian-kernel. Hence, the parameters
in the deformation filter include the standard deviation of the Gaussian kernel,
the interpolation method and the number of iterations. For DCE-MRI images,
50 iterations yielded optimal performance with the standard deviation set at
1.0. The itk::WarpImageFilter takes the final smoothed deformation field and
the moving image as input and outputs a deformed image.

3 Enhancements and Results

We now present some results from the registration framework just described.
Fifteen patients with eye tumors were included in the study protocol. DCE-MRI
datasets were acquired on a clinical 1.5-T MR system (GE SIGNA) using a fast
gradient-echo sequence (3D-FSPGR) with the following parameters: repetition
time = 7.5 msec, echo time = 2.9 msec, flip angle = 25, FOV = 320, matrix size =
256 x 256, slice thickness = 3 mm, number of excitations = 0.5 using a standard
phased array body coil. Total scan time was about 8 minutes. After the third
phase a small molecular weight paramagnetic contrast agent (e.g. Gd-DTPA,
Magnevist) was injected using a power injector at a constant infusion rate of
0.66 cc/s; dose 0.1 mmol/kg bodyweight for approximately 18s. 3D volumes of
the eye at 32 time-points were acquired with peak contrast being evident in the
fifth time-point.

Figure 3 (A,B) shows two slice of the dataset extracted from the 3D volumes
at fifth and tenth time-points. It is easy to observe that the slice B suffers from
motion-induced warping. Image C is the difference image of A and B, clearly



Fig. 3. A: Static slice. B: Motion-affected slice C: Difference image D: Slice B after
registration E: Difference image after registration.

indicating the mis-alignment in boundaries. Co-registration of all the 32 volumes
was done with the volume at the fifth time-point being considered as the fixed
image. Image D is the slice extracted after the elastic registration of the 3D
volume at tenth time-point. The difference image of D and A is shown in image
E. The improvements and alignment of the boundaries in D are easy to observe
over C.

Breast datasets were acquired using the similar study protocol. The breast
was imaged in a pendant position and suffered elastic deformation. Twenty-six
image volumes were acquired for analysis. Each volume was again registered to
the volume at the fifth time-point. Figure 3 (A,B) show the volume renderings
of the difference volumes at the twelfth time-point prior- and post-registration.
Owing to misalignment in A, the tumor is covered by the breast tissue and does
not permit visualization. In Figure 3 (B), however, we can clearly see the tumor
morphology in 3D. Using the clustering approach in [8], we effectively segment
the tumor (C) to observe its heterogeneity.

The two-compartment model estimation of the lesion parameters depends on
the temporal intensity variation in the ROI. Earlier, we mentioned that registra-
tion results in the smoothing of the image due to the interpolation of the warped
image onto a grid. The iterative nature of the process with the registration filter
causes the monotonic decrease in average pixel intensities in the ROI. Further,
we also smooth the deformation field with a gaussian filter to avoid unrealistic
deformations. Therefore, the contours in the image are often blurred. For exam-



Fig. 4. A: 3D rendering using transfer functions of a difference volume B: 3D rendering
of the difference volume after registration. C: Zoomed version of the tumor showing its
heterogeneity

ple, Figure 3D shows the decrease in pixel intensities along with blurring in the
registered eye dataset.

Fig. 5. Left: Pearson’s correlation is plotted for each of the epochs after registration.
Note that registration is carried out with the 5th epoch as the static dataset which
causes the occurrence of a peak. Green, red and blue represent 50, 100 and 200 iterations
respectively. The black line at the bottom represents the original volumes prior to
registration. Right: Average ROI intensity plots after registration is complete. The
black curve represents the true ROI intensities.

We now seek to understand registration on the basis of its affect on the pixel
intensities. Datasets with motion cannot be chosen for validation purposes since
there is no ground truth for pixel intensities after registration. For this purpose,
DCE-MRI images of the eye with no motion in them are chosen. The data had
32 epochs and 24 slices with each slice being 256 x 256 in dimensions. Our task
was complicated by the fact that the occurrence of such datasets is very rare.

We synthesize elastic motion in the volume by displacing each voxel based on
its location with respect to 4 Gaussian functions namely, 1. time-point (4,10), 2.
slice within the volume (8,10), 3. rotation angle (10◦, 50) about the eye-center



and 4. constant translation of 20 vertically. The values in the brackets specify
the mean and standard deviation of the applied Gaussian. The rationale behind
this procedure is that deformation is smooth and continuous and may be rep-
resented as mixture of Gaussian kernels. The time-points tend to see a gradual
increase and decrease in deformation. Further, the deformation in each time-
point is maximum at a given slice and gradually declines for the neighboring
slices. Such behavior is common in the case of elastic organs like the lung, liver
and breast. The translation may be due to blood flow or regular breathing and
can again be approximated as gaussian movements with large standard devia-
tions. The standard deviations were chosen iteratively by a oncologist to reflect a
real dataset found in practice. The deformed dataset is interpolated back onto a
grid to represent a dataset with motion. The video sequence deform.avi attached
shows a particular deformed slice across all time-points. Using the original and
deformed datasets, we can evaluate the registration performance.

Fig. 6. The lower curves (red, blue and green with triangle markers) show the average
ROI intensity in the registered volumes. The true ROI intensity is represented by the
black curve. The set of upper curves (red, blue and green with star markers) represent
the average ROI in registered volumes after doing a histogram matching for intensity
correction. Note that these curves match the black curve closely. Green, red and blue
represent 50, 100 and 200 iterations respectively.

Normally, registration methods have been evaluated on the basis of maxi-
mizing a similarity metric between two images. Using Pearson’s formula, the
correlation in the volumes prior to registration was 0.45 on average. After regis-
tration, the correlation was found to improve to 0.7 on average. Figure 5 (Left)
shows the correlation of the eye dataset after registration. The blue line indi-



cates the correlation among the volumes prior to registration. The low values
are partly due to the motion, white noise in the images and also from the con-
tinuous uptake and washout of the contrast medium. Registration improves the
correlation significantly. The red, green and blue lines indicate the changing cor-
relation values depending on the iterations of the registration algorithm. Longer
iterative times tend to produce better registrations with diminishing returns
progressively.

Figure 5 (Right) shows that as the registration accuracy improves (as a result
of increased iteration), the drop in the average ROI intensity is more pronounced.
Hence, we propose the use of a second itk::HistogramMatchingImageFilter after
the registration is complete as shown in blue in Figure 2. Here, the reference
image is the moving image M prior to registration. The histogram matching
is done only in a region local to the ROI. This allows the non-linear scaling
of the pixel intensities of the affected regions to match the original region. We
also threshold using mean intensity value in order to eliminate the background
voxels from interfering. Figure 6 shows the average ROI intensity plots after
registration. The three lower curves (red, green and blue with triangle markers)
are registered volumes without the histogram matching. The true ROI intensity
curve is shown in black. After using the histogram matching filter, the registered
volumes were scaled to match the black curve as shown by the red, green and
blue curves with star markers. These curves lie in the vicinity of the black curve.

4 Conclusion and Future Work

In this paper, we described our experiences with using the Demon’s co-registration
method on DCE-MRI image sequences. We discuss the implementation of the
Thirion’s demon’s 3D elastic registration method in the ITK framework. We eval-
uate the effectiveness of automatic co-registration on images with varying defor-
mation, noise and registration parameter settings. We explore the effects of regis-
tration procedures on the pixel intensities and hence on the two-compartmental
model quantified parameters. Hence, we incorporate ROI localized histogram-
matching to obtain a suitable intensity mapping. In future, we will study the
effects of different non-linear mapping strategies and conduct rigorous validation
studies to establish a well-defined protocol for DCE-MRI image processing.
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