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Abstract. The gold standard for measuring muscle regeneration in muscular 

dystrophy therapies is counting the number of dystrophin-positive muscle fibers on a 

cryostat muscle section immunostained for dystrophin. The standard process of 

manually counting a few thousand myofibers is tedious, time consuming, and limits 

quantitative analysis of a therapy’s success. We present an unsupervised method for 

segmenting and counting the number of myofibers on an immunofluorescent 

microscopy image. The key threshold selection problem is resolved by maximizing 

the number of sub-threshold connected components. Components significantly 

smaller than the known lower bound myofiber area, the only input parameter, are 

ignored to reduce noise. Validation on a series of images (n=63) revealed that our 

algorithm varied by less than 10% from manual counts in the relevant range of 

operation. The algorithm allows us to quantify three-dimensional dystrophin 

expression and design experiments that address a major limitation in muscular 

dystrophy therapies, the limited distribution of dystrophin after treatment. Further 

we have extended this method to segment and count objects in other 

immunofluorescent images. The method was quickly developed and tested using the 

Insight Toolkit (ITK), an open source C++ library for the development of image 

analysis software.       

1. Introduction 

Immunohistochemistry is a valuable technique that measures protein expression in cell 

culture and tissue sections by labeling a protein, such as dystrophin, with an antibody 

attached to a fluorescent signal. Many research groups are interested in automating the 

measurement of muscle regeneration in therapies for muscular dystrophy. The gold 

standard for measuring muscle regeneration uses immunohistochemistry to stain 

dystrophin-positive myofibers on a muscle section so that the number of regenerated 

myofibers can be counted. Current therapies result in a few thousand myofibers being 

generated [1]. Manually counting such a large quantity is tedious and time consuming, but 

remains standard practice due to the lack of an accurate automated processes. Further, this 

analysis only assesses the local expression of dystrophin, but ignores the longitudinal 

distribution of dystrophin expression, ie, the distribution of dystrophin expression as a 

function of position along the muscle fiber. This is one of the main limitations of current 

therapies [2]. To design experiments that address this problem, we developed an algorithm 
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to automatically count the number of dystrophin-positive myofibers on an 

immunofluorescent image, allowing three-dimensional dystrophin expression to be 

quantified.  

2. Unsupervised Thresholding 

Thresholding is often used to segment an image. Ideally, the two populations to be 

classified (foreground and background) would have distinct ranges of image intensities 

with minimal overlap to form a bimodal histogram (Fig 1A). However, images of 

myofibers immunostained for dystrophin (Fig 1B) and immunofluorescent images in 

general have unimodal image histograms (Fig 1C) where an appropriate threshold is not 

obvious. We have developed an algorithm to automatically select a threshold for 

immunofluorescent images by searching for the threshold which maximizes the number of 

connected components of the thresholded image. 

 

  

Fig. 1. The threshold used to separate two populations is apparent if the image histogram is bimodal 

(A). However, an immunofluorescent image of myotubes immunostained for dystrophin (B) has a 

unimodal image histogram (C), and the appropriate threshold is not clear. Note that (B) is only a 

small portion of the overall image of a regenerated muscle. 

We have observed that the number of connected components as a function of threshold is 

smooth in the vicinity of the maximum. The search for this optimal threshold is 

implemented using a modified bisection method. Cells typically have a pixel area greater 

than 100 pixels (Retiga 1300 camera at 200x magnification) so that components below 50 

pixels, the only input parameter, were ignored to eliminate noise. This approach is based 

on the following logic. If the threshold is set too low, the number of connected 

components is too low because some of the myofibers will not be detected (Fig 2B). 

Conversely, if the threshold is too high, the number of connected components is too low 

because the white border separating the myofibers is eroded away connecting individual 

myofibers (Fig 2D). This suggests that a reasonable threshold maximizes the number of 

sub-thresholded connected components (Fig 2E). If this optimum threshold is used, the 

image appears to be correctly segmented (Fig 2C) compared to the original image (Fig 

2A). This algorithm is a variant of a method termed topological stable-state thresholding 

[3]. 
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Fig. 2. The original image (A) is thresholded at a low (B), medium (C), and high (D) pixel 

intensity. The number of connected components above a user defined minimum area is 

plotted if the image was thresholded at all pixel intensities (E). Images B, C, and D are 

shown at their respective points on the curve in E. This suggests that an optimal threshold 

point can be identified based on maximizing the number of connected components in an 

image.      

3. Proposed Method and ITK Implementation 

The Insight Toolkit (ITK) is an open source C++ library used to design and implement 

algorithms for image analysis [4], and was used to rapidly assemble and test the feasibility 

of this method. Figure 3 outlines the pseudo-code of the algorithm using a modified 

bisection method. The minimum and maximum pixel intensities of the image are the set as 

the two endpoints. Each segment between an endpoint and the midpoint is bisected for the 

initial two evaluation points. The image is thresholded at each point, and the ITK classes, 

ConnectedComponentsImageFilter and RelabeledComponentsImageFilter, are used to 

count the number of connected components above the minimum object size on each binary 

image. The point with the higher number of objects is set as the new midpoint, and the 

point with the lower number of objects is set as the new endpoint. The process is repeated 

until the two endpoints are two pixel intensities apart. To decrease the step size of each 

iteration, the rate of bisection can be damped. Any number of other numerical methods for 

optimization without derivatives can be used to search for the maximum including Brent’s 

and the golden ratio method [5].           

 

This method of unsupervised segmentation has two inherent advantages. First, the only 

necessary input is the minimal area of the segmented objects; this parameter is known a 

priori, which we can exploit to help eliminate background noise. Second, the method 

employs a natural coarse-to-fine search strategy.  Since the function is sampled at the 

three most widely separated intensities in the initial iteration, the function is, in effect, 

smoothed at a large scale and thus avoid local maximums. The sample selection has the 

effect of reducing the degree of smoothing with each iteration, i.e., decreasing as the 

search scale as the estimated maximum is approached.  (We note that subsampling is a 

well-known strategy for regularizing ill-conditioned inverse problems, such as numerical 

differentiation.)  It is possible that a local maximum near the global maximum may be 

identified; however this is an equally acceptable solution as little difference exists between 

the two answers in terms of number of components, which is the desired objective. 
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Fig. 3. The proposed method for unsupervised segmentation of immunofluorescent 

myofiber images uses a modified bisection method to search for the threshold point.  

 

Further, ITK is a valuable tool to implement automated threshold-based segmentation of 

immunofluorescent images. Different numerical methods or other approaches can easily  

be tested to identify the best optimization or search strategy. The generic ITK pipeline 

allows the easy addition of edge enhancement features in situations where thresholding is 

not an entirely sufficient method for segmentation. In addition, standard image processing 

operations such as connected components that are challenging to code and debug are 

already reliably implemented in ITK.          

4. Results and Discussion 

The method was validated on a set of 63 images with a range of camera exposure, 

myofiber numbers, and immunostaining conditions. For images with more than 100 

myofibers, there was less than a 10% difference between manual and our automated 

counts. For images with less than 100 myofibers, there was more variation; however this 

is below the needed operating range of our algorithm (Fig 4A).  

 

To test the ability of this approach to measure three-dimensional regeneration, a series of 

serial cryostat sections of a regenerated muscle was stained, imaged, and measured with 

our algorithm. A longitudinal plot of the number of dystrophin-positive myofibers as a 

function of the length of the muscle, starting at the beginning of the engraftment, 

demonstrates the three-dimensional measurement of tissue regeneration (Fig 4B). A major 

obstacle in therapies for muscular dystrophy is the low migration of dystrophin gene 

vectors that result in a limited longitudinal distribution of dystrophin expression [2]. This 

automated algorithm will facilitate quantifying this measurement, allowing us to design 

experiments that address the limited distribution of dystrophin-positive myofibers.  
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Fig. 4. Validation of this algorithm (n=63) revealed that images that contained more than 100 

objects varied by less than ±10% (solid lines) from manual counts (A). After validation, this 

algorithm was used to measure the number of dystrophin-positive myofibers on a set of 30 serial 

cryostat cross sections of a single muscle, and a longitudinal plot of the counts displays the 3-D 

distribution of dystrophin expression (B).           
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