
Development of open source software for
computer-assisted intervention systems

Peter Kazanzides, Anton Deguet, Ankur Kapoor, Ofri Sadowsky, Andy
LaMora, and Russell Taylor

Department of Computer Science, Johns Hopkins University, USA, pkaz@jhu.edu ?

Abstract. We are developing open source software for computer as-
sisted intervention systems. Our primary experience has been with med-
ical robots, but the concepts (and software) apply to many physical de-
vices that interact with the real world. The real-time performance re-
quirements permeate all levels of our software, including common tools
(such as logging, class and object registers), vectors, matrices and trans-
formations. Our software libraries are written in C++, but are also ac-
cessible from Python, which provides a convenient environment for rapid
prototyping and interactive testing.The real-time support includes a de-
vice (hardware) interface and a task library. Device-specific modules such
as robot servo control and trajectory generation can be provided by tasks
or by external devices. Ultimately, we intend to provide a framework that
supports extension via dynamically loaded plug-in modules. Our devel-
opment process utilizes a multitude of open source tools, including CVS,
CMake, Swig, CppUnit, Dart, CVSTrac, Doxygen and LATEX. These tools
help to ensure compliance with our software development procedure.

1 Introduction

Software development at the Engineering Research Center for Computer Inte-
grated Surgical Systems and Technology (CISST ERC) at JHU initially focused
on a library for Computer-Integrated Surgery (CIS ) application development,
a common interface to different tracking systems (cisTracker) and a library for
Modular Robot Control (MRC ). Over the past three years, we have undertaken
a major redesign of this software, now called the cisst package, and plan to make
it available under an open source license at www.cisst.org. The redesign effort
has focused on portability (different operating systems and compilers), main-
tainability, real-time compatibility and establishment of a testing framework. In
addition, we adopted a more formal development process to improve the quality
(and clinical certifiability) of the resulting software.

A prime motivation for the development of the cisst package has been our
increasing need to implement novel control algorithms for new interventional
systems, such as a robot for minimally-invasive throat surgery [1]. This was not
feasible with the original MRC library because it relied on intelligent hardware

? This work is supported by NSF ERC 9731478.

file:www.cisst.org


Foundation libraries
cisstCommon
cisstVector
cisstNumerical
cisstInteractive

Real Time Support
cisstOSAbstraction
cisstDeviceInterface
cisstRealtime

Interventional Devices
cisstTracker
cisstMRC
…

Fig. 1. CISST Libraries

cisstMRC cisstNumerical cisstVector

Application 
Software
(Complex 

executable with 
GUI tools)

SWIG Class 
Wrapper

Python Workspace (IRE)

SWIG Class 
Wrapper

SWIG Class 
Wrapper

C++ 
Object

Registry
(Shared 
Object)

WxWidgets
Simple dialogs, frames, etc.

Custom Python Tools
Error Log Controller
Config. File Editor
Experiment Scripts

cisstInteractive
SWIG Wrapper

Fig. 2. Interactive Research Environment (IRE)

(a motion control board) to provide the low-level real-time control. Our vision
for cisstMRC is that it should transparently allow any control function to be pro-
vided by intelligent hardware or by a software task coupled with non-intelligent
(I/O) hardware. Furthermore, we wish to provide a well-tested core framework
that can be dynamically extended by plug-in modules to allow the software to
be adapted to different hardware and to allow researchers to add new real-time
functions or replace existing ones.

This paper focuses on the open source foundation libraries and real time
support that have been developed for the interventional device software. We
believe that our software uniquely combines the real-time performance necessary
for controlling physical devices, such as robots, with the core functionality needed
for computer-integrated surgery applications. The cisst package does not include
medical image visualization or processing and therefore complements existing
open source software such as VTK and ITK and toolkits built on top of them
(e.g., 3D Slicer and IGSTK). There are a few open source robot control packages,
such as OROCOS (Open RObot COntrol Software)), Orca, Modular Controller
Architecture Version 2 and Microb (Module Intégrés de Contrôle de ROBots),
but these were either not suitable or not available in time.

2 The CISST Package

The cisst package consists of several software libraries that are grouped into the
categories of Foundation Libraries, Real Time Suport and Interventional Devices
(e.g., trackers and robots). Figure 1 shows a hierarchical view of these categories
and the following subsections provide details for selected libraries.

2.1 cisstVector (Foundation Library)

The cisstVector design was motivated by the desire for an efficient implementa-
tion of fixed-size vectors, matrices and transformations that is suitable for real-
time use. Most other vector libraries use dynamically allocated memory to store

file:www.vtk.org
file:www.itk.org
http://www.slicer.org
http://www.igstk.org
http://www.orocos.org
http://orca-robotics.sourceforge.net
http://mca2.sf.net
http://mca2.sf.net
http://www.robotique.ireq.ca/microb


the vector elements, which is not ideal for real-time computing. An even greater
number use loops as the underlying computational engine, which is not efficient
for small vectors. Our goal in the development of cisstVector was to achieve high
computational efficiency by using stack-allocated storage, and by replacing loop
mechanisms by templated engines, defined using recursive template metapro-
gramming [2]. The templated definition enables us to define vectors of different
sizes and types and to apply the same operations to the vectors in a consistent
form. We identified a small number of recursive engines that would provide all
the operations that we would want to perform on and between vectors. For com-
pleteness, cisstVector also provides dynamically allocated vectors and matrices.

A special feature of cisstVector is that it allows matrices to be stored in either
row- or column-major order, to accommodate both C-style and Fortran-style
two dimensional arrays. This provides convenience to C/C++ programmers,
and at the same time integration with existing numerical packages based on
Fortran, such as C LAPACK. In addition, cisstVector supports direct operations
on subregions (slices) of vectors and matrices.

2.2 cisstInteractive (Foundation Library)

The cisstInteractive library provides the structure for embedding a Python-based
interactive shell, the Interactive Research Environment (IRE), into our C++
programs. The IRE uses wxWidgets for Python to provide the GUI features and
relies on SWIG to automatically wrap the C++ libraries for Python (see Fig. 2).
It also provides an object registry that enables the Python and C++ software to
share objects. This is especially useful when embedding the Python interpreter
in an application because it allows the user to modify C++ objects from the
Python interpreter.

2.3 cisstDeviceInterface (Real Time Support)

This library defines the ddiDeviceInterface class, which provides the hardware
interface. A novel feature of our design is that we do not use class inheritance
to specialize the device interface to different types of devices. Conventionally,
one would define a“tracker interface class” with methods such as GetPosition.
A “robot interface class” would be derived from it, adding methods such as
MoveToPosition. The rationale here is that a robot provides all the features of
tracking systems and adds others. Our approach addresses the same rationale
with a different answer. We developed a mechanism for dynamic interface query,
where a caller can query an object for the methods it “Provides”, where the
method name is represented by a string. To preserve runtime efficiency, we im-
plemented the command pattern [3]. This approach is more flexible than a class
hierarchy, but requires careful maintenance of, and adherence to, a “dictionary”
of command names and their associated data types. The dynamic nature of this
design implies that some errors, such as attempting to use a device interface that

http://www.wxpython.org
http://www.swig.org


does not implement a required command, can only be detected at runtime. Un-
like the inheritance paradigm, however, our approach does not require multiple
inheritance to provide multiple interfaces for a single object.

2.4 cisstRealTime (Real Time Support)

The cisstRealTime library provides the features needed by software that must
interact with the physical world in a real-time manner. We decided to use RTAI
(Real Time Application Interface)) with Linux as our real-time operating system
because it is open source, appears to be well supported and provides useful
features such as sharing of data between real-time and non-real-time code. We
created a cisstOSAbstraction library so that our software can be portable to
other operating systems. We also support non-real-time operating systems, such
as Windows and Linux, though without the real-time guarantees.

We desired a software architecture that allows any control function to be
transparently provided by a real-time software thread or by an external (intel-
ligent) device. We achieved this by defining the classes shown in Fig. 3. The
rtsTask class provides the basic real-time task. It is derived from ddiDeviceIn-
terface and also contains a ddiDeviceInterface object. This allows us to define
identical interfaces to both a real-time task, coupled with a non-intelligent I/O
device, and an actual intelligent device; i.e., they are both instances of the ddiDe-
viceInterface class) and are both accessed using the command pattern described
earlier. This concept is illustrated in Fig. 4, which shows two potential imple-
mentations of a robot force controller. The top line shows the implementation
using non-intelligent hardware, where three software tasks provide the appli-
cation thread, force controller and servo control. The bottom line shows the
implementation using an intelligent motion controller, where only the first two
software tasks are required. Note that our architecture allows exactly the same
two application and force controller tasks to be applied in both cases – the spe-
cific implementation of the servo control, whether by a task or by an intelligent
board, is hidden from the higher layers.

The rtsTask class also includes an rtsStateDataTable object. The state data
table is a two-dimensional array that is indexed by “data id” and “time” and
contains all persistent data in the real-time task. The “time” indexing provides a
snapshot of the history of the real-time system and can be used for data collection
as well as for debugging (i.e., to provide a “flight data recorder” functionality).
It also solves the mutual exclusion problem between the real-time and non-real-
time parts of the system (similar to a double-buffering technique).

3 Development Process

Our development process uses the following open source tools (see Fig. 5):

1. CVS (Concurrent Versions System) [4] for source code and document control.

http://www.rtai.org
http://www.rtai.org


rtsTask

ddiDeviceInterface

osaThread

osaThreadBuddy

rtsStateDataTable

vector <osaMailBox >

map <string, ddiCommandBase *>

StateDataTableMailBoxes

DeviceThread

ThreadBuddy

vector < rtsStateDataArrayBase *>

vector < rtsTimeTicks >

rtsTimeIndex

vector <string>

Ticks

StateVector

StateVectorDataNames

rtsStateDataArrayBase

template<_type>
rtsStateDataArray vector <_type>

Data

ddiCommandBase

template<_device>
ddiCommand

_device* Device

bool (_device::*)() Action

Operations

Position Output 
Voltage

Desired 
Position

[0] [1] [2]

IndexReader
IndexWriter

Legend:
Member of
Inherits from
Instance of (snapshot)

Fig. 3. Devices and Tasks: Class Collaboration

2. CMake for cross-platform builds. CMake generates the appropriate compiler-
specific makefiles/projects/workspaces/solutions from compiler-independent
configuration files.

3. CppUnit and PyUnit to provide a unit testing framework for our C++ and
Python software, respectively.

4. Dart for automated, distributed tests. We routinely use “Experimental”
builds and plan to add multiple “Nightly” builds.

5. Doxygen to automatically extract (specially-formatted) documentation from
the source code and create class diagrams, dependency graphs and other
design documentation in HTML and LATEX formats.

6. SWIG to generate wrappers for interpreted languages such as Python.
7. CVSTrac to manage bug tracking and feature requests.

We rely on manual creation of requirements documents, high-level design
documents and user guides/tutorials. We chose to prepare these documents using
LATEX[5] because it is text-based and therefore more amenable to change control.
Our build process includes “compilation” of the LATEX documents into PDF and
HTML formats (see Fig. 5).

4 Summary

Despite the existence of some computer assisted intervention systems, research is
hindered by the lack of open source software that can be certified for clinical use.
We endeavor to address this need by making the cisst package available as open
source software in the next few months. At the time of this report, the foun-
dation libraries (cisstCommon, cisstInteractive, cisstVector and cisstNumerical)

http://www.cmake.org
http://cppunit.sourceforge.net
http://pyunit.sourceforge.net
http://www.itk.org/Dart
http://www.doxygen.org
http://www.swig.org
http://www.cvstrac.org
http://cisst.org


ATI ISA F/T
Servo To Go

Thread

Table
Data
State

Device

M
ailbox

Servo TaskThread

Device

Force Compliance

Thread

Device

Application Task

ATI DAQ F/T
MEI ISA/DSP

Intelligent 
Hardware

Non-Intelligent 
I/O Boards

Application Trajectory 
Control

Servo Control

Table
Data
State

Table
Data
State

M
ailbox

M
ailbox

Fig. 4. Robot Task Example

CTest

Build Environment

LaTeX

Doxygen

SWIG

Compile

Compile

Compile

Library Binaries
(static & dynamic, e.g., 

cisstVector, cisstCommon)

Test Programs

Applications

Optional Interpreter (IRE)

Wrapped 
Source

Formatted 
Documentation
(e.g., pdf, html)

(e.g., VC++, gcc/make)

Test 
Results

Link

CVSTrac (bug/feature requests)

CMake

CVS
Repository

(source control)

CMake Build 
Instructions

Documentation

Libraries

Test App

Applications

Scripts

CppUnit
Dart2

(dashboard)PyUnit
Link

Fig. 5. Software Development Tools

are mature and ready for general use. The real-time support (cisstOSAbstraction,
cisstDeviceInterface and cisstRealTime) are in beta testing, and the interven-
tional devices (cisstTracker and cisstMRC ) are in active development.

References

1. Simaan, N., Taylor, R., Flint, P.: High dexterity snake-like robotic slaves for mini-
mally invasive telesurgery of the upper airway. In: MICCAI. (2004)

2. Veldhuizen, T.: Using C++ template metaprograms. C++ Report 7 (1995) 36–43
Reprinted in C++ Gems, ed. Stanley Lippman.

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

4. Fogel, K.: Open Source Development with CVS. Coriolis Open Press (1999)
5. Lamport, L.: LATEX — A Document Preparation System. Addison-Wesley (1985)


	Development of open source software for computer-assisted intervention systems
	Peter Kazanzides (Johns Hopkins University), et al. (Affiliations), 

