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Abstract. Salient points are used for various applications, such as med-
ical image registration, tracking, stereoscopic matching. The purpose of
this paper is to compare two commonly used methods to extract salient
points in 3D medical images. We give an interpretation of the methods
and validate their performance empirically based on criteria derived for
the task of image registration, displacement measurement and tracking
in medical images.

1 Introduction

There has been considerable research on finding an optimal salient point detec-
tor. These detectors are often called corner detectors, because they have been
designed to find grey-value corners. Typically there aren’t many real corners in
medical images, such as MR images of the brain. Nevertheless, it is useful in
many registration and tracking methods to extract points with high intensity
variations in all directions, because they may be matched more reliably. An il-
lustrative example is a straight line, which has high variation perpendicular to
the axis, but no variation along the axis, effectively preventing localization in
this direction. Therefore the salient point detector should detect points that are
distinctive in their environment. Furthermore the detector should be invariant
under certain (geometric and photometric) transformations. Mostly research has
been done on 2D salient point detectors. Many approaches have been proposed
in the literature. Some of the main directions have been:

1. methods based on first extracting the edges as chain codes and then finding
points on the edges with maximal curvature[1].

2. differential methods based on directly finding points from the grey-level im-
age. These methods are usually based on calculating derivatives of the image
and using some kind of cornerness measure.

3. scale-space methods based on computing features at multiple scales (e.g.
after wavelet transforming the image [2]).



The first type depends on the accuracy and robustness of the edge detection
process, which is notoriously unreliable for images with low signal to noise ra-
tio. For our purposes we prefer the second type of corner detectors. In 2D the
most prominent operators of this type, are the the DET operator, which is the
determinant of the Hessian matrix, proposed by Beaudet [3], the Kitchen and
Rosenfeld [4] operator, which is the curvature multiplied by the gradient mag-
nitude and the Plessey corner detector by Harris and Stephans [5]. One of the
short comings of this type of salient point detectors, are the inaccurate local-
ization of corners. Many more recent approaches, such as the Curvature Scale
Space method [6], are improvements of these basic operators.

More recently methods to extract points in 3D volume images have been
developed. A generalization of some of the operators mentioned above to 3D
was given by Rohr [7]. Ruiz-Alzola et al. [8] extended a modified version of the
Harris corner detector, by introducing generalized correlation matrices, to deal
with vector and tensor pixel values in arbitrary image dimensions.

Naturally the quality of a salient point detector is assessed under certain cri-
teria, that may vary between applications. Typical criteria are a) the invariance
of the method under geometric and photometric changes, or over different scales
(scale space), b) the accuracy of localization of the points and c) the distinctive-
ness of the detected points in their local environment. In our setting we would
like to use the detected points for registration of medical images from different
image modalities. We have defined some properties, which a salient point de-
tector should have for this type of application. For each of these properties we
have found a metric to quantify the performance of the operator. In Section 2
we describe two interesting salient point detectors. In Section 3 we discuss sev-
eral metrics to validate the performance of the detectors. Finally 4 gives some
results on the performance of the validated detectors. All of the discussed detec-
tors have been implemented as open source by using and extending the Insight
Segmentation and Registration Toolkit [9].

2 Salient Point Detection Methods

In this paper we compare two different methods to extract salient points. The
first type of method, is based on finding extrema of the Gaussian curvature.
Beaudet proposed a 2D operator and called it DET, as it is the determinant of
the Hessian matrix. The usual interpretation is based on the observation that
DET is the numerator of the Gaussian curvature:
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The Gaussian curvature is the product of the two principal curvatures. The prin-
cipal curvatures are the minimum and maximum values of the local curvature of
a surface(i.e. the image intensities). A positive Gaussian curvature value means
the surface is locally either a peak or a valley. A negative value means the surface



locally is a saddle point. And a zero value means the surface is flat in at least one
direction. The local extrema of the curvature are selected as points of interest.

The extension to 3D is mainly due to the work of Monga et al. [10], who
showed it is possible to calculate locally the Gaussian curvature without fitting
a surface. The estimated curvature is the curvature of an isointensity surface in
the volume image.
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Where cycl.(x, y, z) stands for cyclic permutation of the coordinates. Thirion and
Gourdon [11] used this expression to find crest lines in 3D CT and MRI images.
The same expression was obtained by Florack [12] by applying invariance theory.

The second type of operator in our comparison is based on the corner de-
tector proposed by Harris and Stephans [5]. An estimate of the autocorrelation
function is calculated at each pixel location using the first derivatives of the
image intensities. An Eigenanalysis of the estimated correlation matrix provides
information about how the intensities are changing locally. The method was ex-
tended to 3D by Rohr [13]. He also gives a sound statistical interpretation to
the correlation matrix and its principal invariants. Finally Ruiz-Alzola et al. [8]
generalized this method to vector and tensor valued images by introducing gen-
eralized correlation matrices, which are the average over the correlation matrices
of each vector/tensor component. For scalar pixels the correlation matrix Cg is
given by the expectation over the dyadic product of the 3D intensity gradient.

Cg = E
[
g(x) g(x)T

]
(3)

Usually the expectation is approximated by the mean in a neighborhood around
the pixel. If all Eigenvalues of Cg are large, a point has a lot of structure. If one
or more Eigenvalues are small, there is not much change of intensities in one
or more directions. For salient points the determinant, which is the product of
the Eigenvalues, should therefore be large. The trace of the correlation matrix
corresponds to the mean square gradient norm. It should be large along edges
and at salient points. Most cornerness measures are ratios or linear combinations
of the determinant and trace. (e.g. det (Cg) ,

det(Cg)
tr(Cg) , det (Cg) + ktr (Cg)).

A statistical interpretation of the estimated correlation matrix can be pro-
vided using the Cramer-Rao bound, which relates the covariance matrix to the
correlation matrix:
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The Eigenvalues of Σg correspond to the localization uncertainty in the direction
of the associated Eigenvector. The ellipsoid described by the Eigenvectors and
Eigenvalues can be interpreted as the error ellipsoid. The salient point detector
should select points with a small volume of the ellipsoid. Rohr uses the principal
invariants of Σg as a cornerness measure and justifies each of these measures
based on minimizing the error ellipsoid.



In this study we chose det (Cg) which as a cornerness measure, which was
proposed by Rohr [13]. To extract the salient points, we calculate the local
maxima of the cornerness measure. In both methods thresholding can be applied
to reduce the number of points with low responses to the operator.

3 Validation Methods

Our approach is task driven. The points are typically used to find corresponding
points in two images. The correspondences can be used for landmark based
non-rigid image registration techniques and motion tracking. Various authors
have validated point detectors, usually for synthetic date, i.e. real corners. We
believe there is a need to improve methods to empirically validate existing salient
point detectors. These validation methods should reflect the purpose of the point
detector and help choosing a method for a given application. Ultimately good
validation methods could also be used to guide parameter selection for the chosen
detector. Of course validation metrics are hard to choose and reflect only certain
aspects. For if a validation metric would reflect the gold standard, we should
simply use it as the point detector. The solution might be to use several metrics.
Therefore we define the following criteria to compare the quality of the detection
methods:

1. Distinctiveness and information content. Sebe et al. [2]) calculate the en-
tropy of the intensities in a neighborhood of the salient point.

2. Invariance under geometric and photometric(linear) transformations. These
properties have been analyzed theoretically by several authors. Both detec-
tors in this study are theoretically invariant to rigid transformations(e.g.
[13], [11]). It is easy to see that both detectors are relative invariant to lin-
ear intensity changes (i.e. i′k = skik + uk). Therefore we have not defined a
metric for this criterion.

3. Robust to scale changes (e.g. Sebe et al. [2]) define a repeatability rate,
which counts how many points are found at two different scales. We calculate
the repeatability rate by applying different amounts of smoothing (variance
1.0, 2.0 and 3.0). A point is considered to be present in both images, if there
is a corresponding point in its predefined neighborhood. We selected the
neighborhood radius as 3 mm, which corresponds to about 1–2 voxels in our
data.

4. Repeatability between registered images. The detector should find ”true”
salient points. True salient points should be possible to find, even in images
scanned at different times. Again we define a repeatability rate, which is
calculated between registered images. The images are rigidly registered using
a multi-resolution method and a mutual information similarity metric.

4 Results

We performed this study using thirteen MR images of the brain. Eight MPRAGE
images and one T2 weighted image were obtained in a 1.5T scanner. Four SPGR



images were also obtained. The MPRAGE images have a resolution of 0.93mm
x 0.93mm x 1.3mm. The SPGR images are of lower quality, acquired in a 0.5T
scanner and have a resolution of 0.86mm x 0.86mm x 2.5mm. We implemented
both methods as open source using and extending the Insight Toolkit [9]4.

The image intensities are first rescaled between 0 and 10. All derivatives
are computed by convolving the image with a derivative of a Gaussian, were
the Gaussian variance was set to 1.0. The correlation matrix Cg was estimated
using Expression 3, were the expectation was replaced by the mean operator in
a 3x3x3 window. The Gaussian curvature was computed using first and second
order derivatives according to Expression 2. Local maxima were extracted by
selecting points that are larger than all neighbors in a window of 3x3x3 voxels.
For anisotropic pixel spacings we modified the window sizes accordingly. For the
correlation method we selected a threshold of 2.0. For the curvature method
we chose a threshold of 0.5. These thresholds depend of course on the intensity
rescaling and were selected in a way that a comparable number of points results
for both methods. The selected thresholds were set low, which is why we detected
more than 10000 points for a full volume MR image of the brain.

Figure 1 shows a slice of a 3D volume image. The image on the left shows
the typical points, which are picked up by the curvature method. The image
on the right shows the method based on the estimate of the correlation matrix.
The methods typically find different types of salient points. One difference that
we observed is that the curvature method finds more points by the ventricles.
Table 1 shows some summary statistics of the chosen metrics. In the first column
the average entropy of the selected salient points is shown. Using the Pearson
correlation coefficient we found the curvature method to be more correlated to
the entropy in a window of 7x7x7 voxels. The entropy cannot be a complete vali-
dation metric though, since it incorporates no spacial information. Both methods
achieve about the same average entropy.

Method entropy repeatability rate at
different scales (13
cases)

repeatability rate
for registered images
(same modality, 1
case)

repeatability rate for
registered images of
different modality (3
cases)

Curvature 0.528 0.68± 0.10 0.69 0.30
Correlation 0.532 0.78± 0.03 0.76 0.28

Table 1. Summary statistics for our comparison. The shown values are the mean
values obtained. The entropy is similar for both methods. The repeatability
rate for images at different scales, is higher for the correlation method. For the
registered images of the same modality (MPRAGE), the repeatability rate is also
higher for the correlation method, whereas it is similar and low for registered
images of different modality (MPRAGE and SPGR).

4 The code is being developed in the NAMIC SandBox SVN repository, and
can be checked out using the following command: svn checkout http://www.

na-mic.org:8000/svn/NAMICSandBox/PointLandmarkDetection



Fig. 1. This figure shows detected salient points in a axial slice of a brain. In
a) Beaudet/Thirion curvature based detector, in b) the Harris/Rohr correlation
based method is shown.

The repeatability rates were calculated using the 6000 points with the high-
est cornerness value in the image. In the case of the scale changes, the points
were selected from one image by applying the method with different amounts
of smoothing (variance 1.0, 2.0 and 3.0). The repeatability rates were higher
for the Rohr correlation operator. The obtained rates are comparable to the
repeatability rates obtained by Sebe et al. [2]), although their experimental
setup was quite different. The repeatability rate for registered images was calcu-
lated for four image pairs. Three of these pairs were images of different modality
(MPRAGE and SPGR). For these image pairs the high resolution images were
resampled to the same voxel spacing as the images of lower resolution. The re-
peatability rate for registered images of the same modality were also higher for
the Rohr operator. For images of different modality the repeatability rates were
poor for both methods.

5 Discussion

In this short paper we have described two different methods to extract salient
points in 3D images. Both methods use differentials of the image intensities to
calculate a measure of saliency. In our study we found it difficult to validate
methods to extract landmarks by visual inspection, due to the number of ex-
tracted points per image. We validated the methods using several metrics, which
were derived from task specific criteria. The validation was carried out using MR
images of the brain. The method using the Rohr operator, which is the determi-
nant of the correlation matrix, had higher repeatability rates w.r.t scale changes



(smoothing). Both methods had a low repeatability rate for registered image of
different modality.
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