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Abstract

We propose a new nonlinear image registration model which is based on nonlinear elastic regularization
and unbiased registration. The nonlinear elastic and the unbiased regularization terms are simplified
using the change of variables by introducing an unknown that approximates the Jacobian matrix of the
displacement field. This reduces the minimization to involve linear differential equations. In contrast to
recently proposed unbiased fluid registration method, the new model is written in a unified variational
form and is minimized using gradient descent. As a result, the new unbiased nonlinear elasticity model is
computationally more efficient and easier to implement than the unbiased fluid registration. The unbiased
large-deformation nonlinear elasticity method was tested using volumetric serial magnetic resonance
images and shown to have some advantages for medical imaging applications.
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1 Introduction

Given two images, the source and target, the goal of image registration is to find an optimal diffeomorphic
spatial transformation such that the deformed source image is aligned with the target image. In the case of
non-parametric registration methods (the class of methods we are interested in), the problem can be phrased
as a functional minimization problem whose unknown is the displacement vector field u. Usually, the
devised functional consists of a distance measure (intensity-based, correlation-based, mutual-information
based [10] or metric-structure-comparison based [9]) and a regularizer that guarantees smoothness of the
displacement vector field. Several regularizers have been investigated (see Part II of [10] for a review).
Generally, physical arguments motivate the selection of the regularizer. Among those currently used is the
linear elasticity smoother first introduced by Broit [2]. The objects to be registered are considered to be ob-
servations of the same elastic body at two different times, before and after being subjected to a deformation
as mentioned in [10]. The smoother, in this case, is the linearized elastic potential of the displacement vector
field. However, this model is unsuitable for problems involving large-magnitude deformations.

In [5], Christensen et al. proposed a viscous fluid model to overcome this issue. Given the force field f, the
deforming image is considered to be embedded in viscous fluid whose motion is governed by Navier-Stokes
equations for conservation of momentum:

µ4v(x, t)+(ν+µ)∇(∇ ·v(x, t)) = f(x,u(x, t)), (1)

v(x, t) = ut(x, t)+∇u(x, t) ·v(x, t). (2)

Here, equation (2), defining material derivative of the displacement field u, nonlinearly relates the velocity
v and displacement vector fields. Constants µ and ν are viscosity coefficients of a fluid.

One drawback of this method is the computational cost. Numerically, the image-derived force field
f(x,u(x, t)) is first computed at time t. Fixing the force field f, linear equation (1) is solved for v(x, t)
numerically using the successive over-relaxation (SOR) scheme. Then, an explicit Euler scheme is used to
advance u in time. Recent works [3, 13, 12] applied Riemannian nonlinear elasticity priors to deformation
velocity fields. These alternating frameworks, however, are time-consuming, which motivates the search
for faster implementations (see for instance [1] or [6] in which the instantaneous velocity v is obtained by
convolving f with a Gaussian kernel).

In this paper, we propose an alternative approach to fluid registration. The proposed model is derived
from a variational problem which is not in the form of a two-step algorithm and which can produce large-
magnitude deformations. For that purpose, a nonlinear elasticity smoother is introduced. As will be seen
later, the computation of the Euler-Lagrange equations in this case is cumbersome. We circumvent this
issue by introducing a second unknown, a matrix variable V , which approximates the Jacobian matrix of u.
The nonlinear elastic regularizer is now applied to V . The Euler-Lagrange equations are straightforwardly
derived and a gradient descent method is used.

Also, allowing large deformations to occur may yield non-diffeomorphic deformation mappings (at least at
the discrete level). In [5], Christensen et al. proposed a regridding technique that resamples the deforming
image and re-initializes the process once the value of the deformation Jacobian drops below a certain thresh-
old. In [7], Haber and Modersitzki introduced an elastic registration model subject to volume-preserving
constraints. To ensure that the transformation g(x) = x−u(x) is volume-preserving (that is, for any domain
Ω,

∫
Ω dx =

∫
g(Ω) dx), they proposed the following pointwise constraint: det(I −Du(x))−1 = 0. Pursuing

the same direction in [8], the authors introduced a minimization problem under inequality constraints on the
Jacobian.

Here we use an information-theoretic approach previously introduced in [14]. In [14], the authors considered
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a smooth deformation g that maps domain Ω bijectively onto itself. Consequently, g and g−1 are bijective
and globally volume-preserving. Probability density functions can thus be associated with the deformation
g and its inverse g−1. The authors then proposed to quantify the magnitude of the deformation by means
of the symmetric Kullback-Leibler distance between the probability density functions associated with the
deformation and the identity mapping. This distance, when rewritten using skew-symmetry properties, is
viewed as a cost function and is combined with the viscous fluid model for registration, which leads to
an unbiased fluid registration model. Unlike the unbiased fluid registration model, the unbiased nonlinear
elasticity method, introduced here, allows the functional to be written “in closed form”. The new model also
does not require expensive Navier-Stokes solver (or its approximation) at each step as previously mentioned.

2 Method

Let Ω be an open and bounded domain in R3. Without loss of generality, we assume that the volume of Ω is
1, i.e. |Ω|= 1. Let I1, I2 : Ω→R be the two volumetric images to be registered. We seek the transformation
g : Ω → Ω that maps the source image I2 into correspondence with the target image I1. In this paper, we
will restrict this mapping to be differentiable, one-to-one, and onto. We denote the Jacobian matrix of a
deformation g to be Dg, with Jacobian denoted by |Dg(x)| = det(Dg(x)) (thus we will use the notation
|V | := det(V ) for any 3× 3 matrix V ). The displacement field u(x) from the position x in the deformed
image I2 ◦g(x) back to I2(x) is defined in terms of the deformation g(x) by the expression g(x) = x−u(x)
at every point x ∈Ω. Thus, we consider the problems of finding g and u as equivalent.

In general, nonlinear image registration models may be formulated in a variational framework. The mini-
mization problems often define the energy functional E as a linear combination of an image matching term
F and a regularizing term R: infu{E(u) = F(u)+λ0R(u)}. Here, λ0 > 0 is a weighting parameter.

2.1 Registration metrics

In this paper, the matching functional F takes the form of the L2 norm (the sum of squared intensity differ-
ences), F = FL2 , and the mutual information, F = FMI .
L2-norm: The L2-norm matching functional is suitable when the images have been acquired through sim-
ilar sensors (with additive Gaussian noise) and thus are expected to present the same intensity range and
distribution. The L2 distance between the deformed image I2 ◦g(x) = I2(x−u(x)) and target image I1(x) is
defined as

FL2(u) =
1
2

∫

Ω

(
I2(x−u(x))− I1(x)

)2 dx. (3)

Mutual Information: Mutual information can be used to align images of different modalities, without
requiring knowledge of the relationship of the two registered images. Here, the intensity distributions es-
timated from I1(x) and I2(x−u(x)) are denoted by pI1 and pI2

u , respectively, and an estimate of their joint
intensity distribution by pI1,I2

u . We let i1 = I1(x), i2 = I2(x−u(x)) denote intensity values at point x ∈ Ω.
Given the displacement field u, the mutual information computed from I1 and I2 is provided by

MII1,I2
u =

∫

R2
pI1,I2

u (i1, i2) log[pI1,I2
u (i1, i2)/(pI1(i1)pI2

u (i2))]di1di2.

We seek to maximize the mutual information between I2(x−u(x)) and I1(x), or equivalently, minimize the
negative of MII1,I2

u :
FMI(I1, I2,u) =−MII1,I2

u . (4)
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2.2 Nonlinear Elastic Regularization

The theory of elasticity is based on the notion of strain. Strain is defined as the amount of deformation an
object experiences compared to its original size and shape. In three spatial dimensions, the strain tensor,
E = [εi j] ∈ R3×3, 1 ≤ i, j ≤ 3, is a symmetric tensor used to quantify the strain of an object undergoing a
deformation. The nonlinear strain is defined as

εi j(u) =
1
2
(
∂ jui +∂iu j +

3

∑
k=1

∂iuk∂ juk
)
,

with the nonlinear strain tensor matrix given by

E(u) =
1
2
(
Dut +Du+DutDu

)
. (5)

Stored energy (Saint Venant-Kirchhoff material) is defined as

W (E) =
ν
2
(trace(E))2 +µtrace(E2),

where ν and µ are Lamé elastic material constants. The regularization for nonlinear elasticity becomes

RE(u) =
∫

Ω
W (E(u))dx.

The regularization term RE(u) can be minimized with respect to u. However, since the regularization term
is written in terms of partial derivatives of components of u, the Euler-Lagrange equations become compli-
cated and are computationally expensive to minimize. Instead, following earlier theoretical work [11], we
minimize an approximate functional by introducing the matrix variable

V ≈ Du (6)

and thus consider a new form of nonlinear elasticity regularization functional

RE(u,V ) =
∫

Ω
W (V̂ )dx+

β
2

∫

Ω
||V −Du||2F dx, (7)

where V̂ =
1
2
(
V t +V +V tV

)
, β is a positive constant, and || · ||F denotes the Frobenius norm. In the limit,

as β→+∞, we obtain V ≈ Du in the L2 topology.

2.3 Unbiased Registration Constraint

In [14], the authors proposed an unbiased fluid image registration approach. In this context, unbiased means
that the Jacobian determinants of the deformations recovered between a pair of images follow a log-normal
distribution, with zero mean after log-transformation. The authors argued that this distribution is beneficial
when recovering changes in regions of homogeneous intensity, and in ensuring symmetrical results when the
order of two images being registered is switched. As derived in [14] using information theory, the unbiased
regularization term is given as

RUB(u) =
∫

Ω

(|D(x−u(x))|−1
)

log |D(x−u(x))|dx. (8)
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It is important to note that RUB generates inverse-consistent deformation maps. The inverse-consistent
property of the unbiased technique was shown in a validation study of the unbiased fluid registration methods
[15]. Also, to see why minimizing equation (8) leads to unbiased deformation in the logarithmic space,
we observe that the integrand is always non-negative, and only evaluates to zero when the deformation g is
volume-preserving everywhere (|Dg|= 1 everywhere). Thus, by treating it as a cost, we recover zero-change
by minimizing this cost when we compare images differing only in noise.

Given equation (6), we have Dg = I −Du ≈ I −V , where I is the 3× 3 identity matrix. Therefore, as in
subsection 2.2, to simplify the discretization, we introduce

RUB(V ) =
∫

Ω
(|I −V |−1) log |I −V |dx. (9)

Recall that here |I −V |= det(I −V ).

2.4 Unbiased Nonlinear Elasticity Registration

The total energy functional employed in this work, is given as a linear combination of the similarity measure
F (which is either FL2 from (3) or FMI from (4)), nonlinear elastic regularization RE in (7), and unbiased
regularization RUB in (9):

E(u,V ) = F(u)+RE(u,V )+λRUB(V ). (10)

The explicit weighting parameter is omitted in front of RE(u,V ), since this term is weighted by Lamé
constants ν and µ. We solve the Euler-Lagrange equations in u and V using the gradient descent method,
parameterizing the descent direction by an artificial time t,

∂u
∂t

= −∂Eu(u,V ) = −∂uF(u)−∂uRE(u,V ), (11)

∂V
∂t

= −∂EV (u,V ) = −∂V RE(u,V )−λ∂V RUB(V ), (12)

which gives systems of three and nine equations, respectively. Explicit expressions for the gradients and
their discretizations are given in Section 3.

Remark: The regularization on the deformation g proposed in this work can be expressed in a gen-
eral form

R(g) =
∫

Ω
R1(Dg)dx+

∫

Ω
R2(|Dg|)dx,

with |Dg| := det(Dg). For the minimization, an auxiliary variable can also be introduced to simplify the
numerical calculations, removing the nonlinearity in the derivatives.

3 Implementation

3.1 The Energy Gradients

Computing the first variation of functional FL2 in (3) gives the following gradient: ∂uFL2(u) = −[I2(x−
u(x))− I1(x)]∇I2(x−u(x)).
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The gradient of (4) is given by ∂uFMI(u) = (1/|Ω|)[Qu ∗ ∂Gσ/∂ξ2](I1(x), I2(x− u))∇I2(x− u), where
Qu(i1, i2) = 1 + log[pI1,I2

u (i1, i2)/pI1(i1)pI2
u (i2)], and Gσ(ξ1,ξ2) is a two-dimensional Gaussian kernel, with

variance σ2, which is used to estimate the joint intensity distribution from I2(x−u) and I1(x).

Computing the first variation of functional RE(u,V ), in equation (7), with respect to u gives the following
components of the gradient ∂uRE(u,V ):

∂uk RE(u,V ) = β
(
∂1vk1 +∂2vk2 +∂3vk3−4uk

)
, k = 1,2,3.

The first variation of RE(u,V ) with respect to V , with V = [vi j], gives ∂V RE(u,V ):

∂v11RE(u,V ) = β(v11−∂1u1)+νc1(1+ v11)+µ
(
c2(1+ v11)+ c5v12 + c6v13

)
,

∂v12RE(u,V ) = β(v12−∂2u1)+νc1v12 +µ
(
c3v12 + c5(1+ v11)+ c7v13

)
,

∂v13RE(u,V ) = β(v13−∂3u1)+νc1v13 +µ
(
c4v13 + c6(1+ v11)+ c7v12

)
,

∂v21RE(u,V ) = β(v21−∂1u2)+νc1v21 +µ
(
c2v21 + c5(1+ v22)+ c6v23

)
,

∂v22RE(u,V ) = β(v22−∂2u2)+νc1(1+ v22)+µ
(
c3(1+ v22)+ c5v21 + c7v23

)
,

∂v23RE(u,V ) = β(v23−∂3u2)+νc1v23 +µ
(
c4v23 + c6v21 + c7(1+ v22)

)
,

∂v31RE(u,V ) = β(v31−∂1u3)+νc1v31 +µ
(
c2v31 + c5v32 + c6(1+ v33)

)
,

∂v32RE(u,V ) = β(v32−∂2u3)+νc1v32 +µ
(
c3v32 + c5v31 + c7(1+ v33)

)
,

∂v33RE(u,V ) = β(v33−∂3u3)+νc1(1+ v33)+µ
(
c4(1+ v33)+ c6v31 + c7v32

)
,

where

c1 = v11 + v22 + v33 +
1
2
(
v2

11 + v2
21 + v2

31 + v2
12 + v2

22 + v2
32 + v2

13 + v2
23 + v2

33
)
,

c2 = 2v11 + v2
11 + v2

21 + v2
31, c5 = v21 + v12 + v11v12 + v21v22 + v31v32,

c3 = 2v22 + v2
12 + v2

22 + v2
32, c6 = v31 + v13 + v11v13 + v21v23 + v31v33,

c4 = 2v33 + v2
13 + v2

23 + v2
33, c7 = v32 + v23 + v12v13 + v22v23 + v32v33.

We can compute the first variation of (9), obtaining ∂V RUB(V ). We first simplify the notation, letting J =
|I −V |. Also, denote L(J) = (J−1) logJ. Hence, L′(J) = dL(J)/dJ = 1+ logJ−1/J. Thus,

∂v11RUB(V ) = −(
(1− v22)(1− v33)− v32v23

)
L′(J),

∂v12RUB(V ) = −(
v23v31 + v21(1− v33)

)
L′(J),

∂v13RUB(V ) = −(
v21v32 +(1− v22)v31

)
L′(J),

∂v21RUB(V ) = −(
v32v13 + v12(1− v33)

)
L′(J),

∂v22RUB(V ) = −(
(1− v11)(1− v33)− v13v31

)
L′(J),

∂v23RUB(V ) = −(
v12v31 + v32(1− v11)

)
L′(J),

∂v31RUB(V ) = −(
v12v23 + v13(1− v22)

)
L′(J),

∂v32RUB(V ) = −(
v21v13 + v23(1− v11)

)
L′(J),

∂v33RUB(V ) = −(
(1− v11)(1− v22)− v12v21

)
L′(J).

3.2 Numerical Discretization

Let 4x1, 4x2, 4x3 be the spacial steps, 4t be the time step, and (x1i,x2 j,x3k) = (i4x1, j4x2,k4x3)
be the grid points, for 1 ≤ i ≤ M, 1 ≤ j ≤ N, 1 ≤ k ≤ P. For a function ϕ : Ω → R, let ϕn

i, j,k =
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ϕ(n4t, i4x1, j4x2,k4x3). We define the difference operators based on uniformly-spaced grid as

Dx1ϕn
i, j,k =

ϕn
i+1, j,k−ϕn

i−1, j,k

24x1
, Dx1x1ϕn

i, j,k =
ϕn

i+1, j,k−2ϕn
i, j,k +ϕn

i−1, j,k

4x2
1

,

Dx2ϕn
i, j,k =

ϕn
i, j+1,k−ϕn

i, j−1,k

24x2
, Dx2x2ϕn

i, j,k =
ϕn

i, j+1,k−2ϕn
i, j,k +ϕn

i, j−1,k

4x2
2

,

Dx3ϕn
i, j,k =

ϕn
i, j,k+1−ϕn

i, j,k−1

24x3
, Dx3x3ϕn

i, j,k =
ϕn

i, j,k+1−2ϕn
i, j,k +ϕn

i, j,k−1

4x2
3

.

Below, we will use the following notations when it is obvious that the grid point at (i4x1, j4x2,k4x3) is
under consideration: ϕn := ϕn

i, j,k, Dxl ϕn := Dxl ϕn
i, j,k, Dxlxl ϕn := Dxlxl ϕn

i, j,k, l = 1,2,3.

To discretize equations (11) and (12), we use finite difference schemes. In order to restrict the maximum
displacement change per time step from being large, equation (11) is discretized using explicit scheme with
adaptive time-stepping at every point (i, j,k)

un+1
1 −un

1
4t

= −[
∂u1F(un)

]−β
(
Dx1vn

11 +Dx2vn
12 +Dx3vn

13
)
+β

(
Dx1x1un

1 +Dx2x2un
1 +Dx3x3un

1
)
,

un+1
2 −un

2
4t

= −[
∂u2F(un)

]−β
(
Dx1vn

21 +Dx2vn
22 +Dx3vn

23
)
+β

(
Dx1x1un

2 +Dx2x2un
2 +Dx3x3un

2
)
,

un+1
3 −un

3
4t

= −[
∂u3F(un)

]−β
(
Dx1vn

31 +Dx2vn
32 +Dx3vn

33
)
+β

(
Dx1x1un

3 +Dx2x2un
3 +Dx3x3un

3
)
,

where [∂ul F(un)], l = 1,2,3, is a discretization of a similarity-based gradient. In our numerical experiments,
4x1 =4x2 =4x3 = 1, and 4t is chosen so that the maximum displacement per iteration equals 0.1.

Equation (12) is discretized using semi-implicit scheme

vn+1
11 − vn

11
4t

= β(Dx1un
1− vn+1

11 )−νc1(1+ vn
11)−µ

(
c2(1+ vn

11)+ c5vn
12 + c6vn

13
)

+ λ
(
(1− vn

22)(1− vn
33)− vn

32vn
23

)
L′(J),

vn+1
12 − vn

12
4t

= β(Dx2un
1− vn+1

12 )−νc1vn
12−µ

(
c3vn

12 + c5(1+ vn
11)+ c7vn

13
)
+λ

(
vn

23vn
31 + vn

21(1− vn
33)

)
L′(J),

vn+1
13 − vn

13
4t

= β(Dx3un
1− vn+1

13 )−νc1vn
13−µ

(
c4vn

13 + c6(1+ vn
11)+ c7vn

12
)
+λ

(
vn

21vn
32 +(1− vn

22)v
n
31

)
L′(J),

vn+1
21 − vn

21
4t

= β(Dx1un
2− vn+1

21 )−νc1vn
21−µ

(
c2vn

21 + c5(1+ vn
22)+ c6vn

23
)
+λ

(
vn

32vn
13 + vn

12(1− vn
33)

)
L′(J),

vn+1
22 − vn

22
4t

= β(Dx2un
2− vn+1

22 )−νc1(1+ vn
22)−µ

(
c3(1+ vn

22)+ c5vn
21 + c7vn

23
)

+ λ
(
(1− vn

11)(1− vn
33)− vn

13vn
31

)
L′(J),

vn+1
23 − vn

23
4t

= β(Dx3un
2− vn+1

23 )−νc1vn
23−µ

(
c4vn

23 + c6vn
21 + c7(1+ vn

22)
)
+λ

(
vn

12vn
31 + vn

32(1− vn
11)

)
L′(J),

vn+1
31 − vn

31
4t

= β(Dx1un
3− vn+1

31 )−νc1vn
31−µ

(
c2vn

31 + c5vn
32 + c6(1+ vn

33)
)
+λ

(
vn

12vn
23 + vn

13(1− vn
22)

)
L′(J),

vn+1
32 − vn

32
4t

= β(Dx2un
3− vn+1

32 )−νc1vn
32−µ

(
c3vn

32 + c5vn
31 + c7(1+ vn

33)
)
+λ

(
vn

21vn
13 + vn

23(1− vn
11)

)
L′(J),

vn+1
33 − vn

33
4t

= β(Dx3un
3− vn+1

33 )−νc1(1+ vn
33)−µ

(
c4(1+ vn

33)+ c6vn
31 + c7vn

32
)

+ λ
(
(1− vn

11)(1− vn
22)− vn

12vn
21

)
L′(J),

where L′(J) is defined as in Section 3.1.
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Volume I1

Volume I2

Figure 1: Serial MRI images from the ADNI follow-up dataset (images acquired one year apart) are shown.
Volumes I1 (row 1) and I2 (row 2) are depicted as a brain volume (column 1) and from sagittal (column 2),
axial (column 3), and coronal (column 4) views. Nonrigid registration aligns volume I2 into correspondence
with volume I1.

3.3 Algorithm

We are now ready to give the algorithm for the unbiased registration via nonlinear elastic regularization.

Algorithm 1 Unbiased Registration via Nonlinear Elastic Regularization
1: Initialize t = 0, u(x,0) = 0, and V (x,0) = 0.
2: Calculate V (x, t) using equation (12), where the equation is discretized using the semi-implicit method

described in Section 3.2.
Steps 3-5 describe the procedure for solving equation (11) advancing u(x, t) in time using the explicit
scheme. Numerical discretization is described in Section 3.2.

3: Calculate the perturbation of the displacement field R(x) =−∂Eu(u,V ).
4: Time step 4t is calculated adaptively so that 4t ·max(||R||2) = δu, where δu is the maximal displace-

ment allowed in one iteration. Results in this work are obtained with δu = 0.1.
5: Advance equation (11), i.e. ∂u(x, t)/∂t = R(x), in time, with time step from step 4, solving for u(x, t).
6: If the cost functional in (10) decreases by sufficiently small amount compared to the previous iteration,

then stop.
7: Let t := t +4t and go to step 2.

4 Results and Discussion

We tested the proposed unbiased nonlinear elastic registration model and compared the results to those
obtained with the unbiased fluid registration method [14], where the unbiased regularization constraint (8)
was coupled with the L2 matching functional (3) and fluid regularization (1), (2). Here, both methods were
coupled with the L2 and mutual information (MI) based similarity measures. In our experiments, we used a
pair of serial MRI images (220×220×220) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
Since the images were acquired one year apart, from a subject with Alzheimer’s disease, real anatomical
changes are present, which allows methods to be compared in the presence of true biological changes.
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Unbiased Fluid Registration coupled with L2 Matching

Unbiased Nonlinear Elastic Registration coupled with L2 Matching

Unbiased Fluid Registration coupled with MI Matching

Unbiased Nonlinear Elastic Registration coupled with MI Matching

Figure 2: Nonrigid registration was performed on the Serial MRI images from the ADNI Follow-up dataset
using unbiased fluid registration and unbiased nonlinear elasticity registration, both coupled with L2 and MI
matching. Jacobian maps are superimposed on the target volume.

Figure 1 shows the images being registered and Figures 2 shows the resulting Jacobian maps. Results gen-
erated using the fluid and nonlinear elasticity based unbiased models are similar, both suggesting a mild
volume reduction in gray and white matter and ventricular enlargement that is observed in Alzheimer’s
disease patients. The advantages of the unbiased nonlinear elasticity model is its more locally plausible
reproduction of atrophic changes in the brain and its robustness to original misalignment of brain volumes,
which is especially noticeable on the brain surface. The unbiased nonlinear elasticity model coupled with
L2 matching generated very similar results to those obtained with the MI similarity measure, partly because
difference images typically contain only noise after registration. Unbiased fluid registration method, how-
ever, is more effective in modeling the regional neuroanatomical changes, showing more clearly which parts
of the volume have undergone largest tissue changes, such as ventricular enlargement as shown in Figure 2.

Figure 3 shows deformed grids generated with unbiased fluid and unbiased nonlinear elastic registration
models. Figure 4 shows the energy decrease per iteration for both models.
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Unbiased models with L2 matching Unbiased models with MI matching
Fluid Nonl.Elasticity Fluid Nonl.Elasticity

Figure 3: Results obtained using unbiased fluid registration and unbiased nonlinear elasticity registration,
both coupled with L2 and MI matching. The generated grids are superimposed on top of 2D cross-sections
of the 3D volumes (row 1) and are shown separately (row 2).

In Figure 5, we examined the inverse consistency of the mappings [4] generated using unbiased nonlinear
elastic registration. Here, the deformation was computed in both directions (time 2 to time 1, and time 1 to
time 2) using mutual information matching. The forward and backward Jacobian maps were concatenated
(in an ideal situation, this operation should yield the identity), with the products of Jacobians having values
close to 1.

The unbiased nonlinear elasticity model does not require expensive Navier-Stokes solver (or its approxima-
tion), which is employed at each iteration for fluid flow models. Hence, unbiased nonlinear elasticity model
is more efficient than the unbiased fluid step. In our future studies, we will examine the registration accuracy
of the different models where ground truth is known, and will compare each model’s power for detecting
inter-group differences or statistical effects on rates of atrophy.
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Figure 4: Energy per iteration for the unbiased fluid registration and unbiased nonlinear elasticity registra-
tion, both coupled with L2 and MI matching.



11

Acknowledgements

This work was funded by the National Institutes of Health through the NIH Roadmap for Medical Research,
Grant U54 RR021813.

time 2 to time 1 time 1 to time 2 products of Jacobians

Figure 5: This figure examines the inverse consistency of the unbiased nonlinear elastic registration. Here,
the model is coupled with mutual information matching. Jacobian maps of deformations from time 2 to
time 1 (column 1) and time 1 to time 2 (column 2) are superimposed on the target volumes. The products of
Jacobian maps, shown in column 3, have values close to 1, suggesting inverse consistency.
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Abstract

We propose a new nonlinear image registration model which is based on nonlinear elastic regularization
and unbiased registration. The nonlinear elastic and the unbiased regularization terms are simplified
using the change of variables by introducing an unknown that approximates the Jacobian matrix of the
displacement field. This reduces the minimization to involve linear differential equations. In contrast to
recently proposed unbiased fluid registration method, the new model is written in a unified variational
form and is minimized using gradient descent. As a result, the new unbiased nonlinear elasticity model is
computationally more efficient and easier to implement than the unbiased fluid registration. The unbiased
large-deformation nonlinear elasticity method was tested using volumetric serial magnetic resonance
images and shown to have some advantages for medical imaging applications.

Contents

1 Introduction 2

2 Method 3
2.1 Registration metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Nonlinear Elastic Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Unbiased Registration Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Unbiased Nonlinear Elasticity Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Implementation 5
3.1 The Energy Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Numerical Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Results and Discussion 8



2

1 Introduction

Given two images, the source and target, the goal of image registration is to find an optimal diffeomorphic
spatial transformation such that the deformed source image is aligned with the target image. In the case of
non-parametric registration methods (the class of methods we are interested in), the problem can be phrased
as a functional minimization problem whose unknown is the displacement vector field u. Usually, the
devised functional consists of a distance measure (intensity-based, correlation-based, mutual-information
based [11] or metric-structure-comparison based [10]) and a regularizer that guarantees smoothness of the
displacement vector field. Several regularizers have been investigated (see Part II of [11] for a review).
Generally, physical arguments motivate the selection of the regularizer. Among those currently used is the
linear elasticity smoother first introduced by Broit [2]. The objects to be registered are considered to be ob-
servations of the same elastic body at two different times, before and after being subjected to a deformation
as mentioned in [11]. The smoother, in this case, is the linearized elastic potential of the displacement vector
field. However, this model is unsuitable for problems involving large-magnitude deformations.

In [5], Christensen et al. proposed a viscous fluid model to overcome this issue. Given the force field f, the
deforming image is considered to be embedded in viscous fluid whose motion is governed by Navier-Stokes
equations for conservation of momentum:

µ4v(x, t)+(ν+µ)∇(∇ ·v(x, t)) = f(x,u(x, t)), (1)

v(x, t) = ut(x, t)+∇u(x, t) ·v(x, t). (2)

Here, equation (2), defining material derivative of the displacement field u, nonlinearly relates the velocity
v and displacement vector fields. Constants µ and ν are viscosity coefficients of a fluid.

One drawback of this method is the computational cost. Numerically, the image-derived force field
f(x,u(x, t)) is first computed at time t. Fixing the force field f, linear equation (1) is solved for v(x, t)
numerically using the successive over-relaxation (SOR) scheme. Then, an explicit Euler scheme is used to
advance u in time. Recent works [3, 14, 13] applied Riemannian nonlinear elasticity priors to deformation
velocity fields. These alternating frameworks, however, are time-consuming, which motivates the search
for faster implementations (see for instance [1] or [7] in which the instantaneous velocity v is obtained by
convolving f with a Gaussian kernel).

In this paper, we propose an alternative approach to fluid registration. The proposed model is derived
from a variational problem which is not in the form of a two-step algorithm and which can produce large-
magnitude deformations. For that purpose, a nonlinear elasticity smoother is introduced. As will be seen
later, the computation of the Euler-Lagrange equations in this case is cumbersome. We circumvent this
issue by introducing a second unknown, a matrix variable V , which approximates the Jacobian matrix of u.
The nonlinear elastic regularizer is now applied to V . The Euler-Lagrange equations are straightforwardly
derived and a gradient descent method is used.

Also, allowing large deformations to occur may yield non-diffeomorphic deformation mappings (at least at
the discrete level). In [5], Christensen et al. proposed a regridding technique that resamples the deforming
image and re-initializes the process once the value of the deformation Jacobian drops below a certain thresh-
old. In [8], Haber and Modersitzki introduced an elastic registration model subject to volume-preserving
constraints. To ensure that the transformation g(x) = x−u(x) is volume-preserving (that is, for any domain
Ω,

∫
Ω dx =

∫
g(Ω) dx), they proposed the following pointwise constraint: det(I −Du(x))−1 = 0. Pursuing

the same direction in [9], the authors introduced a minimization problem under inequality constraints on the
Jacobian.

Here we use an information-theoretic approach previously introduced in [16]. In [16], the authors considered
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a smooth deformation g that maps domain Ω bijectively onto itself. Consequently, g and g−1 are bijective
and globally volume-preserving. Probability density functions can thus be associated with the deformation
g and its inverse g−1. The authors then proposed to quantify the magnitude of the deformation by means
of the symmetric Kullback-Leibler distance between the probability density functions associated with the
deformation and the identity mapping. This distance, when rewritten using skew-symmetry properties, is
viewed as a cost function and is combined with the viscous fluid model for registration, which leads to
an unbiased fluid registration model. Unlike the unbiased fluid registration model, the unbiased nonlinear
elasticity method, introduced here, allows the functional to be written “in closed form”. The new model also
does not require expensive Navier-Stokes solver (or its approximation) at each step as previously mentioned.

2 Method

Let Ω be an open and bounded domain in R3. Without loss of generality, we assume that the volume of Ω is
1, i.e. |Ω|= 1. Let I1, I2 : Ω→R be the two volumetric images to be registered. We seek the transformation
g : Ω → Ω that maps the source image I2 into correspondence with the target image I1. In this paper, we
will restrict this mapping to be differentiable, one-to-one, and onto. We denote the Jacobian matrix of a
deformation g to be Dg, with Jacobian denoted by |Dg(x)| = det(Dg(x)) (thus we will use the notation
|V | := det(V ) for any 3× 3 matrix V ). The displacement field u(x) from the position x in the deformed
image I2 ◦g(x) back to I2(x) is defined in terms of the deformation g(x) by the expression g(x) = x−u(x)
at every point x ∈Ω. Thus, we consider the problems of finding g and u as equivalent.

In general, nonlinear image registration models may be formulated in a variational framework. The mini-
mization problems often define the energy functional E as a linear combination of an image matching term
F and a regularizing term R: infu{E(u) = F(u)+λ0R(u)}. Here, λ0 > 0 is a weighting parameter.

2.1 Registration metrics

In this paper, the matching functional F takes the form of the L2 norm (the sum of squared intensity differ-
ences), F = FL2 , and the mutual information, F = FMI .
L2-norm: The L2-norm matching functional is suitable when the images have been acquired through sim-
ilar sensors (with additive Gaussian noise) and thus are expected to present the same intensity range and
distribution. The L2 distance between the deformed image I2 ◦g(x) = I2(x−u(x)) and target image I1(x) is
defined as

FL2(u) =
1
2

∫

Ω

(
I2(x−u(x))− I1(x)

)2 dx. (3)

Mutual Information: Mutual information can be used to align images of different modalities, without
requiring knowledge of the relationship of the two registered images [6, 15]. Here, the intensity distributions
estimated from I1(x) and I2(x−u(x)) are denoted by pI1 and pI2

u , respectively, and an estimate of their joint
intensity distribution by pI1,I2

u . We let i1 = I1(x), i2 = I2(x−u(x)) denote intensity values at point x ∈ Ω.
Given the displacement field u, the mutual information computed from I1 and I2 is provided by

MII1,I2
u =

∫

R2
pI1,I2

u (i1, i2) log[pI1,I2
u (i1, i2)/(pI1(i1)pI2

u (i2))]di1di2.

We seek to maximize the mutual information between I2(x−u(x)) and I1(x), or equivalently, minimize the
negative of MII1,I2

u :
FMI(I1, I2,u) =−MII1,I2

u . (4)
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2.2 Nonlinear Elastic Regularization

The theory of elasticity is based on the notion of strain. Strain is defined as the amount of deformation an
object experiences compared to its original size and shape. In three spatial dimensions, the strain tensor,
E = [εi j] ∈ R3×3, 1 ≤ i, j ≤ 3, is a symmetric tensor used to quantify the strain of an object undergoing a
deformation. The nonlinear strain is defined as

εi j(u) =
1
2
(
∂ jui +∂iu j +

3

∑
k=1

∂iuk∂ juk
)
,

with the nonlinear strain tensor matrix given by

E(u) =
1
2
(
Dut +Du+DutDu

)
. (5)

Stored energy (Saint Venant-Kirchhoff material) is defined as

W (E) =
ν
2
(trace(E))2 +µtrace(E2),

where ν and µ are Lamé elastic material constants. The regularization for nonlinear elasticity becomes

RE(u) =
∫

Ω
W (E(u))dx.

The regularization term RE(u) can be minimized with respect to u. However, since the regularization term
is written in terms of partial derivatives of components of u, the Euler-Lagrange equations become compli-
cated and are computationally expensive to minimize. Instead, following earlier theoretical work [12], we
minimize an approximate functional by introducing the matrix variable

V ≈ Du (6)

and thus consider a new form of nonlinear elasticity regularization functional

RE(u,V ) =
∫

Ω
W (V̂ )dx+

β
2

∫

Ω
||V −Du||2F dx, (7)

where V̂ =
1
2
(
V t +V +V tV

)
, β is a positive constant, and || · ||F denotes the Frobenius norm. In the limit,

as β→+∞, we obtain V ≈ Du in the L2 topology.

2.3 Unbiased Registration Constraint

In [16], the authors proposed an unbiased fluid image registration approach. In this context, unbiased means
that the Jacobian determinants of the deformations recovered between a pair of images follow a log-normal
distribution, with zero mean after log-transformation. The authors argued that this distribution is beneficial
when recovering changes in regions of homogeneous intensity, and in ensuring symmetrical results when the
order of two images being registered is switched. As derived in [16] using information theory, the unbiased
regularization term is given as

RUB(u) =
∫

Ω

(|D(x−u(x))|−1
)

log |D(x−u(x))|dx. (8)
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It is important to note that RUB generates inverse-consistent deformation maps. The inverse-consistent
property of the unbiased technique was shown in a validation study of the unbiased fluid registration methods
[17]. Also, to see why minimizing equation (8) leads to unbiased deformation in the logarithmic space,
we observe that the integrand is always non-negative, and only evaluates to zero when the deformation g is
volume-preserving everywhere (|Dg|= 1 everywhere). Thus, by treating it as a cost, we recover zero-change
by minimizing this cost when we compare images differing only in noise.

Given equation (6), we have Dg = I −Du ≈ I −V , where I is the 3× 3 identity matrix. Therefore, as in
subsection 2.2, to simplify the discretization, we introduce

RUB(V ) =
∫

Ω
(|I −V |−1) log |I −V |dx. (9)

Recall that here |I −V |= det(I −V ).

2.4 Unbiased Nonlinear Elasticity Registration

The total energy functional employed in this work, is given as a linear combination of the similarity measure
F (which is either FL2 from (3) or FMI from (4)), nonlinear elastic regularization RE in (7), and unbiased
regularization RUB in (9):

E(u,V ) = F(u)+RE(u,V )+λRUB(V ). (10)

The explicit weighting parameter is omitted in front of RE(u,V ), since this term is weighted by Lamé
constants ν and µ. We solve the Euler-Lagrange equations in u and V using the gradient descent method,
parameterizing the descent direction by an artificial time t,

∂u
∂t

= −∂Eu(u,V ) = −∂uF(u)−∂uRE(u,V ), (11)

∂V
∂t

= −∂EV (u,V ) = −∂V RE(u,V )−λ∂V RUB(V ), (12)

which gives systems of three and nine equations, respectively. Explicit expressions for the gradients and
their discretizations are given in Section 3.

Remark: The regularization on the deformation g proposed in this work can be expressed in a gen-
eral form

R(g) =
∫

Ω
R1(Dg)dx+

∫

Ω
R2(|Dg|)dx,

with |Dg| := det(Dg). For the minimization, an auxiliary variable can also be introduced to simplify the
numerical calculations, removing the nonlinearity in the derivatives.

3 Implementation

3.1 The Energy Gradients

Computing the first variation of functional FL2 in (3) gives the following gradient: ∂uFL2(u) = −[I2(x−
u(x))− I1(x)]∇I2(x−u(x)).
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The gradient of (4) is given by ∂uFMI(u) = (1/|Ω|)[Qu ∗ ∂Gσ/∂ξ2](I1(x), I2(x− u))∇I2(x− u), where
Qu(i1, i2) = 1 + log[pI1,I2

u (i1, i2)/pI1(i1)pI2
u (i2)], and Gσ(ξ1,ξ2) is a two-dimensional Gaussian kernel, with

variance σ2, which is used to estimate the joint intensity distribution from I2(x−u) and I1(x).

Computing the first variation of functional RE(u,V ), in equation (7), with respect to u gives the following
components of the gradient ∂uRE(u,V ):

∂uk RE(u,V ) = β
(
∂1vk1 +∂2vk2 +∂3vk3−4uk

)
, k = 1,2,3.

The first variation of RE(u,V ) with respect to V , with V = [vi j], gives ∂V RE(u,V ):

∂v11RE(u,V ) = β(v11−∂1u1)+νc1(1+ v11)+µ
(
c2(1+ v11)+ c5v12 + c6v13

)
,

∂v12RE(u,V ) = β(v12−∂2u1)+νc1v12 +µ
(
c3v12 + c5(1+ v11)+ c7v13

)
,

∂v13RE(u,V ) = β(v13−∂3u1)+νc1v13 +µ
(
c4v13 + c6(1+ v11)+ c7v12

)
,

∂v21RE(u,V ) = β(v21−∂1u2)+νc1v21 +µ
(
c2v21 + c5(1+ v22)+ c6v23

)
,

∂v22RE(u,V ) = β(v22−∂2u2)+νc1(1+ v22)+µ
(
c3(1+ v22)+ c5v21 + c7v23

)
,

∂v23RE(u,V ) = β(v23−∂3u2)+νc1v23 +µ
(
c4v23 + c6v21 + c7(1+ v22)

)
,

∂v31RE(u,V ) = β(v31−∂1u3)+νc1v31 +µ
(
c2v31 + c5v32 + c6(1+ v33)

)
,

∂v32RE(u,V ) = β(v32−∂2u3)+νc1v32 +µ
(
c3v32 + c5v31 + c7(1+ v33)

)
,

∂v33RE(u,V ) = β(v33−∂3u3)+νc1(1+ v33)+µ
(
c4(1+ v33)+ c6v31 + c7v32

)
,

where

c1 = v11 + v22 + v33 +
1
2
(
v2

11 + v2
21 + v2

31 + v2
12 + v2

22 + v2
32 + v2

13 + v2
23 + v2

33
)
,

c2 = 2v11 + v2
11 + v2

21 + v2
31, c5 = v21 + v12 + v11v12 + v21v22 + v31v32,

c3 = 2v22 + v2
12 + v2

22 + v2
32, c6 = v31 + v13 + v11v13 + v21v23 + v31v33,

c4 = 2v33 + v2
13 + v2

23 + v2
33, c7 = v32 + v23 + v12v13 + v22v23 + v32v33.

We can compute the first variation of (9), obtaining ∂V RUB(V ). We first simplify the notation, letting J =
|I −V |. Also, denote L(J) = (J−1) logJ. Hence, L′(J) = dL(J)/dJ = 1+ logJ−1/J. Thus,

∂v11RUB(V ) = −(
(1− v22)(1− v33)− v32v23

)
L′(J),

∂v12RUB(V ) = −(
v23v31 + v21(1− v33)

)
L′(J),

∂v13RUB(V ) = −(
v21v32 +(1− v22)v31

)
L′(J),

∂v21RUB(V ) = −(
v32v13 + v12(1− v33)

)
L′(J),

∂v22RUB(V ) = −(
(1− v11)(1− v33)− v13v31

)
L′(J),

∂v23RUB(V ) = −(
v12v31 + v32(1− v11)

)
L′(J),

∂v31RUB(V ) = −(
v12v23 + v13(1− v22)

)
L′(J),

∂v32RUB(V ) = −(
v21v13 + v23(1− v11)

)
L′(J),

∂v33RUB(V ) = −(
(1− v11)(1− v22)− v12v21

)
L′(J).

3.2 Numerical Discretization

Let 4x1, 4x2, 4x3 be the spacial steps, 4t be the time step, and (x1i,x2 j,x3k) = (i4x1, j4x2,k4x3)
be the grid points, for 1 ≤ i ≤ M, 1 ≤ j ≤ N, 1 ≤ k ≤ P. For a function ϕ : Ω → R, let ϕn

i, j,k =



3.2 Numerical Discretization 7

ϕ(n4t, i4x1, j4x2,k4x3). We define the difference operators based on uniformly-spaced grid as

Dx1ϕn
i, j,k =

ϕn
i+1, j,k−ϕn

i−1, j,k

24x1
, Dx1x1ϕn

i, j,k =
ϕn

i+1, j,k−2ϕn
i, j,k +ϕn

i−1, j,k

4x2
1

,

Dx2ϕn
i, j,k =

ϕn
i, j+1,k−ϕn

i, j−1,k

24x2
, Dx2x2ϕn

i, j,k =
ϕn

i, j+1,k−2ϕn
i, j,k +ϕn

i, j−1,k

4x2
2

,

Dx3ϕn
i, j,k =

ϕn
i, j,k+1−ϕn

i, j,k−1

24x3
, Dx3x3ϕn

i, j,k =
ϕn

i, j,k+1−2ϕn
i, j,k +ϕn

i, j,k−1

4x2
3

.

Below, we will use the following notations when it is obvious that the grid point at (i4x1, j4x2,k4x3) is
under consideration: ϕn := ϕn

i, j,k, Dxl ϕn := Dxl ϕn
i, j,k, Dxlxl ϕn := Dxlxl ϕn

i, j,k, l = 1,2,3.

To discretize equations (11) and (12), we use finite difference schemes. In order to restrict the maximum
displacement change per time step from being large, equation (11) is discretized using explicit scheme with
adaptive time-stepping at every point (i, j,k)

un+1
1 −un

1
4t

= −[
∂u1F(un)

]−β
(
Dx1vn

11 +Dx2vn
12 +Dx3vn

13
)
+β

(
Dx1x1un

1 +Dx2x2un
1 +Dx3x3un

1
)
,

un+1
2 −un

2
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(
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21 +Dx2vn
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23
)
+β

(
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2
)
,
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]−β
(
Dx1vn

31 +Dx2vn
32 +Dx3vn

33
)
+β

(
Dx1x1un

3 +Dx2x2un
3 +Dx3x3un

3
)
,

where [∂ul F(un)], l = 1,2,3, is a discretization of a similarity-based gradient. In our numerical experiments,
4x1 =4x2 =4x3 = 1, and 4t is chosen so that the maximum displacement per iteration equals 0.1.

Equation (12) is discretized using semi-implicit scheme
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11
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)
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where L′(J) is defined as in Section 3.1.
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Volume I1

Volume I2

Figure 1: Serial MRI images from the ADNI follow-up dataset (images acquired one year apart) are shown.
Volumes I1 (row 1) and I2 (row 2) are depicted as a brain volume (column 1) and from sagittal (column 2),
axial (column 3), and coronal (column 4) views. Nonrigid registration aligns volume I2 into correspondence
with volume I1.

3.3 Algorithm

We are now ready to give the algorithm for the unbiased registration via nonlinear elastic regularization.

Algorithm 1 Unbiased Registration via Nonlinear Elastic Regularization
1: Initialize t = 0, u(x,0) = 0, and V (x,0) = 0.
2: Calculate V (x, t) using equation (12), where the equation is discretized using the semi-implicit method

described in Section 3.2.
Steps 3-5 describe the procedure for solving equation (11) advancing u(x, t) in time using the explicit
scheme. Numerical discretization is described in Section 3.2.

3: Calculate the perturbation of the displacement field R(x) =−∂Eu(u,V ).
4: Time step 4t is calculated adaptively so that 4t ·max(||R||2) = δu, where δu is the maximal displace-

ment allowed in one iteration. Results in this work are obtained with δu = 0.1.
5: Advance equation (11), i.e. ∂u(x, t)/∂t = R(x), in time, with time step from step 4, solving for u(x, t).
6: If the cost functional in (10) decreases by sufficiently small amount compared to the previous iteration,

then stop.
7: Let t := t +4t and go to step 2.

4 Results and Discussion

We tested the proposed unbiased nonlinear elastic registration model and compared the results to those
obtained with the unbiased fluid registration method [16], where the unbiased regularization constraint (8)
was coupled with the L2 matching functional (3) and fluid regularization (1), (2). Here, both methods were
coupled with the L2 and mutual information (MI) based similarity measures. In our experiments, we used a
pair of serial MRI images (220×220×220) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
Since the images were acquired one year apart, from a subject with Alzheimer’s disease, real anatomical
changes are present, which allows methods to be compared in the presence of true biological changes.

In the tests performed using unbiased nonlinear elasticity coupled with L2 matching, values of β = 20000
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Unbiased Fluid Registration coupled with L2 Matching

Unbiased Nonlinear Elastic Registration coupled with L2 Matching

Unbiased Fluid Registration coupled with MI Matching

Unbiased Nonlinear Elastic Registration coupled with MI Matching

Figure 2: Nonrigid registration was performed on the Serial MRI images from the ADNI Follow-up dataset
using unbiased fluid registration and unbiased nonlinear elasticity registration, both coupled with L2 and MI
matching. Jacobian maps are superimposed on the target volume.

in equation (7) and λ = 2000 in equation (10) were chosen. For MI matching, β = 80 and λ = 8 were used.
The values of the Lamé coefficients were chosen to be equal, µ = ν, in all experiments. Bigger values of
µ and ν allow for more smoothing. For unbiased fluid registration model, described in [16], λ = 500 was
chosen for L2 matching, and λ = 5 for MI matching.

Figure 1 shows the images being registered and Figures 2 shows the resulting Jacobian maps. Results gen-
erated using the fluid and nonlinear elasticity based unbiased models are similar, both suggesting a mild
volume reduction in gray and white matter and ventricular enlargement that is observed in Alzheimer’s
disease patients. The advantages of the unbiased nonlinear elasticity model is its more locally plausible
reproduction of atrophic changes in the brain and its robustness to original misalignment of brain volumes,
which is especially noticeable on the brain surface. The unbiased nonlinear elasticity model coupled with
L2 matching generated very similar results to those obtained with the MI similarity measure, partly because
difference images typically contain only noise after registration. Unbiased fluid registration method, how-
ever, is more effective in modeling the regional neuroanatomical changes, showing more clearly which parts
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Unbiased models with L2 matching Unbiased models with MI matching
Fluid Nonl.Elasticity Fluid Nonl.Elasticity

Figure 3: Results obtained using unbiased fluid registration and unbiased nonlinear elasticity registration,
both coupled with L2 and MI matching. The generated grids are superimposed on top of 2D cross-sections
of the 3D volumes (row 1) and are shown separately (row 2).

of the volume have undergone largest tissue changes, such as ventricular enlargement as shown in Figure 2.

Figure 3 shows deformed grids generated with unbiased fluid and unbiased nonlinear elastic registration
models. Figure 4 shows the energy decrease per iteration for both models.

In Figure 5, we examined the inverse consistency of the mappings [4] generated using unbiased nonlinear
elastic registration. Here, the deformation was computed in both directions (time 2 to time 1, and time 1 to
time 2) using mutual information matching. The forward and backward Jacobian maps were concatenated
(in an ideal situation, this operation should yield the identity), with the products of Jacobians having values
close to 1.

The unbiased nonlinear elasticity model does not require expensive Navier-Stokes solver (or its approxima-
tion), which is employed at each iteration for fluid flow models. Hence, unbiased nonlinear elasticity model
is more efficient than the unbiased fluid step. In our future studies, we will examine the registration accuracy
of the different models where ground truth is known, and will compare each model’s power for detecting
inter-group differences or statistical effects on rates of atrophy.
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Figure 4: Energy per iteration for the unbiased fluid registration and unbiased nonlinear elasticity registra-
tion, both coupled with L2 and MI matching.
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time 2 to time 1 time 1 to time 2 products of Jacobians

Figure 5: This figure examines the inverse consistency of the unbiased nonlinear elastic registration. Here,
the model is coupled with mutual information matching. Jacobian maps of deformations from time 2 to
time 1 (column 1) and time 1 to time 2 (column 2) are superimposed on the target volumes. The products of
Jacobian maps, shown in column 3, have values close to 1, suggesting inverse consistency.
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