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Abstract

In this paper, we propose a Mix-resolution Bone-related Statistical Deformable Model (mBr-SDM) to improve the predicting
accuracy of orthognathic surgery, particularly for the main deformation region. Mix-resolution Br-SDM consists of two separate
Br-SDM of different resolutions: a high-resolution Br-SDM which is trained with more samples to capture the detail deforming

variations in the main deforming regions of interest, together with a low-resolution Br-SDM which is trained with a smaller

number of samples to capture the major variations of the remaining facial points. The experiments have shown that the mix-
resolution Br-SDM is able to significantly reduce the predicting error compared with the corresponding Finite Element Model,

while giving a low computational cost which is characteristic of the SDM approach.
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1 Introduction

Orthognathic surgery aims to correct for abnormities of the facial anatomies. Computer aided planning of
such surgeries has been an area of active research in the past decades because the predicted facial
outcome of the surgery helps surgeons to choose the best surgical strategy among the possible surgical
plans, as well as to improve the communications between the surgeons and the patients. Conventionally,
the appropriate osteotomy line and the necessary displacements of the jaw segment are determined by 2D
cephalometry. The advent of high quality medical imaging modalities (such as CT images) has made
possible accurate and efficient representation and prediction of the 3D facial changes as a result of
surgery, and at the same time, posed many new challenging problems, among them is the prediction of
facial soft tissue deformation as a result of craniofacial bone movements. The Mass Spring Models (MSM)
has been introduced [1] to model the facial tissue as masses and springs connecting neighboring masses.
The model structure is intuitive, and computational cost of predicting tissue deformation is low. The
major disadvantage is that the parameters in a MSM, such as the spring constant [4], typically do not bear
direct relation to the biomechanical properties of human soft tissues. Later on, Finite Element Models
(FEM) [2], as a general discretization procedure of continuum problems is suggested to solve the problem
of facial deformation. FEM is accurate [3], but computational and memory intensive which makes it not
particularly suitable for real-time surgical planning where interactive response with the user is a key
requirement. While the Mass Tensor Model (MTM) [5] provides a model that has the simplicity of MSM
as well as the accuracy of FEM, the computational demand for prediction process using high resolution
models is still far from real-time responses. Statistical Deformable Model (SDM) which has been
developed originally for object segmentation [6] and motion analysis [7] has been introduced for soft
tissue prediction by Meller in 2005[8]. With SDM, the system is able to learn the prior knowledge of
tissue deformation from a set of training samples, and predict facial changes according to the learned
knowledge. This method, while it is efficient, it suffers from the small sample size problem [9] which is
typical of many other applications of SDM. This problem is particularly significant in surgical planning
applications because typically we do not have many real life instances of medical organ samples.
Additionally, in [8], the authors used the pre-operational facial model to predict the post-operational facial
changes by assuming that all patients underwent the same standard surgery, and, more important, the
approach does not take bone movements into account. Thus it is not particularly applicable to
orthognathic surgical planning where different surgical plans would be investigated and evaluated.

To harness the accuracy of FEM and the computational efficiency of SDM as well as taking into account
the bone-movement that cause the tissue deformation in the first place, we have introduced a novel
statistical deformable model called Bone-related SDM or Br-SDM in [10]. In Br-SDM, FEM s first
applied to generate a large sample set of soft-tissue deformation instances with respect to different jaw-
bone movements, then the generated set of deformation samples are used to train a Statistical Deformable
Model (SDM) for subsequent surgical planning, which is eventually used to predict the facial changes for
specific jaw movements. The experimental results demonstrate that the Br-SDM has comparable
accuracies with FEM (the average predicting difference of the two methods stayed within 10% of the jaw
movement) while using only 10% of the computational time and memory of conventional FEM. However,
it is also observed that, the predicting differences between Br-SDM and FEM in the main deforming area,



e.g. the region of the chin, has the highest errors compared with the other points on the face by almost
20% to 30% of the jaw movement. One possible cause of this phenomenon may be due to the insufficient
sample size for the training of the SDM as well as insufficient resolution of the bone and soft tissue
meshes around those facial regions.

To address the above problems, the primary contribution of this paper is that we propose a novel
mixed-resolution Br-SDM (mBr-SDM) which consists of a high-resolution SDM, called sub-SDM, for the
main deforming regions of interest which is trained with more samples to capture the detail deforming
variations in the main deforming area, together with a low-resolution SDM, called main-SDM, which is
trained with a smaller number of samples to capture the variations of the remaining facial points. The
experiments have shown that the sub-SDM is able to reduce the predicting error compared with FEM
significantly, while the maintaining the low computational cost which is characteristic of our original Br-
SDM approach. The resulting SDM is called Mixed-resolution Br-SDM because it consists of two
separate SDMs each with a different mesh resolution and different training sample size which enables
precise prediction of soft tissue deformation as a result of bone movement, particularly for the facial areas
where the main deformation occurs.

The rest of this paper is organized as follows. Section 2 briefly summarizes the work described in [10].
Section 3 presents Mixed-resolution Br-SDM, with the experimental results shown in section 4. We
conclude our paper in section 5.

2 Formulation of Br-SDM

We have previously proposed a Bone-related SDM or Br-SDM to achieve both accurate and efficient
prediction for orthognathic surgery planning. For the detail formulation of the construction of a Br-SDM,
we refer to [10]. We give a brief summary of the technique in the following.

Using conventional Finite Element Method (FEM), we can generate different facial outlook according to
different surgical plans. Then for each output, displacements of the boundary points (which reflect the jaw
movements of the plans) and the displacements of the non-boundary points (which reflect the facial
appearance as predicted by FEM) form a sample X = (,,n4ary 9, =(8y1ey Oy Opiar o 0,) ', Where

T
non—boundary )
6, is the displacement of vertex i of on the soft-tissue mesh, with the first m vertices overlapped with the

jaw mesh and defined as boundary points, and the remaining n-m points which are free to deform and
defined as non-boundary points.

All these samples are collected and used in the construction of a Statistical Deformable Model (SDM):

X = X + Db 1)

_ _ N

where X is the mean of the sample, calculated by X :%in with the sample count N , and
i=1

@ =(p,,...p,) is the major variation modes with the eigen-vectors p,,...p, correspond to the largest t eigen-

N
values of the covariance matrix S calculated by S = %deidxﬁ .
i=1



Given a statistical deformable model for bone-related soft tissue prediction, a surgery plan can be
expressed in terms of the cutting plane of the jaw model and the displacement of the jawbone pieces.
These displacements can be further transformed into &, to predict s, Then by minimizing

oundary on—boundary *

2

D(b) = | 5b0undary - (Eboundary + q)bou"'da‘”'b)"z

are the non-boundary part of X and @ respectively, we can choose
into Br-SDM. And then b is used further to calculate

where  Sansay aNd @y,
appropriate variation parameter b to fit o,
o

non-boundary

oundary
which represent the facial changes by:
b @)

5 = 5non—houndary +@

non—boundary non—boundary

WHEre & non-boundary AN @ 0 vouncary 7€ the non-boundary part of Xand @ respectively.

3 A Mixed-resolution Br-SDM (mBr-SDM)

3.1 Motivation

We have shown through experiments that while the Br-SDM presented above can achieve a good average
accuracy for post-operative prediction of soft tissue deformation which is around 10% of the predicted
deformation by FEM [10], we also observed that the predictive errors for certain areas of face are higher
than that for the other areas. Specifically, when we visualize the prediction errors of each point on the
soft-tissue mesh according to their positions, we find that the major differences lie in the two sides around
the chin, as illustrated in Fig.1.
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Fig. 1. The differences (colour-coded) in predicted movement of the vertices (comparing with FEM) for the surgical plan of
moving jaw-bone forward 5.1mm. (a) the front view, (b) the bottom view and (c) the side view. Green points: points with the
least difference (0 mm), red points: points with the largest difference (2.3 mm), the other points: the color is interpolated between
red and green according to the difference.

From Fig.1 and fig 2, we can see that points lying on both sides of the chin have the largest differences in
terms of predicted movements between Br-SDM and FEM. In Fig.2, we can see that the points within the
main deform area suffer from relatively large prediction differences of up to 2.3 mm, while the other
points proved to have good accuracy within differences of below 0.5mm. Unfortunately, it is the area,
which suffers large prediction differences are the place where we are most interested in, and we need
therefore to improve the prediction accuracy compared with FEM.



The reason for large difference may be that points in this area have more deforming variation modes. To
capture the large number of fine deformation modes, we need a higher-resolution mesh model and more
training samples. But we also need to make sure that the computational requirement does not increase
significantly at the same time. To this end, we introduce a mixed-resolution Br-SDM which consists of a
high-resolution Statistical Deformable Model (called sub-SDM) for the region of particular interests while
keeping the original low-resolution SDM (called main-SDM) to model the deformations in other areas.
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Fig. 2. Differences in the predicted movements between FEM and Br-SDM of each vertex for the surgical plan of moving jaw-
bone forward 5.1mm.

3.2 The structure of the Mixed-resolution Br-SDM

The points on the soft-tissue mesh consists of two sets, one of which, we call set A, consists the points
within the main deformation area of interest, e.g. the area of the chin as mentioned before (illustrated in
Fig.3), and the other set, called set B, consists the other points.
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Fig. 3. Points within the main deformation area (marked as yellow). (a) the front view and (b) the bottom view

Consequently, the sample defined in section 2 is divided into two parts, X, ={Souqary: a-nonouncary} aND
X5 = {Sooundary » O —non-bundary F + WNETE Sx 01 1nsery ar€ the displacements of the points in set A, and &,
are the displacements of the points in set B.

—non-bundary



Then as described in [10], we use FEM to generate samples, and these samples are transformed into {X,}
and {X,} respectively. {X;} is used to train the main-SDM :

Xy = Xs+dgh 4)

— — — ()
with Xe :{dboundary 5B—non—boundan/} the mean of {XB} and (DB :[ B-boundary J the variation mode.

B-—non—boundary

As mentioned before, we needs more samples to capture the variation modes within {X,} . So introduce

and simulate more surgical plans to generate more samples in this critical facial area, and these samples
are incorporated into {X,}, to train the sub-SDM :

XAZYA-i-q)Ab 5)

H vl < = @ —boundar f At
with Xa :{5boundary é‘Afnon—boundary} the mean of {X,}and @, :( Arboundery j the variation mode.

A-non-boundary

To predict the soft tissue changes of a given surgical plan &, the displacements of the points in set A

oundary ?

S p_non-bouncary A€ foUNd using (5), by minimizing

Dy 2 (02) = |Gy ~ G + @ 0] ©

and calculating

) A—non_boundary = EA—non—boundary +® A_non_boundarybA o

where @, gy @Nd @, are the first and second parts of @, corresponding to the boundary and

non-boundary points respectively, Suounsary @Nd Sanonbouncary are the first and second parts of X
corresponding to the boundary and non-boundary points respectively, and b, is the variation parameter
estimated in (6) and taken into (7) to compute &,_

non-boundary *

Similarly, the displacements of the pointsinsetB &, are found using (4), by minimizing

non—boundary

= 2 8
DX -B (bB) = | 5boundary - (5b0undary + q)B—boundarbe )"
and calculating
5B—n0n—b0undary = 58’”0”4’0“”‘13”’ + q)B—non—boundarbe (9)

where @ and @ are the first and second parts of ®, corresponding to the boundary and

B-boundary B—non-boundary
non-boundary points respectively, Sooundry aNd Se-nonbonsary are the first and second parts of X
corresponding to the boundary and non-boundary points respectively, and by is the variation parameter

estimated in (8) and taken into (9) to compute &,

non—boundary *



4  Experiments and Results

4.1 Variations of Prediction accuracy of Br-SDM with different training samples

Fig.5 shows the prediction differences of the selected 82 points of a Br-SDM trained with 244 samples
and 334 samples respectively. Compare with Fig.4, which shows the predictions differences of a Br-SDM
trained only with 128 samples, we can see that the prediction differences reduce when the number of
training samples increases. In case of a Br-SDM trained with 244 samples, the major differences stay
below 1.0mm, with the mean 0.64mm; and in case of a Br-SDM trained with 334 samples, the major
differences even stay below 0.5mm, however, the deviation is larger, with errors of some points are larger
than 1.5mm or even up to 2.5mm. We interpret this observation as the result of over-training.
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Fig. 4. Prediction differences of the selected 82 points from the original 128 samples ( in the case that the jawbone piece is
moved forward 5.1mm)
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Fig. 5. Predicting differences of the selected 82 points (in the case that the jawbone piece is moved forward 5.1mm). (a) the
prediction difference from the SDM trained with 244 samples, (b) the prediction difference for the SDM trained with 334
samples
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When we apply the proposed mix-resolution Br-SDM that consists of the sub-SDM of the main
deformation area and the main-SDM of the other facial region, we find that the average differences are
significantly reduced (table 1).

Table 1. Mean predicting difference for different surgical plans.



Surgical Plan Me?grl?sig?\;le;nce M?;nBlig‘fSRir)\ce Mean Difference (A)
F+3.1mm 0.32mm 0.12mm 0.45mm
F+4.3mm 0.44mm 0.20mm 0.58mm
F+5.1mm 0.51mm 0.32mm 0.64mm

*F+ is for Mandible Advancement. The mean difference is defined as Ezlie(i). It can seen from
{1y

Table 1 that the mean differences for mBr-SDM is significantly reduced compared with those for Br-

SDM. A denotes the mean difference for the main deforming region calculated by the Mixed-resolution

Br-SDM.

4.2 Computational Cost

By incorporating sub-SDM in the mixed-resolutions Br-SDM does not require much additional
computational cost. The only additional cost is consumed in the process of training the sub-SDM. Since
the sub-SDM typically covers only a small region of the face where the major deformation occurs, it
typically consists a small number of vertices, (82 points in our example), the training of the high-
resolution sub-SDM can be completed in our experiment in 1 minute using a PC with Intel Pentium M
processor and 2Gbyte RAM with a matlab program.

5 Conclusion

In this paper, we proposed a Mixed-resolution Br-SDM (mBr-SDM) to improve the prediction accuracy
of bone-related soft-tissue changes in orthognathic surgical planning while maintaining a low
computational costs compared with FEM. Specifically, Mixed-resolution Br-SDM consists of a sub-SDM
which serves to capture the detail deformation variations of the points around the main deforming areas of
interest, while a low-resolution main-SDM is used to capture the deforming variations of other points of
the facial regions. This way, we are able to focus the computations of detail deformation modes using
more samples for the regions of interests within a SDM, while keeping the computational costs down
compared with FEM.
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