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Abstract 
 

In this paper, we propose a Mix-resolution Bone-related Statistical Deformable Model (mBr-SDM) to improve the predicting 
accuracy of orthognathic surgery, particularly for the main deformation region. Mix-resolution Br-SDM consists of two separate 
Br-SDM of different resolutions: a high-resolution Br-SDM which is trained with more samples to capture the detail deforming 

variations in the main deforming regions of interest, together with a low-resolution Br-SDM which is trained with a smaller 
number of samples to capture the major variations of the remaining facial points. The experiments have shown that the mix-

resolution Br-SDM is able to significantly reduce the predicting error compared with the corresponding Finite Element Model, 
while giving a low computational cost which is characteristic of the SDM approach. 
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1 Introduction 

Orthognathic surgery aims to correct for abnormities of the facial anatomies. Computer aided planning of 
such surgeries has been an area of active research in the past decades because the predicted facial 
outcome of the surgery helps surgeons to choose the best surgical strategy among the possible surgical 
plans, as well as to improve the communications between the surgeons and the patients. Conventionally, 
the appropriate osteotomy line and the necessary displacements of the jaw segment are determined by 2D 
cephalometry. The advent of high quality medical imaging modalities (such as CT images) has made 
possible accurate and efficient representation and prediction of the 3D facial changes as a result of 
surgery, and at the same time, posed many new challenging problems, among them is the prediction of 
facial soft tissue deformation as a result of craniofacial bone movements. The Mass Spring Models (MSM) 
has been introduced [1] to model the facial tissue as masses and springs connecting neighboring masses. 
The model structure is intuitive, and computational cost of predicting tissue deformation is low. The 
major disadvantage is that the parameters in a MSM, such as the spring constant [4], typically do not bear 
direct relation to the biomechanical properties of human soft tissues. Later on, Finite Element Models 
(FEM) [2], as a general discretization procedure of continuum problems is suggested to solve the problem 
of facial deformation. FEM is accurate [3], but computational and memory intensive which makes it not 
particularly suitable for real-time surgical planning where interactive response with the user is a key 
requirement. While the Mass Tensor Model (MTM) [5] provides a model that has the simplicity of MSM 
as well as the accuracy of FEM, the computational demand for prediction process using high resolution 
models is still far from real-time responses. Statistical Deformable Model (SDM) which has been 
developed originally for object segmentation [6] and motion analysis [7] has been introduced for soft 
tissue prediction by Meller in 2005[8]. With SDM, the system is able to learn the prior knowledge of 
tissue deformation from a set of training samples, and predict facial changes according to the learned 
knowledge. This method, while it is efficient, it suffers from the small sample size problem [9] which is 
typical of many other applications of SDM. This problem is particularly significant in surgical planning 
applications because typically we do not have many real life instances of medical organ samples. 
Additionally, in [8], the authors used the pre-operational facial model to predict the post-operational facial 
changes by assuming that all patients underwent the same standard surgery, and, more important, the 
approach does not take bone movements into account. Thus it is not particularly applicable to 
orthognathic surgical planning where different surgical plans would be investigated and evaluated. 

To harness the accuracy of FEM and the computational efficiency of SDM as well as taking into account 
the bone-movement that cause the tissue deformation in the first place, we have introduced a novel 
statistical deformable model called Bone-related SDM or Br-SDM in [10]. In Br-SDM, FEM is first 
applied to generate a large sample set of soft-tissue deformation instances with respect to different jaw-
bone movements, then the generated set of deformation samples are used to train a Statistical Deformable 
Model (SDM) for subsequent surgical planning, which is eventually used to predict the facial changes for 
specific jaw movements. The experimental results demonstrate that the Br-SDM has comparable 
accuracies with FEM (the average predicting difference of the two methods stayed within 10% of the jaw 
movement) while using only 10% of the computational time and memory of conventional FEM. However, 
it is also observed that, the predicting differences between Br-SDM and FEM in the main deforming area, 
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e.g. the region of the chin, has the highest errors compared with the other points on the face by almost 
20% to 30% of the jaw movement. One possible cause of this phenomenon may be due to the insufficient 
sample size for the training of the SDM as well as insufficient resolution of the bone and soft tissue 
meshes around those facial regions. 

To address the above problems, the primary contribution of this paper is that we propose a novel 
mixed-resolution Br-SDM (mBr-SDM) which consists of a high-resolution SDM, called sub-SDM, for the 
main deforming regions of interest which is trained with more samples to capture the detail deforming 
variations in the main deforming area, together with a low-resolution SDM, called main-SDM, which is 
trained with a smaller number of samples to capture the variations of the remaining facial points. The 
experiments have shown that the sub-SDM is able to reduce the predicting error compared with FEM 
significantly, while the maintaining the low computational cost which is characteristic of our original Br-
SDM approach. The resulting SDM is called Mixed-resolution Br-SDM because it consists of two 
separate SDMs each with a different mesh resolution and different training sample size which enables 
precise prediction of soft tissue deformation as a result of bone movement, particularly for the facial areas 
where the main deformation occurs. 

The rest of this paper is organized as follows. Section 2 briefly summarizes the work described in [10]. 
Section 3 presents Mixed-resolution Br-SDM, with the experimental results shown in section 4. We 
conclude our paper in section 5. 

2 Formulation of Br-SDM 

We have previously proposed a Bone-related SDM or Br-SDM to achieve both accurate and efficient 
prediction for orthognathic surgery planning. For the detail formulation of the construction of a Br-SDM, 
we refer to [10]. We give a brief summary of the technique in the following. 

Using conventional Finite Element Method (FEM), we can generate different facial outlook according to 
different surgical plans. Then for each output, displacements of the boundary points (which reflect the jaw 
movements of the plans) and the displacements of the non-boundary points (which reflect the facial 
appearance as predicted by FEM) form a sample 1 1( , ) ( ,..., , ,..., )T T

boundary non boundary m m nX δ δ δ δ δ δ− += = , where 

iδ is the displacement of vertex i  of on the soft-tissue mesh, with the first m  vertices overlapped with the 
jaw mesh and defined as boundary points, and the remaining n-m points which are free to deform and 
defined as non-boundary points. 

All these samples are collected and used in the construction of a Statistical Deformable Model (SDM): 

X X b= +Φ  (1) 

where X is the mean of the sample, calculated by 
1

1 N

i
i

X X
N =

= ∑ with the sample count N , and 

1( ,... )tp pΦ = is the major variation modes with the eigen-vectors 1,... tp p correspond to the largest t  eigen-

values of the covariance matrix S  calculated by 
1

1 N
T

i i
i

S dX dX
N =

= ∑ . 
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Given a statistical deformable model for bone-related soft tissue prediction, a surgery plan can be 
expressed in terms of the cutting plane of the jaw model and the displacement of the jawbone pieces. 
These displacements can be further transformed into boundaryδ to predict non boundaryδ − . Then by minimizing 

2
( ) ( )boundaryboundary boundaryD b bδ δ= − +Φ  (2) 

where  boundaryδ and  boundaryΦ  are  the non-boundary part of X and Φ  respectively,  we can choose 
appropriate variation parameter b to fit boundaryδ  into Br-SDM. And then b is used further to calculate 

non boundaryδ −  which represent the facial changes by: 

non boundarynon boundary non boundarybδ δ −− −= +Φ  (3) 

where  non boundaryδ − and  non boundary−Φ  are  the non-boundary part of X and Φ  respectively. 

3 A Mixed-resolution Br-SDM (mBr-SDM) 

3.1 Motivation 

We have shown through experiments that while the Br-SDM presented above can achieve a good average 
accuracy for post-operative prediction of soft tissue deformation which is around 10% of the predicted 
deformation by FEM [10],  we also observed that the predictive errors for certain areas of face are higher 
than that for the other areas. Specifically, when we visualize the prediction errors of each point on the 
soft-tissue mesh according to their positions, we find that the major differences lie in the two sides around 
the chin, as illustrated in Fig.1. 

 

(a) (b) (c) 
Fig. 1. The differences (colour-coded) in predicted movement of the vertices (comparing with FEM) for the surgical plan of 
moving jaw-bone forward 5.1mm. (a) the front view, (b) the bottom view and (c) the side view.  Green points: points with the 
least difference (0 mm), red points: points with the largest difference (2.3 mm), the other points: the color is interpolated between 
red and green according to the difference. 

From Fig.1 and fig 2, we can see that points lying on both sides of the chin have the largest differences in 
terms of predicted movements between Br-SDM and FEM. In Fig.2, we can see that the points within the 
main deform area suffer from relatively large prediction differences of up to 2.3 mm, while the other 
points proved to have good accuracy within differences of below 0.5mm. Unfortunately, it is the area, 
which suffers large prediction differences are the place where we are most interested in, and we need 
therefore to improve the prediction accuracy compared with FEM. 
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The reason for large difference may be that points in this area have more deforming variation modes. To 
capture the large number of fine deformation modes, we need a higher-resolution mesh model and more 
training samples. But we also need to make sure that the computational requirement does not increase 
significantly at the same time. To this end, we introduce a mixed-resolution Br-SDM which consists of a 
high-resolution Statistical Deformable Model (called sub-SDM) for the region of particular interests while 
keeping the original low-resolution SDM (called main-SDM) to model the deformations in other areas. 
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Fig. 2.  Differences in the predicted movements between FEM and Br-SDM of each vertex for the surgical plan of moving jaw-
bone forward 5.1mm. 

 

3.2 The structure of the Mixed-resolution Br-SDM 

The points on the soft-tissue mesh consists of two sets, one of which, we call set A, consists the points 
within the main deformation area of interest, e.g. the area of the chin as mentioned before (illustrated in 
Fig.3), and the other set, called set B, consists the other points. 

 

 

(a) (b) 
Fig. 3. Points within the main deformation area (marked as yellow). (a) the front view and (b) the bottom view 

Consequently, the sample defined in section 2 is divided into two parts, { , }A boundary A non bundaryX δ δ − −=  and 
{ , }B boundary B non bundaryX δ δ − −= , where A non bundaryδ − −  are the displacements of the points in set A, and B non bundaryδ − −  

are the displacements of the points in set B. 
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Then as described in [10], we use FEM to generate samples, and these samples are transformed into { }AX  
and { }BX  respectively. { }BX  is used to train the main-SDM : 

BB BX X b= +Φ  (4) 

with { }B boundary B non boundaryX δ δ − −=  the mean of { }BX  and B boundary
B

B non boundary

−

− −

Φ⎛ ⎞
Φ = ⎜ ⎟Φ⎝ ⎠

 the variation mode. 

As mentioned before, we needs more samples to capture the variation modes within { }AX . So introduce 
and simulate more surgical plans to generate more samples in this critical facial area, and these samples 
are incorporated into { }AX , to train the sub-SDM : 

AA AX X b= +Φ  (5) 

with { }A boundary A non boundaryX δ δ − −=  the mean of { }AX and A boundary
A

A non boundary

−

− −

Φ⎛ ⎞
Φ = ⎜ ⎟Φ⎝ ⎠

 the variation mode. 

To predict the soft tissue changes of a given surgical plan boundaryδ , the displacements of the points in set A  

A non boundaryδ − − are found using (5), by minimizing 

2
( ) ( )boundaryX A A boundary A boundary AD b bδ δ− −= − +Φ  (6) 

and calculating  

A non boundaryA non boundary A non boundary Abδ δ − −− − − −= +Φ  (7) 

where A boundary−Φ  and A non boundary− −Φ are the first and second parts of AΦ  corresponding to the boundary and 

non-boundary points respectively, boundaryδ  and A non boundaryδ − − are the first and second parts of  AX  
corresponding to the boundary and non-boundary points respectively, and Ab is the variation parameter 
estimated in (6) and taken into (7) to compute A non boundaryδ − − . 

Similarly, the displacements of the points in set B  B non boundaryδ − − are found using (4), by minimizing 

2
( ) ( )boundaryX B B boundary B boundary BD b bδ δ− −= − +Φ  (8) 

 and calculating 

B non boundaryB non boundary B non boundary Bbδ δ − −− − − −= +Φ  (9) 

where B boundary−Φ  and B non boundary− −Φ are the first and second parts of BΦ  corresponding to the boundary and 

non-boundary points respectively, boundaryδ  and B non boundaryδ − − are the first and second parts of  BX  
corresponding to the boundary and non-boundary points respectively, and Bb is the variation parameter 
estimated in (8) and taken into (9) to compute B non boundaryδ − − . 
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4 Experiments and Results 

4.1 Variations of Prediction accuracy of Br-SDM with different training samples 

Fig.5 shows the prediction differences of the selected 82 points of a Br-SDM trained with 244 samples 
and 334 samples respectively. Compare with Fig.4, which shows the predictions differences of a Br-SDM 
trained only with 128 samples, we can see that the prediction differences reduce when the number of 
training samples increases. In case of a Br-SDM trained with 244 samples, the major differences stay 
below 1.0mm, with the mean 0.64mm; and in case of a Br-SDM trained with 334 samples, the major 
differences even stay below 0.5mm, however, the deviation is larger, with errors of some points are larger 
than 1.5mm or even up to 2.5mm. We interpret this observation as the result of over-training.  

 
Fig. 4. Prediction differences of the selected 82 points from the original 128 samples ( in the case that the jawbone piece is 
moved forward 5.1mm) 

 

(a) (b) 
Fig. 5. Predicting differences of the selected 82 points (in the case that the jawbone piece is moved forward 5.1mm). (a) the 
prediction difference from the SDM trained with 244 samples, (b) the prediction difference for the SDM trained with 334 
samples 

When we apply the proposed mix-resolution Br-SDM that consists of the sub-SDM of the main 
deformation area and the main-SDM of the other facial region, we find that the average differences are 
significantly reduced (table 1). 

Table 1.  Mean predicting difference for different surgical plans. 
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Surgical Plan Mean Difference 
(Br-SDM) 

Mean Difference 
(mBr-SDM) Mean Difference (A) 

F+3.1mm 0.32mm 0.12mm 0.45mm 

F+4.3mm 0.44mm 0.20mm 0.58mm 

F+5.1mm 0.51mm 0.32mm 0.64mm 

 

*F+ is for Mandible Advancement. The mean difference is defined as 
1

1 ( )
n

i
E e i

n =

= ∑ . It can seen from 

Table 1 that the mean differences for mBr-SDM is significantly reduced compared with those for Br-
SDM. A denotes the mean difference for the main deforming region calculated by the Mixed-resolution 
Br-SDM. 

 

4.2 Computational Cost 

By incorporating sub-SDM in the mixed-resolutions Br-SDM does not require much additional 
computational cost. The only additional cost is consumed in the process of training the sub-SDM. Since 
the sub-SDM typically covers only a small region of the face where the major deformation occurs, it 
typically consists a small number of vertices, (82 points in our example), the training of the high-
resolution sub-SDM can be completed in our experiment in 1 minute using a PC with Intel Pentium M 
processor and 2Gbyte RAM with a matlab program.  

 

5 Conclusion 

In this paper, we proposed a Mixed-resolution Br-SDM (mBr-SDM) to improve the prediction accuracy 
of bone-related soft-tissue changes in orthognathic surgical planning while maintaining a low 
computational costs compared with FEM. Specifically, Mixed-resolution Br-SDM consists of a sub-SDM 
which serves to capture the detail deformation variations of the points around the main deforming areas of 
interest, while a low-resolution main-SDM is used to capture the deforming variations of other points of 
the facial regions. This way, we are able to focus the computations of detail deformation modes using 
more samples for the regions of interests within a SDM, while keeping the computational costs down 
compared with FEM. 
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