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Abstract 
 

The assignment of bone material properties to finite element model is a fundamental step in finite element 
analysis and has great influence on analysis results. Most work done in this area has adopted isotropic assignment 
strategy as its simplicity. However, bone material is widely recognized as being anisotropic rather than isotropic. 
Therefore, this work is aimed to simulate the inhomogeneity and anisotropy of femur by assigning each element 
of the mesh model the material properties with a numerical integration method and properly defining the principal 
material orientation, and then compare the biomechanical analysis results of isotropic model with that of 
anisotropic model under six different loading conditions. Based on the analysis results of the equivalent Von 
Mises stress and the nodal displacement, four different regions of interest are chosen to achieve this comparison. 
The results show that significant differences between the two material property assignments exist in the regions 
where anisotropic material property is sensitive to orientation definition. Thus, orientation definition is important 
to finite element simulation of bone material properties. 
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1 Introduction 

Finite element (FE) analysis, as a non-invasive method, has been widely used in academic research and 
clinical applications, such as the theory of bone remodeling [1], the design of prosthesis [2] and the 
evaluation of facture risk [3]. Accurate simulation of bone biomechanical behavior depends on not only 
the accurate model obtained via three-dimensional reconstruction, but also the realistic material properties 
that consist with different aspects’ bone density and anatomical structure. 

In early period, the methods used to get bone geometry and mechanical properties were inaccurate and 
sometimes highly invasive and destructive. It is well known that CT images can provide fairly accurate 
quantitative information on bone geometry based on high contrast between the bone tissue and the soft 
tissue around [4]. Moreover, it has been demonstrated that CT numbers are almost linearly correlated with 
apparent density of biologic tissues [5]. Good experimental relationships have been established between 
density and mechanical properties of bone tissues [6]. 

The CT data can be regarded as a three-dimensional scalar field (related to the tissue density) sampled 
over a regular grid. Once the finite element mesh is generated starting form the same CT data, the mesh 
and the density distribution are perfectly registered in space. The only problem is how to properly map the 
density into the finite element mesh. Many approaches were proposed in literature to perform this task [7-
10]. However, these algorithms only simulated the inhomogeneity of bone material, and the isotropic 
material property assignment was adopted without considering the material orientation of bone tissue. 
Since the bone material is anisotropic [11, 15, 16], the isotropic FE simulation of bone material property 
cannot reflect the actual structure and mechanical behavior of bone. 

In recent studies, more attentions were paid to the orthotropic material property assignment and the 
comparison between isotropic and orthotropic methods. Peng et al [12] compared isotropic material 
property assignment with orthotropic assignment on femoral finite element models and demonstrated that 
the differences were small and bone is weak orthotropic material. Nevertheless, the global coordinate 
system was defined as the orthotropic orientation over the whole femoral model. This definition can not 
respect the real anatomical locations in femur, especially in femoral neck. The results, therefore, were 
distorted. Baca et al [13] overcame abovementioned shortcomings by manually defining orthotropic 
orientation based on real anatomical structure that was obtained following a grinding protocol. However, 
too much manual work needs to be done and the investigator must be quite familiar with anatomical 
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structure of femur. Besides, this method can only be applicable to cadaveric bone. What’s more, the data 
used for comparison are too little to doubtless support the conclusion. Unfortunately, both studies mistook 
the unit of shear modulus (GP) for unit (MP) when they quoted the formula of density-modulus 
relationship in [15] ( GP, 71.5max12 =G 11.7max23 =G GP, 58.6max31 =G GP). Moreover, the force (8kN) 
applied to femoral head was almost ten times to the weight of a normal person. This force may destroy the 
bone structure or produce abnormal stress and displacement. 

This work is aimed to simulate the inhomogeneity and anisotropy of femur by properly defining the 
principal material orientation automatically, and investigate the differences between isotropic and 
orthotropic material property assignments through correctly defining the material orientation and exactly 
using the parameters. 

2 Materials and methods 

2.1 CT data 

The CT dataset of a man’s femur is obtained from the public database which is created by VAKHUM 
project (http://www.ulb.ac.be/project/vakhum/index.html). The use of the data is free for academic 
purposes. The CT data are in standard DICOM formats. The slice thickness is 1mm in the epiphysis and 
3mm in the diaphysis. 

2.2 Finite element mesh 

The finite element mesh of a right femur (Figure 1) generated from the corresponding CT dataset above is 
also obtained from the VAKHUM project. It is in a Patran Neutral file format. The mesh is made of linear 
hexahedral elements and is generated using the HEXAR (Cray Research, USA) automatic mesh generator 
that implements a grid-based meshing algorithm. The model mesh is spatially registered with the CT 
dataset. The complete finite element mesh consisted of 9,294 nodes and 7,934 elements. 

 

                 

Figure 1 (a) The geometrical model of femur.    (b) The finite element mesh of femur. 
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2.3 The procedure of material property assignment 

2.3.1 Calculation of the average CT number 

For each element of the mesh, an average HU value is calculated with a numerical integration as follows: 
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where  indicates the volume of the element n, (x,y,z) are the coordinates in the CT reference system, 
(r,s,t) are the local coordinates in the element reference system, and J represents the Jacobian of the 
transformation. The integrals in Equation 1 are evaluated numerically, and the order of the numerical 
integration can be chosen by us. The value of HU(x,y,z) in a generic point of the CT domain is determined 
by a tri-linear interpolation between the eight adjacent grid points’ values. 

nV

2.3.2 Calibration of the CT dataset 

It has been demonstrated that the relationship between CT number and apparent density is linear. The 
calibration equation is then: 

nn HUβαρ +=                                                      (2) 

where nρ is the average density assigned to the element n of the mesh, nHU is the average CT number 
and α , β  are the coefficients provided by calibration. 

Generally, a calibration phantom [14] was used to obtain the parameters of the linear regression. In this 
paper, referenced values are selected for approximate calibration from [7]: Radiographic and apparent 
density of water (0 HU, 1 g/cm3); Average radiographic density in the cortical region and the apparent 
density value for cortical bone (1840 HU, 1.73 g/cm3). 

2.3.3 Calculation of the elastic constants 

Large number of experiments shows that the bone material properties can be expressed as function of 
apparent density, and various experimental relationships between elastic modulus and apparent density 
can be found in the literature. In the case of isotropic material property: 

• Cortical bone: 

                                            , 09.32065ρ=E 3.0=ν                                                             (3)          

• Cancellous bone: 
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                                    , 64.11094ρ=E 3.0=ν                                                              (4) 

where E is the average Young’s modulus assigned to the element n of the mesh, ρ is its apparent density 
and ν is the Poisson ratio. 

In the case of orthotropic material property: 

• Cortical bone: 

 ,  57.1
21 2314ρ== EE 09.3

3 2065ρ=E

                                                       58.012 =ν , 32.02313 ==νν  

                                                    )1(2/ 12112 ν+= EG , 3.32313 == GG                                                 (5)            

• Cancellous bone: 

                                                 ,  78.1
21 1157ρ== EE 64.1

3 1094ρ=E

                                                 58.012 =ν , 32.02313 ==νν  

)1(2/ 12112 ν+= EG , 11.02313 ==GG                                                  (6) 

where E is the Young’s modulus (MPa), G the shear modulus (GPa), ν  the Poisson’s ratio. The 
coordinate systems of these parameters are defined in next step. In order to get a limited number of 
material card, a threshold is chosen in the program. In this work, 3EΔ 503 =ΔE MP. 

2.4 The definition of material orientation 

As we know, bone structure is customarily recognized as confirming to ‘wolff’s law’ which is essentially 
the observation that bone changes its external shape and internal architecture in response to stresses acting 
on it. Thus, the structure of bone (or material orientation) strongly coincides with the principal stress track. 
Since bone tissue is recognized as orthotropic material, the determination of principal material orientation 
based on real anatomical bone structure is essential to the real simulation of bone material properties. 
According to the cortical bone structure in femoral stem and cancellous bone structure in femoral neck, 
the principal material orientation of cancellous bone is defined by the direction of the trabecular structures 
and the principal material orientation of cortical bone by the direction of the haversian system. 

2.5 Loading conditions 

After the generation of finite element models with bone material properties and orthotropic orientation, 
six loading conditions (Figure 2) are applied to the isotropic models and orthotropic models respectively: 

• LC1. Neutral: femoral axis vertical. 

• LC2. Maximum adduction: 24° in the frontal plane. 

• LC3. Maximum abduction: 3° in the frontal plane. 
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• LC4. Maximum flexion: - 3° in the sagittall plane. 

• LC5. Maximum extension: 18° in the sagittall plane. 

• LC6. High stress in neck: 8° in the frontal plane. 

The force (500N) is applied on femoral head based on the local reference coordinate system defined in 
[18] and the distal femur is fully constrained. 

 

Figure 2 Boundary conditions and local reference coordinate system. 

2.6 Comparison of isotropic and orthotropic material property assignments 

The objective of this study is to investigate the differences between isotropic and orthotropic material 
property FE-simulation. Thus, two parameters are defined to show the differences. The first parameter 
( σΔ ) represents the difference of equivalent Von Mises stress in the regions of interest (ROI) between 
isotropic and orthotropic models. The second parameter ( uΔ ) represents the difference of nodal 
displacement in ROI: 
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where is the difference of stress in ROI n (n=1,2,3,4),  and represent the parameter  
in case of the isotropic material property assignment and the orthotropic material property assignment. 

 is the difference of stress in ROI n (n=1,2,3,4),  and  represent the parameter  in case 
of the isotropic material property assignment and the orthotropic material property assignment. 
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Figure 3 Four regions of interest: ROI1 in superior neck, ROI2 in inferior neck, ROI3 in diaphsis and 
ROI4 in distal femur. 

In order to make the compared results more comprehensive, four different regions of interest (including 
femoral neck, diaphysis and distal femur) are chosen for comparison instead of only comparing the 
maximum value of Von Mises stress and nodal displacement (Figure 3). 

3 Results 

3.1 Inhomogeneous distribution of material properties 

This material assignment procedure produces 165 different material definitions. The distribution of all 
kinds of material properties in femur are shown in Figure 4. 

 

   

Figure 4 Right femur with different material properties mapped on it: posterior, lateral, anterior and 
medial views. 
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The maximum and minimum values for apparent density and elastic modulus are listed in Table 1. The 
maximum is corresponding to the material property 1 and the minimum to number 165 as a result of the 
definition in the program. 

 

 
Material properties 

ρ  )( 21 EE  3E  

Maximum 1.787 5755.799 12410.846 

Minimum 0.686 591.512 1026.157 

Table 1 Density and elastic modulus (The unit for density is g/cm3, and for elastic modulus is MP). 

 

3.2 The definition of principal material orientation (orthotropic FE-simulation) 

After separating the femoral neck and stem, different principal material orientations are automatically 
assign to the two aspects. As is shown in Figure 5: In femoral neck, the principal axe is along the 
direction of neck which has an angle 120° to z axis; In femoral stem, the principal axis is along the 
direction of stem which has an approximate angle 12° to z axis. Besides, the other two transverse axes are 
defined perpendicular to the z axis. 

 

Figure 5 Orthotropic FE model with principal material orientation presented in vector form. 

 

3.3 Differences between isotropic and orthotropic material models 

Table 1 shows the relative differences of equivalent Von Mises stress σΔ  in four regions (ROI1-ROI4) 
under six loading conditions (LC1-LC6). Table 2 shows the relative differences of nodal 
displacement . Under each loading condition, the change of data from ROI1 to ROI4 is quite similar. 
For equivalent Von Mises stress, two material property assignments show marked differences in ROI1: 
the values of 

uΔ

σΔ  are from 16.63% to 18.17%. Significant differences still appear in ROI2: the values of 
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σΔ are greater than 9.96% and the maximum reaches 11.67%. On the contrary, the differences of stress 
between two material property assignments are lower than 0.41% in ROI3 and 1.62% in ROI4.  

For nodal displacement, the values of uΔ are nearly 5% in ROI1, ROI2 and ROI3 under all the loading 
conditions except LC2 and LC5. The differences are larger than 8.67% in ROI4 and bigger values of 

exist here under LC2 and LC5: 17.73% for LC2 and 15.77% for LC5. uΔ

 

Regions of 
interest 

Loading conditions 

LC1 LC2 LC3 LC4 LC5 LC6 

ROI1 18.17 16.63 17.78 18.10 17.14 17.97 

ROI2 11.09 9.99 11.63 11.67 11.16 9.96 

ROI3 0.29 0.35 0.27 0.41 0.39 0.26 

ROI4 0.91 1.62 1.01 1.21 0.57 1.35 

Table 1 The relative differences of stress σΔ  in four regions of femur under six loading conditions (%). 

 

Regions of 
interest 

Loading conditions 

LC1 LC2 LC3 LC4 LC5 LC6 

ROI1 4.22 8.43 4.33 4.74 6.55 4.69 

ROI2 4.25 9.33 4.41 4.95 7.03 4.90 

ROI3 4.07 7.42 3.90 4.06 6.26 3.69 

ROI4 8.67 17.73 9.29 11.27 15.77 11.59 

Table 2 The relative differences of displacement uΔ  in four regions of femur under six loading 
conditions (%). 

 

4 Discussion 

The finite element method has been increasingly accepted as a useful tool to study the biomechanical 
behavior of bone structure. As we know, CT data can offer not only the accurate information on bone 
geometry but also the density information which has been demonstrated having relationship with bone 
material properties. Once the finite element mesh has been generated from CT data, how to assign the 
realistic material properties to finite elements becomes crucial for the FEA. Most work done in this 
domain only simulates the inhomogeneity and isotropy of bone as its simplicity. Bone, however, is widely 
recognized as anisotropic material and can be simplified to orthotropic material that has nine independent 
elastic constants and spatial orientation of the principal axes of orthotropy. 
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It has been demonstrated that the structure of femur is highly variable, especially to cancellous bone. Thus, 
a clear and exact definition of the principal axes of orthotropy is impossible. In this study, we only 
separate the femoral neck and stem. Then, the principal orientations of neck are defined on the basis of 
the direction of trabecular structure and the principal orientation of stem on the basis of the direction of 
harversian system. As the structure of femur (or material orientation) coincides with the track of principal 
stress, the orientation definition based on pass of stress is reasonable. 

In order to roundly investigate the differences between the isotropic model and orthotropic model, 
equivalent Von Mises stresses and nodal displacements from four regions of femur are chosen to achieve 
this comparison. As shown in Table 1, significant differences appear in ROI1 and ROI2: the maximum of 
σΔ  reach 18.17% and 11.67% respectively. ROI1 and ROI2 located in femoral neck where the principal 

material orientations are defined according to the trabecular structure and have great differences with the 
global coordinate system. Consequently, it is considered that anisotropic material property is sensitive to 
orientation definition in these regions. The results indicate that large differences of stress just exist in 
these regions. The differences of stress are lower in ROI3 and ROI4 where the principal material 
orientation only has an angle 12° to z axis of the global coordinate. 

For nodal displacement, the differences are lower in ROI1, ROI2 and ROI3 (about 5% for uΔ ). But, 
nodal displacements for two models show obvious differences in ROI4.  According to the analysis results 
in both models, we find that there are fewer displacements in ROI4. This means significant differences 
between isotropic and orthotropic models may appear in these regions where absolute displacements are 
lower. Moreover, largest equivalent Von Mises stress is in the ROI4 where the differences are quite small. 
Therefore, incorrect results may be obtained if researchers compare the differences with maximum 
equivalent Von Mises stress and maximum nodal displacement. 

In this study, six loading conditions are applied to the models aiming to investigate whether different 
loads have influence on compared results. As shown in Table 2, the values of uΔ der LC2 and LC5 are 
obviously different from others. Thus, different loading conditions will lead to different comparison 
results. Besides, the loading conditions have different effects on stress and displacement. 

 un

With the comparison of isotropic and orthotropic material property assignments on femoral finite element 
models, significant differences exist in the regions where anisotropic material property is sensitive to 
orientation definition. Therefore, it is inaccurate to simplify orthotropy to isotropy during the procedure of 
material properties FE-simulation and orientation definition is important to the finite element simulation 
of material property. 

How to simulate the real material properties of bone with finite element method is a problem all the while. 
Although since several years, some studies have been performed to generate anisotropy FE modeling of 
femur, these models can not reproduce exactly in vivo conditions. In our study, the principal material 
orientations are defined according to the macroscopical structure that consists with the stress pass. Thus, 
this method has reproducibility. Future work has to be done to validate the anisotropy model via 
experiment. 
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