Cardiac Motion Recovery by Coupling an

Electromechanical Model and Cine-MRI Data:
First Steps

Florence Billet!, Maxime Sermesant!, Hervé DeIingettel and Nicholas Ayachel

May 30, 2008
LINRIA, Asclepios Team, Sophia-Antipolis, France. Floremillet@inria.fr

Abstract

We present a framework for cardiac motion recovery usingattiigstment of an electromechanical
model of the heart to cine Magnetic Resonance Images (MRI¥ dpproach is based on a constrained
minimisation of an energy coupling the model and the data. @ethod can be seen as a data assimi-
lation of a dynamic system that allows us to weight apprdelyathe confidence in the model and the
confidence in the data. After a short overview of the eleceohanical model of the ventricles, we de-
scribe the processing of cine MR images and the methodolmgyétion recovery. Then, we compare
this method to the methodology used in data assimilatioesétted results on motion recovery from
given cine-MRI are very promising. In particular, we shovattlour coupling approach allows us to
recover some tangential component of the ventricles matibith cannot be obtained from classical
geometrical tracking approaches due to the aperture proble

1 Introduction

The modelling of the heart electromechanical activity isaative research are®,[9, 1, 13, 4]. The sim-
ulation of the heart has received a growing attention duda¢oimportance of cardiovascular diseases in
industrialised nations and to the high complexity of thedis function.

In order to help the clinical practice of cardiologists, stimportant however that those models not only
describe with some degree of realism the cardiac functiomlso be patient specific. Creating such person-
alised cardiac models implies that the anatomy of the paisetaken into account but also that the model
parameters are tailored such that the simulated cardiacomatatches well with the observed cardiac
motion. This represents a great challenge due to the imrptsysiological complexity of the underlying
phenomena which combine tissue mechanics, fluid dynamasrephysiology, energetic metabolism and
cardiovascular regulation. Also only partial informatioan be derived from clinical data for a specific
patient making the parameter estimation an ill-posed probl

The objective of this paper is to propose a methodology tinas at creating personalised electromechanical
model of the heart from cine MR images. Previous wda@kl[0, 8, 12] on the adjustment of a geometrical
model of the heart on time series of medical images are mbaadgd on the concept of deformable models.
In such framework, a surface or volumetric mesh is fit on thgaagnt boundaries of the heart by minimising



the sum of two energies: an image term and a regularisingtemal term. In such approaches, the model
can be assimilated assatic system evolving under the minimization of an energy.

Conversely, electromechanical models of the heartginamic systems that evolve even in the absence of
any image term. Adjusting such dynamic systems to timesefisnage data is fundamentally different than
adjusting a static system since the parameters of the dgreysiem are additional degrees of freedom that
should be estimated. The data assimilation techniquesstimigsin adjusting model parameters from image
data [L7], such as extended or unscented Kalman filtering are oftenepto the curse of dimensionality
since they involves full covariance matrices whose sizeeargal to the number of parameters augmented
with the number of state variables.

In this paper, we propose a method to estimate the statéhe position and velocity) of an electromechan-
ical model from cine MR images which is inspired from the dafable model framework used in medical
image analysis. We show the formal equivalence betweeratipsoach and a filtering method] [used in
data assimilation. This theoretical equivalence leadshlietter understanding of the trade-off between the
electromechanical model and the image data. The propogwdagh is validated on synthetic time series
of images and is applied on cine MR images.

2 Electromechanical model

We consider in this paper a fairly reduced electromechamuadel since we want the complexity of the
model to match the relatively sparse measures availabhe fitrtaging data. Furthermore, this coarse level
of modeling allows us to simulate a whole cardiac cycle on ahmgth 50 000 tetrahedral elements in about
5 minutes on a regular PC. This limited computational tim&esathe estimation of the mechanical state
and parameters tractable and allows us to test the behayfitiie model on series of heart beats.

2.1 Anatomy Description

The two ventricles are represented as a tetrahedral volimmeésh including some anatomical information
such as the myocardium geometry, the definition of somecairdnatomical regions (the American Heart
Association regions), and the local orientation of fibrese ¥8n build such a mesh from MR images, as
explained below in sectioB.1 The local fibre orientation can be either created from basiatomical
assumptions (elevation angle across the wall) or extrdoted Diffusion Tensor MRI (DT-MRI) L1].

2.2 Simulation of the cardiac electrophysiology

Several electrophysiological models have been proposéukifiterature. Due to its efficiency, we use an
Eikonal approach for the electrophysiology propagatioith & volumetric implementation of the algorithm
described in15]. The depolarisation tim&y of the electrical wave for a given vertex of the volumetricane
is computed by solving the anisotropic Eikonal equati§(iiT] DOTy) = 1, wherev is the local conduction
velocity parameter an® is the tensor defining the conduction anisotropy. In the fdwerdinatesD =
diag(1,p,p), wherep is the conduction anisotropy ratio between longitudinal tansverse directions. An
anisotropic multi-front fast marching algorithm was degd in order to solve this model very efficiently.
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Figure 1: (a) Simplified biomechanical model. (b) Electricammand and intensity of contraction.

2.3 Simulation of the myocardium contraction

The biomechanical model presented here is derived from &-sugle modelling of the myocardium detailed
in [2]. The mechanical model is composed of two elements, as showd=ig.1. The former is a parallel
element which represents the passive properties of theetis$his parallel element is anisotropic linear
visco-elastic. The second element is an active contragléiment controlled by the electrophysiology. More
precisely, when depolarisation occurs (i.e. when we releldepolarisation timé&y), some calcium stored
in the sarcoplasmic reticulum inside the cardiac cells edusr the ATP hydrolysis which provides energy
to the molecular motors in the sarcomeres, generating theamion of the fibre. The duration of this
depolarisation is the action potential duration (APD). Biectrical command is then equal to a constant
katp Which represents the rate of the hydrolysis of the ATP. Aftentraction, during the repolarisation,
calcium moves back into the sarcoplasmic reticulum anddalisium decrease allows the relaxation of the
muscle. The electrical commanxis then equal to another constankgs which represents the activity of
the sarcoplasmic reticulum.

Thus, the contractile element is controlled by this commatiough the differential equatiomc + |u|joc =
|u|-00 whereoc is the strength of the contraction, agg the maximum contraction. Then, with the com-
mandu described above:

Oc(

) = { 0o (1—€4(Ta=Y))  during depolarisation Ty <t < T 1)

oc(Ty)ees(T—Y during repolarisation T, <t < Ty+HP

whereT, = Tq + APD is the repolarisation time andP the heart period. The commandnd the intensity

of the resulting contraction are represented on Eig. Then, the active contractile element creates a stress
tensorocf @ f wheref is the fibre orientation ané the dyadic product. This results in the dynamic equation
in a force vectoiFc = [(ocf ® f)ndSwith n the surface normal anSithe element surface.

Finally, we represent the simplified dynamic law by a stiffsematrixK for the transverse anisotropic
elastic part (parallel element), a diagonal mass mafrand a damping matri for the internal viscosity
part, which is the Rayleigh damping matx= aM + BK, the contraction force vectd#: created by the
contractile element, a force vectBp corresponding to the pressures forces in the ventriclesaaimice
vectorFg corresponding to the other boundary conditions. The regulaw of motion is:

MY +CY +KY = Fpy + Fc + Fs (2)

with Y = (X1,¥1,21,...%,¥i,Z,... XN, YN, Zn) T the position vector andl the number of mesh vertices, and

(%,Vi,z) the position of thet" vertex,Y = %—T the velocity andy = %ZT\{ the acceleration.



LetX = (Y,Y)T. Then,X is the state vector of the following dynamical system:

{X = AX+R(U,0) 3)

X(0) = X

whereXg is the initial state vectof is the set of parameters of the model such as maximum coitityafcir
example and wherA (which depends of some parameters too) Rradte defined by:

~( Osnan I3n,3N _ Osn
A= < -M~lk —-mM-IC ) R= ( Fev +Fc+Fs > “)

Cardiac Phases. We simulate the four cardiac phases (filling, isovolumetoatraction, ejection and iso-
volumetric relaxation) as described it¥]. The arterial pressures were computed using a 3-elememd-Wi
kessel model described it6).

3 Mesh Creation and Model Initialisation

3.1 Mesh Creation

4D (3D + t) cine MRI provides time series of high resolutioraiges of the heart that describe in part or in
total one (averaged) cardiac cycle. A cine-MRI typicallysists in a sequence of 15-20 3D images for one
cycle. The high intensity contrast between myocardium amdncular blood pool allows a rough segmen-
tation of the blood pools based on the combination of threling and connected component extraction.
This segmentation is only used to demonstrate the pos&bibf the method, a discussion on the various
segmentation methods is out of the scope of this article. ZHgpresents these two connected components
for one image of the cardiac cycle. We need to build a comjmuntat mesh of the myocardium, adjusted to

(b)

Figure 2: (a) Mid-diastole image. (b) Segmented mesh witthsstic fibre directions. (c) Segmented blood
pools of one MR image of the cardiac cycle.

the MRI image corresponding to the beginning of our simalatiycle. The first instant of our simulation
cycle is the mid-diastole which corresponds to an instargrwiine ventricles are almost filled, just before
the atrial contraction (P wave). We select for this the mimstble image, using the volume curves, detailed
in the next paragraph. Then, the epicardium and left and vightricles endocardia were delineated on this
image using an interactive tool. These delineations géadnace binary masks of the epicardium and the
endocardia which are combined to obtain the binary maskeiftjiocardium used to create the mesh. This
is done with isosurface extraction and tetrahedral meskrgéion, using the INRIA software GHS3D

Lhttp://www.simulog.fr/mesh/gener2.htm
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We also need the local fibre orientation for this mesh. We gegaesynthetic fibre by linearly interpolating
the elevation angle between the fibre and the short axis pleome 8(° on the endocardium te-80° on the
epicardium. Fig2.b represents the obtained anatomical mesh with its syatfiete directions.

3.2 Model Initialisation
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Figure 3: Left (solid line) and right (dashed line) venteiglvolumes from MRI and electrical times.

Electrical Model. As cardiac MRI is ECG-gated, we know the heart rate and theisitign times of the

3D images related to the R-wave instant. This allows a firstlsonisation between the image sequence
and the simulation cycle. As the electrical information @ fully available, we need to extract additional
information from the images. As our action potential progié@n model only needs as inputs the time of
initialisation and the action potential duration, we egtraverage values from the volume curves. On these,
one can observe the time of atrial contraction, the time afriular contraction, and the time of ventricular
relaxation (see Fig3). One could introduce assynchrony between ventriclesemtiodel, if observed on
these curves.

Mechanical Model. The passive mechanical parameters used are taken frontetaulie. For the active
component, we can use the volume curves to compute theagjdriction, which is closely related to these
parameters, in order to initialise it. The rest positionted mechanical model is defined as the mid-diastole
mesh created.

4 Coupling Model and Data: Methodology

In this section, we describe a method for coupling a dynaiystesn, the electromechanical model of the
heart, and motion information from cine MRI. We start by dissing the choice of a metric to compare the
simulated and observed motion and then describe formadythblem at hand: having a dynamic system
that matches the available observations. Finally we shaw rtiotion tracking following a deformable
model approach is equivalent to a data assimilation fortrmavhere the error is minimised. This data
assimilation formulation is directly inspired from the rmetology of [7].

4.1 Metrics for comparing simulated and observed cardiac motion

Our objective is to minimize the discrepancy between thaikted cardiac motion and the actual one. One
of the major difficulty is that in cine-MRI (which is the mairywamic modality in clinical routine MRI),
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only the apparent motion is visible. We see how the boundasyes, but we loose information on the
tangential motion, which is important in the heart. We neegrbvide a metric to compare the model and
the data taking this into account.

Since at each image instant the binary segmentation of ¢t and left blood pools are available it is
reasonable to define the metric as the distance of the modetardial surfaces to the blood pool surfaces
as they should ideally match. Thus, for each pdfjrf one endocardium surface of the mesh, we find the
nearest point;® on the corresponding surface extracted in the MR image.ll\dee want the distance;
betweenY; andY® to be zero. This approach is illustrated in Fig(in green) in whichn; is the normal to
the blood pool surface at the poirit.

Actually, in this paper, we propose to use the reverse ngettlee distance of the blood pool voxels to the
mesh vertices as shown in Figy(in red). In this figureN; is the normal to the mesh at the po¥t Thus, for
each pointy; of one endocardium surface, we find the pO(TiH’Pg of the corresponding surface in the image
contour for which the nearest point of the heart mes¥j.isdeally, we want that the distanci betweern;
andY,"™ to be zero.

Figure 4: Distances; of the mesh to the blood pool (green) athabf the blood pool to the mesh (red).

Data interpolation. Due to limited temporal resolution, only few MR images araikable for a cardiac
cycle. The time step used in the estimation is far lower th@éogebetween two MR images and we need
informations at each time step. Rather than interpolatimegMR images, which would blur the contours,
we prefer to interpolate the image forces described in tlegipus paragraph and computed at the previous
and next images at each time step (sie# for details).

4.2 Deformable Model Approach

This approach is based on segmentation by deformable miodetich we minimise the sum of the energy
of the dynamic system representing the heart and the enemgsponding to images forces, which are
computed from contour images with distance maps for example

The definition of image forces are consistent with the meteicosen in the previous section. Namely, for
each mesh point;, we seek to find the closest pom'tmg along the normal directiol; of the mesh a¥;.
Since the blood pool surfaces are roughly segmented as/images, we comput\ﬁ'rng as the intersection
of the normal line a¥; with the isosurfacé(x,y,z) = 127.5 for binary masks set o= 255. This intersection
can be computed fairly efficiently and with a subvoxel accuraMore complex image forces involving
intensity profiles, image blocks or textures could be usasteed as shown ir8]. Here, we minimise the
following energy:

Eimg(Y,Y,Y'™) = ZlViHYi =Y ™l (5)
i=
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N; is the normal of the endocardium surface at the pginm is the number of points of the endocardium
surfaces (the pointg are indexed from 1 ton for more simplicity) andy; is the confidence in the measure
Yi'mg. When we differentiate this energy with respecltove obtain:

ag% = ZWNiNiT('Yi —Yiimg) = 2y|d(Z,Y|)N| (6)

Finally, this approach consists in adding the image forggd(2,Y;)N; to the vertexy; belonging to endo-
cardium surfaces. This is similar to the pro-active defdstaanodel described irLH].

4.3 Data assimilation approach

We will show in the following that this minimisation of engrgan be related to data assimilation approach.
The methodology of this data assimilation is directly imegifrom [7]. In this approach, two parts are
taken into account: the electromechanical model desctilyeithe equatior8 with its inputs which consist

in electrical command and different external loads, andavmlable observations. We assume that the
parameters of the model are known, unlike the initial posittonditionXg on which we make an error of
Ex (X(0) = Xo+&x).

A new dynamical system calledlate observer takes as inputs the electric command and the image data
and returns thestimated state, written asX which should converge to thteue state X. In classical data
assimilation approach, thabservation Z (measures) can be directly computed from the true atbanks

to anobservation operator H such thaZ = H X. Then, the observations computed from the estimate state
(Z = HX) are compared to the measured observatidsafid the differencéﬁ — Z) calledinnovation is
taken into account in the sate observer dynamics.

In our case, if we not& the blood pool surfaces, we no longer ha&e- H X since with cine MRI, we
cannot track any material points during a cardiac cycletelus, we can compare the two surfageandZ
through a distance map which can be formalizeHdX,Z) = 0. The observation operator is taken as the
gradient of the square distance between the two suHdee Z) = 0d?(Z,X) =0

The estimate stat® does not match perfectly with the observation, and theeetbe error between the
estimated state and the true state can be quantified iz, X) = 2d(Z,X)0d(Z, X). Note that1d?(Z, X)

is a vector of the same size Xsand its components are 0 if they correspond to the veldgity if they
correspond to points that are not on endocardium surfacespdints on the endocardiurmdz(Z,X) =
2d,0d; whered; = ||Y; — Y™||. Furthermore, by definition of a distance mapd; = N; whereN; is the
normal of the heart mesh at poi¥it Then, the built state observer is:

X(0) = %o %

{ X = AX+R(U6)+KyOd2(Z,X)
with Kq the gain associated with the data. We can see that with a hightbe estimated state will rely more
on image data information than in the electromechanicalghddonversely, with no gain, the observer do
not take into account the data and is equivalent to the el@eichanical model. Thus, the choice of the gain
Kg depends on the relative confidence in the model and the data.

Itis of high interest to analyse the error between the eséthatateX and the true stat¥ in order to choose
the gain. With a proper choice of the gain, the error shouldveaye towards zero. We write the error
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dynamics by subtracting the model (equat®)rirom the observer (equation:

§ (8)

{)‘( = AX+KgOd2(Z,X)
X(0) = &

After linearising the data and assuming that the estimatge % is close toX:

0d2(Z,X) = 0d?(Z,X) + Hg(X)(X = X) (9)
whereHd(X) a matrixn x nwheren is the size of the state vectdr. Its components corresponding to points
on endocardium surfaces are thex3 Hessian matrix of the squared distartteand are null otherwise.
Since the real stat¥ is supposed to coincide the apparent boundaries in the idadend?(Z,X) = 0.
The error dynamics is:

X = (A+KgHa)X
{>”<<0> & (10)

A result of the control theory shows that this error converge O if all eigenvalues ofA+ KqHqg) matrix
have negative real parts. This provides a criterion foraiglg the gain matrixy.

In practice, we choose the gaf@ in the same way as iV : K¢ = yM~tH] . Indeed, if we decompose the
error dynamics, we have:

MY +CY + (K +yHIHg)Y =0 (11)

Therefore with this choice dfy, the stiffness of the error dynamics is increased. It entail increase of
the frequency and the damping of the eigenmodes, and therafoetter convergence toward zero.

We use the Houbolt implicit scheme to integrate equafiorsince the image term is also made implicit,
the generalised stiffness matrix that is involved in the@dinsystem of equations should change at each
time step since matrixly depends on the position of endocardium vertigesHowever, modifying the
generalised stiffness matrix at each time step impliesdah@holesky decomposition or a preconditioning
must be performed at each iteration which is computatignadry expensive. Since the stiffness matix

is constant, we chose to estimate the te/hﬂ HaYi.qe numerically, by first computing the positiofy.

as if there were no image forces and then multiplying it vvit-rngHd. This proved to be a fairly efficient
approach since the preconditioning of the generalisetheti§ matrix is only done once which gives better
results than a semi-implicit scheme where image forcessimmated explicitly.

Finally, one should note tha{; is an eigenvector of the Hessian matrix of the distance anejith eigenvalue
1. Therefore, when using the gain matrixlas= yM*lHdT, the dynamic law of the state observer is given
as:

MY +CY +KY = Fpy + Fo + Fg -+ YH] 0d2(Z,X) = Fpy + Fe+ Fs + | 2yd(Z,Y)N; (12)

This corresponds exactly to the formulation we obtainedh Wit deformable model approach.



5 Results

5.1 Validation with synthetic data

In order to validate our state estimation method in a quatité way, we generated synthetic cine-MR
images using the electromechanical model with standargegalWe took 29 instants of the second simulated
cycle and we generated the corresponding segmented 3D $masjag rasterisation of the tetrahedra. As
we assume here that the model is known, all parameters of tuelnused in the state estimation are the
same than the ones used to generate the synthetic data.hEhmsly error is on the initial position. We can
then quantify the evolution of the mean position error irs idieal case.

Decrease of the mean position error (MPE). We observed, as expected, that the mean position error (MPE)
decreases with time, under the action of the state estimétter. Here, the gaily was set to 8. Fig.5.a
shows the evolution of the position error along three cardigcles. Fig.5.b shows the intensity of the
contraction forces and the intensity of the image forcesoftr endocardial vertex and along three cardiac
cycles. We can see that the image forces decrease rapidhe ifirst times of the first cycles and that the
images forces remain small compared to the intensity ofiphlforces such as the contraction forces. We
can see also that the image forces do not vanish exactly @0 Zhe decreasing of this MPE depends on the
spatial resolution of the images.
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Figure 5: (a) Mean position error for three different splatesolutions. Solid line: 1mf) dashed line
0.75mn?, dashed dot: Bmn?. (b) Intensity of the contraction (dashed line) and intsnef the image
force (solid line) for an endocardial vertex along threelegc (c) Left ventricle volumes curves from the
images (solid red), and for three different temporal resohs: complete sequence (30 images, dash dot
blue), 15 (dash magenta) and 5 (long dash dot cyan).

Effect of the spatial resolution of the MR images. We tested the influence of the spatial resolution of the
images on the method. The voxel sizes used in the synthetigémare respectively 1 nip0.75mn? and
0.5mme. We can verify that the MPE decreases if we increase theaspasolution of the images. As
the bounding box of the heart mesh used here is of 88 ntine percentage of MPE made are respectively
0.38%, 027%, and QL7%.

Effect of the temporal resolution of the MR images. We also tested the influence of the temporal resolution
of the images. For this we used real images (see details inseetion). The first one was a complete
cine-MRI sequence (30 images), the second and the thirdveaessubsamples of the cine-MRI sequence
(respectively 15 and 5 images). Figc shows that the left ventricle volume is better approxedan the
case of sequences with 30 or 15 images than in the case ofghersm of 5 images. Nevertheless, as the
contractility of the left ventricle was well calibrated,etfknowledge of the model allows us to obtain good
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information on the left ventricle volume curve, and to corigogood approximations of the ejection fraction.
The left ventricle ejection fractions obtained respedyifeom the complete segmented sequence, from the
estimations with complete MRI sequence, and with 15 and g@asaequences are respectively:2896,
59.34%, 5756% and 5@84%.

Cardiac Function Estimation.  Finally, in Fig.6, the physiological curves obtained from the state estinati
are compared with the ones given by the reference simulaflétvese physiological curves correspond to
the right and left ventricular pressures (F&a), volumes (Fig6.b) and flows (Fig6.c). In the isovolumic
phases, pressures are computed to counterbalance efteceslsuch as contraction forces and image forces
in the case of the estimation in order to keep the volume eohstVe can see that in these phases, and in
the ejection phases in which the pressures depend on floagginthe Windkessel model, the pressures are
well recovered. We can see also that after a small periodaltietinitial position error, the volumes and the
global evolution of the flow are well recovered. As flows are tterivative of volumes, errors on volumes
due to the oscillation of image forces are magnified.
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Figure 6: Comparison of: a) Left (red) and right (blue) vantlar pressures(in mmHg). (b) Left (red)
and right (blue) ventricular volumes (in mL) (c) Left (redhdaright (blue) flows (in mL/s) in the refer-
ence simulation (dashed curves) and in the estimationd(salives) with reference images of voxel size of
0.5mmn?.

5.2 Results with real data

In order to calibrate the electrical command of the heartcarapute the volumes curves from the segmented
image sequence (see Secti®d). Due to the limited field of view, we only see part of the riglantricle

in the MR images. Futhermore, the right ventricle blood plba$ a grey level which varies along the
cardiac cycle in cine MR images, thus the thresholding natbable. Finally the trabeculae make the right
ventricle segmentation difficult. For all these reasonshaxee an important difference in volume between
the two ventricles, as shown on FR).A more advanced segmentation method could overcome mtistsd
difficulties, but this is out of the scope of this article. Dtoghis possible error on the right ventricle volume,
we use only the left ventricle volume curve to calibrate thabgl contractility (the maximum contractility
constant for all the volumetric mesh) in order to obtain tjgeton fraction computed from the left ventricle
volume curve.

Several estimations were made with different values of #iegin order to see the effect of the gain on the
state estimation. Fig..) shows the MRI segmentation at a titef the cardiac cycle. The superimposed
lines represents the endocardium and epicardium surféte®s beart meshes obtained with different values
of y. The higher value of the gain gives more confidence in thettiatain the model, then the image forces
are bigger in this case as we see in Figb. and7.c. We can see that the left ventricle is well tracked in
the two cases, while the right ventricle is better trackedhim case of the higher gain. It shows that the
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Figure 7: a) Delineation of two estimated heart meshes avendimet; during the contraction. These
delineation are superimposed to the short axis view of tiggnsatation. The cyan and red mesh were
obtained respectively with a gajnequal to 08 and 02. b) and c): 3D view of the estimated heart meshes
with a gain of 08 (b) and a gain of @ (c) at the same timg. Colours correspond to the intensity of the
image forces (in MPa.mnf?).

contractility parameter in the right ventricle does nota&dhe one in the left ventricle, which we calibrated
with the left volume curve obtained from the cine-MRI. Thitsllows to detect differences in parameters,
which can lead to parameter estimation.

In order to qualitatively evaluate the estimated motion,used tagged MRI on the same subject to extract
the real cardiac motion. Tagged MRI analysis is still a @drake, due to the low image quality of this
modality. In this case, we used a non-rigid image registnatilgorithm (the diffeomorphic demons) to
extract the motion from the image sequence. The qualitativeparison is promising, as we can observe
similar motion patterns. The estimated motion is much simerotiue to the influence of the model. We
are currently validating the motion extraction method fog tagged MRI and working on more quantitative
comparison with the estimated motion.
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Figure 8: (a) End-diastolic motion extracted from tagged MRges of the same subject. (b) End-diastolic
motion estimated with the presented method.

6 Conclusion

Coupling electromechanical models of the heart with chhdata in order to help diagnosis and therapy
planning is still very challenging. This article preserte link between deformable models and data as-
similation in order to estimate cardiac motion from cine-MRhe proposed method allows to keep the
low computational cost of deformable models while usinggmurous mathematical framework. Motion
recovery is demonstrated on synthetic and real data. Theseiging preliminary results will be extended
in order to also introduce parameter estimation.
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Abstract

We present a framework for cardiac motion recovery usingattiigstment of an electromechanical
model of the heart to cine Magnetic Resonance Images (MRI¥ dpproach is based on a constrained
minimisation of an energy coupling the model and the data. @ethod can be seen as a data assimi-
lation of a dynamic system that allows us to weight apprdelyathe confidence in the model and the
confidence in the data. After a short overview of the eleceohanical model of the ventricles, we de-
scribe the processing of cine MR images and the methodolmgyétion recovery. Then, we compare
this method to the methodology used in data assimilatioeséted results on motion recovery from
given cine-MRI are very promising. In particular, we shovattlour coupling approach allows us to
recover some tangential component of the ventricles matibith cannot be obtained from classical
geometrical tracking approaches due to the aperture proble

1 Introduction

The modelling of the heart’'s electromechanical activityais active research are§, [9, 1, 13, 4]. The
simulation of the heart has received growing attention dughé importance of cardiovascular diseases in
industrialised nations and to the high complexity of thedias function.

In order to help the clinical practice of cardiologists, stimportant however that those models not only
describe with some degree of realism the cardiac functiomlso be patient specific. Creating such person-
alised cardiac models implies that the anatomy of the paisetaken into account but also that the model
parameters are tailored such that the simulated cardiacomatatches well with the observed cardiac
motion. This represents a great challenge due to the imrptsysiological complexity of the underlying
phenomena which combine tissue mechanics, fluid dynamesrephysiology, energetic metabolism and
cardiovascular regulation. Also only partial informatioan be derived from clinical data for a specific
patient making the parameter estimation an ill-posed probl

The objective of this paper is to propose a methodology tinas at creating personalised electromechanical
model of the heart from cine MR images. Previous wd@kl[0, 8, 12] on the adjustment of a geometrical

model of the heart on time series of medical images are mbaadgd on the concept of deformable models.
In such a framework, a surface or volumetric mesh is fittedht apparent boundaries of the heart by



minimising the sum of two energies: an image term and a reging or internal term. In such approaches,
the model can be considered agatic system evolving under the minimization of an energy.

Conversely, electromechanical models of the heartginamic systems that evolve even in the absence of
any image term. Adjusting such dynamic systems to time sariedata (a method also known as "data
assimilation”) is fundamentally different from adjustiagstatic system since the parameters of the dynamic
system are additional degrees of freedom that should bmasti. In the medical imaging community,
P.C Shi and his group introduced data assimilation teclasiday integrating cardiac models and Kalman
filters for state and parameter estimation, see for instib@leand [18]. However, such techniques, such as
extended or unscented Kalman filtering, are often limitedh®ycurse of dimensionality since they involve
full covariance matrices whose size are equal to the squaremumber of state variables augmented by
the number of parameters to estimate. In the case of climipplications, as cardiac electromechanical
models are already complex dynamic systems with changingdery conditions (cardiac phases), having
a computationnally efficient estimation method is crucial.

In this paper, we propose an efficient method to estimate tite §.e. the position and velocity) of an
electromechanical model from cine MR images which is irepiirom the deformable model framework
used in medical image analysis. The goal of this paper is twwshe formal equivalence between this
approach and a filtering method introduced by Moireau e7alged in data assimilation, which is different
from Kalman-like filters such as the one used 118][ The filtering approach proposed i@][does not
involve any matrix inversion (except the mass matrix whigl idiagonal constant matrix), so that it allows
much faster computations: the motion of a whole cardiacecgnla mesh with 50 000 tetrahedral elements is
estimated in about 10 minutes on a regular PC. This incrdaggsly its potential future clinical application.
The theoretical efficiency of this filter for mechanical st has been demonstratedh [The theoretical
equivalence between the deformable model approach prdguse and this filtering approach leads to a
better understanding of the trade-off between the elecobranical model and the image data.

We assume in this paper that model parameters are well kniavangler to focus only on state estimation.

Some preliminary results on parameter estimation are pteddn conclusion, but this is not the goal of

this paper. The proposed approach is first validated on syinthme series of images and then applied to
clinical cine MR images of a human heatrt.

2 Electromechanical model

We consider in this paper a fairly reduced electromechamuadel since we want the complexity of the
model to match the relatively sparse measures availabhe firtaging data. Furthermore, this coarse level
of modeling allows us to simulate a whole cardiac cycle on amwéth 50 000 tetrahedral elements in about
5 minutes on a regular PC. Of course, the heart is a nonlingéeral undergoing large strain. Thus, the
assumptions of our simplified model are not realistic, batglobal behavior of the heart is well represented.
Furthermore, the limited computational time makes theresion of the mechanical state and parameters
tractable and allows us to test the behaviour of the modekdasof heart beats.

2.1 Anatomy Description

The two ventricles are represented as a tetrahedral voiimmeésh including some anatomical information
such as the myocardium geometry, the definition of somecaliranatomical regions (the American Heart
Association regions), and the local orientation of fibrese ¥8n build such a mesh from MR images, as
explained below in sectioB.1. The local fibre orientation can be either created from basiatomical
assumptions (elevation angle across the wall) or extrdoteal Diffusion Tensor MRI (DT-MRI) L1].
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2.2 Simulation of the cardiac electrophysiology

Several electrophysiological models have been proposéukifiterature. Due to its efficiency, we use an
Eikonal approach for the electrophysiology propagatioih & volumetric implementation of the algorithm
described in 15]. The depolarisation timé&; of the electrical wave for a given vertex of the volumet-
ric mesh is computed by solving the anisotropic Eikonal ¢éiqua/?(0t] DOtg) = 1, wherev is the local
conduction velocity parameter aftlis the tensor defining the conduction anisotropy. In the fdwerdi-
natesD = diag(1,p,p), wherep is the conduction anisotropy ratio between longitudinal &ransverse
directions. An anisotropic multi-front fast marching afigom was developed in order to solve this model
very efficiently.

2.3 Simulation of the myocardium contraction

The biomechanical model presented here is derived from é-suidle modelling of the myocardium de-
tailed in [2]. The mechanical model is composed of two elements, as slowkig. 1.a. The former is a
parallel element which represents the passive properfifseaissue. This parallel element is anisotropic
linear visco-elastic. The second element is an active aotilie element controlled by the electrophysiol-
ogy. More precisely, when the action potential is highenthagiven threshold (i.e. when we reach the
depolarisation timéy), some calcium stored in the sarcoplasmic reticulum intheecardiac cells is used
for the ATP hydrolysis which provides energy to the molecutetors in the sarcomeres, generating the
contraction of the fibre. The duration of this depolarisaiti®the action potential duration (APD). The elec-
trical commandu is then set to a constakirp which represents the rate of the hydrolysis of the ATP. After
contraction, during the repolarisation, calcium moveskhato the sarcoplasmic reticulum and this calcium
decrease allows the relaxation of the muscle. The elettrimamandu is then set to another constankrs
which represents the activity of the sarcoplasmic reticulu

Thus, the contractile element is controlled by its corresfilag commandi through the differential equa-
tion: oc + |uloc = |u|; 00 Whereaog is the strength of the contraction, aog the maximum contraction.
Then, with its associated commandiescribed above, the strength of the contraction for eachahtedron
element is:

0o (1— e« during depolarisation ty <t < t;

ac(t) = { oc(ty ) eesti—t) during repolarisation t, <t <ty+HP (1)

wheret, =ty + APD is the repolarisation time andP the heart period. The commamdand the intensity
of the resulting contraction are represented on Eilg. Then, the active contractile element creates a stress
tensoroc f @ f wheref is the 3D fibre orientation and the dyadic product. For each vertex of each element,

, _ .1 L _
this results in a 3D force vectdg = 2 Js(ocf ® f)AdSwith fi the surface normal arithe element surface.

Finally, we represent the simplified dynamic law by a stiffmenatrixK for the transverse anisotropic
elastic part (parallel element), a diagonal mass maifrand a damping matri for the internal viscosity
part, which is the Rayleigh damping mat@x= aM + K, the contraction force vectdt: created by the
contractile elements, a force vectigs corresponding to the pressure forces in the ventricles afwica
vectorFg corresponding to other boundary conditions. The resultmgof motion is:

MY +CY +KY = Fpy + Fc + Fg 2)

with Y = (X1,Y1,21,...%,¥i,Z,... X\, YN, Zn) T the position vectorN the number of mesh vertice&s, i, z)
the position of thé®" vertex,Y = 9 the velocity,Y = &Y the acceleration an: = (fg,.... fg,... fg,) the
assembled contraction force.
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Figure 1: (a) Simplified biomechanical model. (b) Electricammand and intensity of contraction.

LetX = (Y,Y)T. Then,X is the state vector of the following dynamical system:

{x = AX+R(U,0)
X(0) = Xo

whereXg is the initial state vectof is the set of parameters of the model such as maximum coiityaicir
example and wherA (which depends of some parameters too) Rradte defined by:

[ Osnan I3n,3N _ Osn
A= < Mk —MIC ) R= < Fev + Fc+Fg > (4)

We simulate the four cardiac phases (filling, isovolumetdntraction, ejection and isovolumetric relax-
ation) as described inlfl]. The arterial pressures were computed using a 3-elementkssel model
described in17].

3)

3 Mesh Creation and Model Initialisation

3.1 Mesh Creation

4D (3D +t) cine MRI provides time series of high resolutionaiges of the heart that describe in part or
in total one (averaged) cardiac cycle. A cine-MRI typicatiynsists in a sequence of 15 to 20 3D images
for one cycle. The high intensity contrast between myocendand ventricular blood pool allows a rough

segmentation of the blood pools based on the combinatiohreholding and connected component ex-
traction. This segmentation is only used to demonstrateptissibilities of the method, a discussion on
the various segmentation methods is out of the scope of ttiédea Fig. 2.c presents these two connected
components for one image of the cardiac cycle. We need td buibmputational mesh of the myocardium,

(b) (©

Figure 2: (a) Mid-diastole image. (b) Segmented mesh wittthstic fibre directions. (¢) Segmented blood
pools of one MR image of the cardiac cycle.



3.2 Model Initialisation 5

adjusted to the MRI image corresponding to the beginninguofsomulation cycle. The first instant of our
simulation cycle is the mid-diastole which correspondsrtanstant when the ventricles are almost filled,
just before the atrial contraction (P wave). We select fas the mid-diastole image, using the volume
curves, detailed in the next paragraph. Then, the epicareind left and right ventricles endocardia were
delineated on this image using an interactive tool. Thedieaddions generate three binary masks of the
epicardium and the endocardia which are combined to obterbinary mask of the myocardium used to
create the mesh. This is done with isosurface extractiontetnrahedral mesh generation, using the INRIA
software GHS3D (http://www.simulog.fr/mesh/gener2 Jitm

We also need the local fibre orientation for this mesh. We geaesynthetic fibre by linearly interpolating
the elevation angle between the fibre and the short axis pleome 8(° on the endocardium te-80° on the
epicardium. Fig2.b represents the obtained anatomical mesh with its syatfiete directions.

3.2 Model Initialisation

g & E
i

volumes(mL)

P wave
R wave

04
times(s)

Figure 3: Left (solid line) and right (dashed line) venteiclolumes from MRI.

Electrical Model: As cardiac MRI is ECG-gated, we know the heart rate (here datiperiod is B s)
and the acquisition times of the 3D images related to the Rewsstant. This allows a first synchronisation
between the image sequence and the simulation cycle. Adabiieal information is not fully available,
we need to extract additional information from the imagese b the limited field of view, we only see part
of the right ventricle in the MR images. Futhermore, the tigéntricle blood pool has a grey level which
varies along the cardiac cycle in cine MR images, thus tlalégig is not reliable. Finally the trabeculae
make the right ventricle segmentation difficult. For allsbeeasons, we have an important difference in
volume between the two ventricles, as shown in Bg.A more advanced segmentation method could
overcome most of these difficulties, but this is out of thepscof this article. As our action potential
propagation model only needs as inputs the time of the lisiiton of the electrical wave and the action
potential duration for each element, we extract averagaegafrom the volume curves. On these, one can
observe the times of the beginning of the atrial contractiowave), of the ventricular contraction (R wave),
and of the ventricular relaxation (T wave) independentlydach ventricle (see Fi@). These times were
set respectively t0.0827 s, 0125 s, 0425 s. Then, we set the average value of the APD to the differen
between the times of the beginning of the ventricular catitva and relaxation. Thus, for each vertex, APD
is equal to 300 ms.

Mechanical Model: The passive mechanical parameters used are taken frontetetdre L6]. For the
active component, we can use the volume curves to compuggdbigon fraction, which is closely related to
these parameters, in order to initialise it. However, duhégpossible error on the right ventricle volume, we
use only the left ventricle volume curve to calibrate thebgllocontractility (the maximum contractilitgg
constant for all the volumetric mesh) in order to obtain thene ejection fraction as the one computed
from the left ventricle volume curve. For our data was set to @73 MPa/mm. The rest position of the
mechanical model is defined as the mid-diastole mesh created



4 Coupling Model and Data: Methodology

In this section, we describe a method for coupling a dynaiyétesn, the electromechanical model of the
heart, and motion information from cine MRI. We start by dissing the choice of a metric to compare the
simulated and observed motion and then describe formadlythblem at hand: having a dynamic system
that matches the available observations. Finally we shaw rtiotion tracking following a deformable
model approach is equivalent to a data assimilation fortrmlavhere the error is minimised. This data
assimilation formulation is directly inspired from the rmetlology of [7].

4.1 Metrics for comparing simulated and observed cardiac motion

Our objective is to minimize the discrepancy between thaikited cardiac motion and the actual one. One
of the major difficulty is that in cine-MRI (which is the mairyamic modality in clinical routine MRI),
only the apparent motion is visible. We see how the boundasye®, but we loose information on the
tangential motion, which is important in the heart. We neegdrbvide a metric to compare the model and
the data taking this into account.

Since at each image instant the binary segmentation of g and left blood pools are available it is
reasonable to define the metric as the distance of the modetardial surfaces to the blood pool surfaces
as they should ideally match. Thus, for each pdfjraf one endocardium surface of the mesh, we find the
nearest point;® on the corresponding surface extracted in the MR image.ll\de@ want the distance;
betweenY; andY° to be zero. This approach is illustrated in Fig(in green) in whichri; is the normal to
the blood pool surface at the poirit.

Howewer, the distance maps must be either precomputedg@st@osts) or computed during the estimation
(computationnal costs). Thus, in this paper, we proposestothe reverse metrics: the distance of the
blood pool voxels to the mesh vertices as shown in Eign red). In this figureN; is the normal to the
mesh at the poin¥;. Thus, for each poin¥; of one endocardium surface, we find the pO’(ﬁf‘g of the
corresponding surface in the image contour for which theestgoint of the heart mesh¥s Ideally, we
want the distance; betweer; andY;"™ to be zero.

Figure 4: Distances; of the mesh to the blood pool (green) athabf the blood pool to the mesh (red).

Data interpolation: Due to limited temporal resolution, only a few MR images arailable for a cardiac
cycle. The time step used in the estimation is far smallen tih@ period between two MR images and
we need information at each time step. Rather than intetipgldhe MR images, which would blur the
contours, we prefer to interpolate the image forces desdrib the previous paragraph and computed at the
previous and next images at each time step ($df¢r details).

4.2 Deformable Model Approach

This approach is based on segmentation by deformable miodetich we minimise the sum of the energy
of the dynamic system representing the heart and the enemggsponding to images forces, which are
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computed from contour images with distance maps for examplee introduction of the model in the
minimised energy allows us to recover some movement whinhatebe obtained from classical geometrical
tracking approaches. Of course, the image forces have nsigdbgical meaning, but if we couple the
model and the data and if we estimate the model parametelish(usthe next step of this work), the
motion generated by the model should converge to the onenaubén the images. Thus, the intensity
of image forces should decrease along the estimation anestirmated motion should be more and more
physiological.

The definition of image forces are consistent with the meteicosen in the previous section. Namely, for
each mesh point;, we seek the closest poi]ﬁifmg along the normal directiolﬂli of the mesh a¥,. Since
the blood pool surfaces are roughly segmented as binaryas)age computée(i'mg as the intersection of the
normal line aty; with the isosurface(x,y,z) = 127.5 for binary masks set tb= 255. This intersection can
be computed fairly efficiently and with a subvoxel accurddgre complex image forces involving intensity
profiles, image blocks or textures could be used instead@grsm [3]. Here, we minimise the following
energy:

Eimg(Y,Y,Y'™) = ZinYi =Xl (5)
i=

whereN; is the normal of the endocardium surface at the p%inm is the number of points of the endo-
cardium surfaces (the poin¥ are indexed from 1 ton for more simplicity) andy; is the confidence in the
measure(i'mg. When we differentiate this energy with respeclrtove obtain:

T | T -¥™) | = | 2vdz o ©

Finally, this approach consists in adding the image forags(2,Y,)N; to the vertexY; belonging to endo-
cardium surfaces. This is similar to the pro-active defdsteanodel described irlH].

4.3 Data assimilation approach

We will show in the following that this minimisation of engrgan be related to a data assimilation approach.
The methodology of this data assimilation is directly imsgifrom [7]. In this approach, two parts are taken
into account: the electromechanical model described byatimu3 with inputs consisting in the electrical
command and different external loads, and the availablergagons. We assume that the parameters of the
model are known, unlike the initial position conditiap on which we make an error @k (X(0) = Xp+&x).

A new dynamical system callesiate observer takes as inputs the electrical command and the image data
and returns thestimated state, written asX which should converge to theue state X. In classical data
assimilation approach, thabservation Z (measures) can be directly computed from the true 3tatbanks

to anobservation operator H such thatz = H X. Then, the observations computed from the estimate
state Z = HX) are compared to the measured observati@sd the differencéZ — Z) calledinnovation

is taken into account in the sate observer dynamics.

In our case, if we not& the blood pool surfaces, we no longer hae=- H X since with cine MRI, we
cannot track any material points during a cardiac cycletebud, we can compare the two surfadeandZ
through a distance map which can be formalizedH&X,Z) = 0. The observation operator is taken as the
gradient of the square distance between the two surld¢¥sZ) = 0d%(Z,X) =0
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The estimated staté does not match perfectly with the observation, and theeefbe error between the
estimated state and the true state can be quantifiedisiftiz, X) = 2d(z,X)0d(Z, X). Note that1d?(Z, X)
is a vector of the same size ¥sand its velocity components and its components which cpoms to
points that are not on endocardium surfaces are 0. For pomthe endocardludez(Z X) = 20;0d;
whered; = ||Y; — Y'mgH Furthermore, by definition of a distance maji; = N; whereN; is the normal of
the heart mesh at poiit. Then, the built state observer is:
X = AX+R(u,6)+KqOd*(Z,X) @
X(0) = Xo
with Kq the gain associated with the data. We can see that with a highthe estimated state will rely more
on image data information than in the electromechanicalehddonversely, with no gain, the observer do
not take into account the data and is equivalent to the elmetchanical model. Thus, the choice of the
gainKy depends on the relative confidence in the model and the data.

Itis of high interest to analyse the error between the egéthatateX and the true stat¥ in order to choose
the gain. With a proper choice of the gain, the error shouldveaye towards zero. We write the error
dynamics by subtracting the model (equat®)rfrom the observer (equation:
{ X = AR+KeOP(Z,X)
X(0) = &
After linearising the data and assuming that the estimate is close toX:

(8)

0d?(Z,X) = 0d*(Z,X) + Hg(X)(X = X) (9)

whereHd(X) a matrixn x nwheren s the size of the state vect¥r Its components corresponding to points
on endocardium surfaces are the 3 Hessian matrix of the squared distadcand are null otherwise. Since
the real stateX is supposed to coincide with the position and the movemettiefipparent boundaries in
the imagez, thenJd?(Z, X) = 0. The error dynamics is:

{ X = (A+KgHg)X
X(0) = &

A result of the control theory shows that this error converge 0 if all eigenvalues ofA+ KgHg) matrix
have negative real parts. This provides a criterion forcelg the gain matrixy.

(10)

In practice, we choose the gatfy as in [7] : Kg = yM~tH]. Indeed, if we decompose the error dynamics,
we have:

MY +CY + (K +yHIHq)Y = 0 (11)

Therefore with this choice dfy, the stiffness of the error dynamics is increased. It ingplia increase of
the frequency and the damping of the eigenmodes, and therafbetter convergence toward zero. Here
we see the difference between this filtering method and Kralfittering methods such as the one proposed
in [18]. The gainKy is not the Kalman gain, so that the result of the filter is net dptimal result in a
stochastic way, buty is chosen in order to ensure the convergence of the &rtoward zero. Although we
do not ensure an optimal result, we avoid to compute the sevef a combination of covariance matrices,
thus leading to a much faster filter than the Kalman approach.

We use the Houbolt implicit scheme to integrate equafiorsince the image term is also made implicit,
the generalised stiffness matrix that is involved in thedinsystem of equations should change at each
time step since the matridg depends on the position of endocardium vertiéesHowever, modifying the
generalised stiffness matrix at each time step impliesdah@holesky decomposition or a preconditioning
must be performed at each iteration which is computatignedty expensive. Since the stiffness matfixs



constant, we chose to estimate the teyhﬁ HqaYiiqt numerically, by first computing the positiofy, g as if
there were no image forces and then multiplying it\,bgg Hg. This proved to be a fairly efficient approach
since the preconditioning of the generalised stiffnesgimastonly done once. This also gives better results
than a semi-implicit scheme where image forces are estareaplicitly.

Finally, one should note tha; is an eigenvector of the Hessian matrix of the distance dhayith eigen-
value 1. Therefore, when using the gain matriXxas= yM‘lHdT, the dynamic law of the state observer is
given by :

MY +CY +KY = Fpy + Fo + Fg -+ YH] 0d2(Z,X) = Fpy + Fe+ Fs + | 2yd(Z,Y))Ni (12)

This corresponds exactly to the formulation we obtainedhwit deformable model approach.

5 Results

5.1 Validation with synthetic data

In order to validate our state estimation method in a quatinté way, we generated synthetic cine-MR
images using the electromechanical model with standargegalMe took 29 instants of the second simulated
cycle and we generated the corresponding segmented 3D smasgjag rasterisation of the tetrahedra. As
we assume here that the model is known, all parameters of tielnused in the state estimation are the
same than the ones used to generate the synthetic data.hEhusly error is on the initial position. We can
then quantify the evolution of the mean position error irs idieal case.

State error analysis: We observed, as expected, that the root mean squared eMBHERdecreases with
time, under the action of the state estimation filter. Hehne, gainy was set to 8. Fig. 5.a shows the
evolution of the position error along three cardiac cyclégy. 5.b shows the intensity of the contraction
forces and the intensity of the image forces for one endaalavdrtex and along three cardiac cycles. We
can see that the image forces decrease rapidly in the firestofithe first cycles and that the images forces
remain small compared to the intensity of physical forceshsas the contraction forces. We can see also
that the image forces do not vanish exactly to zero. The dsirg of this RMSE depends on the spatial
resolution of the images.

first cycle second cycle third cycle

RMSE(mm)
volumes(mL)

s s AR
tmes(s) . mes © time(s)

(@) (b) ()

Figure 5: (a) Root mean squared error for three differentigpeesolutions. Solid line: 1 mm, dashed
line 0.75mm, dash-dot: .6mm (in all three directions). (b) Intensity of the contrantforce (dashed
line) and intensity of the image force (solid line) for an eodrdial vertex along three cycles. (c) Left
ventricle volume curves from the images (solid red), andHtioee different temporal resolutions: complete
sequence (30 images, dash-dot blue), 15 (dash magenta)(kmd) slash-dot cyan).
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Effect of the spatial resolution of the MR images: The voxel sizes used in the synthetic images are respec-
tively 1mm, Q75mm and G mm in all three directions. The RMSE decreases if we iner¢hs spatial
resolution of the images and seems to converge to valueswahécsmaller than the spatial resolution of the
images and which should correspond to numerical approlamairors (see Figh.a).

Effect of the temporal resolution of the MR images: For this we used real images (see details in next sec-
tion). The first one was a complete cine-MRI sequence (30 @sladhe second and the third ones were
subsamples of the cine-MRI sequence (respectively 15 amh§és). Fig5.c shows that the left ventri-
cle volume is better approximated in the case of sequendis3®ior 15 images than in the case of the
sequence of 5 images. Nevertheless, as the contractilityedeft ventricle was well calibrated, the knowl-
edge of the model allows us to obtain good information on dfievientricle volume curve, and to compute
good approximations of the ejection fraction. The left viete ejection fractions obtained respectively from
the complete segmented sequence, from the estimationentiplete MRI sequence, and with 15 and 5
images sequences are respectively26%, 5934%, 5756% and 5B4%.

Cardiac Function Estimation: ~ Finally, in Fig.6, the physiological curves obtained from the state estinati
are compared with the ones given by the reference simulafldvese physiological curves correspond to
the right and left ventricular pressures (F&a), volumes (Fig6.b) and flows (Fig6.c). In the isovolumic
phases, pressures are computed to counterbalance eftecealsuch as contraction forces and image forces
in the case of the estimation in order to keep the volume eohstVe can see that in these phases, and in
the ejection phases in which the pressures depend on floaugginthe Windkessel model, the pressures are
well recovered. We can see also that after a small periodaltietinitial position error, the volumes and the
global evolution of the flow are well recovered. As flows are tterivative of volumes, errors on volumes
due to the oscillation of image forces are magnified.

S(mmHg)

flow(mL/s)

4.8.8.8. 8.8 2.8

di | os | os
time(s) time(s) time(s)

(a) Pressures (b) Volumes (c) Flows

Figure 6: Comparison of: a) Left (red) and right (blue) vantlar pressures(in mmHg). (b) Left (red)
and right (blue) ventricular volumes (in mL) (c) Left (red)daright (blue) flows (in mL/s) in the reference
simulation (dashed curves) and in the estimation (solideg)rwith reference images of voxel size df thm

in all three directions.

5.2 Results with clinical data

Several estimations were made with different values of #iegin order to see the effect of the gain on the
state estimation. Fig.shows the MRI segmentation at a titnef the cardiac cycle. The superimposed lines
represents the endocardium and epicardium surfaces ofderd meshes obtained with different valuey.of
The higher value of the gain gives more confidence in the dhaba in the model, then the image forces are
larger in this case as we see in Figd and7.c. We can see that the left ventricle is well tracked in the tw
cases, while the right ventricle is better tracked in theeag#fghe higher gain. It shows that the contractility
parameter in the right ventricle does not equal the one imgt@entricle, which we calibrated with the left
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(b) (©

Figure 7: a) Delineation of two estimated heart meshes avendimet; during the contraction. These
delineation are superimposed to the short axis view of tiggnsatation. The cyan and red mesh were
obtained respectively with a gainequal to 08 and 02. b) and c): 3D view of the estimated heart meshes
with a gain of 08 (b) and a gain of @ (c) at the same timg. Colours correspond to the intensity of the
image forces (in MPa.mn?).

volume curve obtained from the cine-MRI. Thus, it allows aisi¢tect differences in parameters, which can
lead to parameter estimation.

In order to qualitatively evaluate the estimated motion,used tagged MRI on the same subject to extract
the projection of the 3D real cardiac motion in a number ofrslais view (Fig. 8.a). The qualitative
comparison with the projection of the 3D estimated motioig.(B.b) is promising, as we observe similar
motion patterns. The estimated motion is much smootheralthetinfluence of the model. We are working
on a more quantitative comparison with the estimated motion

Regalzat’s \\;\ N

B

@ (b)

Figure 8: Projection on a short axis view of the 3D end-di&stnotion respectively extracted from tagged
MR images (a) and estimated from cine-MRI with the presenmethod (b). (same subject)

6 Conclusion

Coupling electromechanical models of the heart with clihidata in order to help diagnosis and therapy
planning is still very challenging. This article presertte link between deformable models and data as-
similation in order to estimate cardiac motion from cine-MRhe proposed method allows to keep the
low computational cost of deformable models while usinggmurous mathematical framework. Motion
recovery is demonstrated on synthetic and real data. Theseiging preliminary results will be extended
in order to perform parameter estimation, which is the uiiengoal of the approach.
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