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Abstract

We present a framework for cardiac motion recovery using theadjustment of an electromechanical
model of the heart to cine Magnetic Resonance Images (MRI). This approach is based on a constrained
minimisation of an energy coupling the model and the data. Our method can be seen as a data assimi-
lation of a dynamic system that allows us to weight appropriately the confidence in the model and the
confidence in the data. After a short overview of the electromechanical model of the ventricles, we de-
scribe the processing of cine MR images and the methodology for motion recovery. Then, we compare
this method to the methodology used in data assimilation. Presented results on motion recovery from
given cine-MRI are very promising. In particular, we show that our coupling approach allows us to
recover some tangential component of the ventricles motionwhich cannot be obtained from classical
geometrical tracking approaches due to the aperture problem.

1 Introduction

The modelling of the heart electromechanical activity is anactive research area [5, 9, 1, 13, 4]. The sim-
ulation of the heart has received a growing attention due to the importance of cardiovascular diseases in
industrialised nations and to the high complexity of the cardiac function.

In order to help the clinical practice of cardiologists, it is important however that those models not only
describe with some degree of realism the cardiac function but also be patient specific. Creating such person-
alised cardiac models implies that the anatomy of the patient is taken into account but also that the model
parameters are tailored such that the simulated cardiac motion matches well with the observed cardiac
motion. This represents a great challenge due to the intrinsic physiological complexity of the underlying
phenomena which combine tissue mechanics, fluid dynamics, electrophysiology, energetic metabolism and
cardiovascular regulation. Also only partial informationcan be derived from clinical data for a specific
patient making the parameter estimation an ill-posed problem.

The objective of this paper is to propose a methodology that aims at creating personalised electromechanical
model of the heart from cine MR images. Previous work [6, 10, 8, 12] on the adjustment of a geometrical
model of the heart on time series of medical images are mainlybased on the concept of deformable models.
In such framework, a surface or volumetric mesh is fit on the apparent boundaries of the heart by minimising
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the sum of two energies: an image term and a regularising or internal term. In such approaches, the model
can be assimilated as astatic system evolving under the minimization of an energy.

Conversely, electromechanical models of the heart aredynamic systems that evolve even in the absence of
any image term. Adjusting such dynamic systems to time series of image data is fundamentally different than
adjusting a static system since the parameters of the dynamic system are additional degrees of freedom that
should be estimated. The data assimilation techniques consisting in adjusting model parameters from image
data [17], such as extended or unscented Kalman filtering are often prone to the curse of dimensionality
since they involves full covariance matrices whose size areequal to the number of parameters augmented
with the number of state variables.

In this paper, we propose a method to estimate the state (i.e. the position and velocity) of an electromechan-
ical model from cine MR images which is inspired from the deformable model framework used in medical
image analysis. We show the formal equivalence between thisapproach and a filtering method [7] used in
data assimilation. This theoretical equivalence leads to abetter understanding of the trade-off between the
electromechanical model and the image data. The proposed approach is validated on synthetic time series
of images and is applied on cine MR images.

2 Electromechanical model

We consider in this paper a fairly reduced electromechanical model since we want the complexity of the
model to match the relatively sparse measures available from imaging data. Furthermore, this coarse level
of modeling allows us to simulate a whole cardiac cycle on a mesh with 50 000 tetrahedral elements in about
5 minutes on a regular PC. This limited computational time makes the estimation of the mechanical state
and parameters tractable and allows us to test the behaviourof the model on series of heart beats.

2.1 Anatomy Description

The two ventricles are represented as a tetrahedral volumetric mesh including some anatomical information
such as the myocardium geometry, the definition of some clinical anatomical regions (the American Heart
Association regions), and the local orientation of fibres. We can build such a mesh from MR images, as
explained below in section3.1. The local fibre orientation can be either created from basicanatomical
assumptions (elevation angle across the wall) or extractedfrom Diffusion Tensor MRI (DT-MRI) [11].

2.2 Simulation of the cardiac electrophysiology

Several electrophysiological models have been proposed inthe literature. Due to its efficiency, we use an
Eikonal approach for the electrophysiology propagation, with a volumetric implementation of the algorithm
described in [15]. The depolarisation timeTd of the electrical wave for a given vertex of the volumetric mesh
is computed by solving the anisotropic Eikonal equationv2(∇T T

d D∇Td) = 1, wherev is the local conduction
velocity parameter andD is the tensor defining the conduction anisotropy. In the fibrecoordinates,D =
diag(1,ρ,ρ), whereρ is the conduction anisotropy ratio between longitudinal and transverse directions. An
anisotropic multi-front fast marching algorithm was developed in order to solve this model very efficiently.



2.3 Simulation of the myocardium contraction 3

Active contractile

Element

Passive Element

u

(a)

kAT P

−kRS

t

σ0

u(t)

1

kAT P

σc(t)

kRS

Td Tr

(b)

Figure 1: (a) Simplified biomechanical model. (b) Electrical command and intensity of contraction.

2.3 Simulation of the myocardium contraction

The biomechanical model presented here is derived from a multi-scale modelling of the myocardium detailed
in [2]. The mechanical model is composed of two elements, as showed on Fig.1. The former is a parallel
element which represents the passive properties of the tissue. This parallel element is anisotropic linear
visco-elastic. The second element is an active contractileelement controlled by the electrophysiology. More
precisely, when depolarisation occurs (i.e. when we reach the depolarisation timeTd), some calcium stored
in the sarcoplasmic reticulum inside the cardiac cells is used for the ATP hydrolysis which provides energy
to the molecular motors in the sarcomeres, generating the contraction of the fibre. The duration of this
depolarisation is the action potential duration (APD). Theelectrical commandu is then equal to a constant
kATP which represents the rate of the hydrolysis of the ATP. Aftercontraction, during the repolarisation,
calcium moves back into the sarcoplasmic reticulum and thiscalcium decrease allows the relaxation of the
muscle. The electrical commandu is then equal to another constant−kRS which represents the activity of
the sarcoplasmic reticulum.

Thus, the contractile element is controlled by this commandu through the differential equation:̇σC + |u|σC =
|u|+σ0 whereσC is the strength of the contraction, andσ0 the maximum contraction. Then, with the com-
mandu described above:

σC(t) =

{

σ0
(

1− ekAT P(Td−t)
)

during depolarisation Td ≤ t < Tr

σC(Tr)ekRS(Tr−t) during repolarisation Tr ≤ t < Td + HP
(1)

whereTr = Td + APD is the repolarisation time andHP the heart period. The commandu and the intensity
of the resulting contraction are represented on Fig.1.c. Then, the active contractile element creates a stress
tensorσCf⊗ f wheref is the fibre orientation and⊗ the dyadic product. This results in the dynamic equation
in a force vectorFC =

R

S(σCf⊗ f)ndS with n the surface normal andS the element surface.

Finally, we represent the simplified dynamic law by a stiffness matrixK for the transverse anisotropic
elastic part (parallel element), a diagonal mass matrixM, and a damping matrixC for the internal viscosity
part, which is the Rayleigh damping matrixC = αM + βK, the contraction force vectorFC created by the
contractile element, a force vectorFP corresponding to the pressures forces in the ventricles anda force
vectorFB corresponding to the other boundary conditions. The resulting law of motion is:

MŸ +CẎ + KY = FPV + FC + FB (2)

with Y = (x1,y1,z1, . . .xi,yi,zi, . . .xN ,yN ,zN)T the position vector andN the number of mesh vertices, and
(xi,yi,zi) the position of theith vertex,Ẏ = dY

dt the velocity and̈Y = d2Y
dt2 the acceleration.
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Let X = (Y,Ẏ )T . Then,X is the state vector of the following dynamical system:
{

Ẋ = AX + R(u,θ)
X(0) = X0

(3)

whereX0 is the initial state vector,θ is the set of parameters of the model such as maximum contractility for
example and whereA (which depends of some parameters too) andR are defined by:

A =

(

03N,3N I3N,3N

−M−1K −M−1C

)

R =

(

03N

FPV + FC + FB

)

(4)

Cardiac Phases. We simulate the four cardiac phases (filling, isovolumetriccontraction, ejection and iso-
volumetric relaxation) as described in [14]. The arterial pressures were computed using a 3-element Wind-
kessel model described in [16].

3 Mesh Creation and Model Initialisation

3.1 Mesh Creation

4D (3D + t) cine MRI provides time series of high resolution images of the heart that describe in part or in
total one (averaged) cardiac cycle. A cine-MRI typically consists in a sequence of 15-20 3D images for one
cycle. The high intensity contrast between myocardium and ventricular blood pool allows a rough segmen-
tation of the blood pools based on the combination of thresholding and connected component extraction.
This segmentation is only used to demonstrate the possibilities of the method, a discussion on the various
segmentation methods is out of the scope of this article. Fig. 2.c presents these two connected components
for one image of the cardiac cycle. We need to build a computational mesh of the myocardium, adjusted to

(a) (b) (c)

Figure 2: (a) Mid-diastole image. (b) Segmented mesh with synthetic fibre directions. (c) Segmented blood
pools of one MR image of the cardiac cycle.

the MRI image corresponding to the beginning of our simulation cycle. The first instant of our simulation
cycle is the mid-diastole which corresponds to an instant when the ventricles are almost filled, just before
the atrial contraction (P wave). We select for this the mid-diastole image, using the volume curves, detailed
in the next paragraph. Then, the epicardium and left and right ventricles endocardia were delineated on this
image using an interactive tool. These delineations generate three binary masks of the epicardium and the
endocardia which are combined to obtain the binary mask of the myocardium used to create the mesh. This
is done with isosurface extraction and tetrahedral mesh generation, using the INRIA software GHS3D1.

1http://www.simulog.fr/mesh/gener2.htm
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We also need the local fibre orientation for this mesh. We generate synthetic fibre by linearly interpolating
the elevation angle between the fibre and the short axis plane, from 80o on the endocardium to−80o on the
epicardium. Fig.2.b represents the obtained anatomical mesh with its synthetic fibre directions.

3.2 Model Initialisation
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Figure 3: Left (solid line) and right (dashed line) ventricles volumes from MRI and electrical times.

Electrical Model. As cardiac MRI is ECG-gated, we know the heart rate and the acquisition times of the
3D images related to the R-wave instant. This allows a first synchronisation between the image sequence
and the simulation cycle. As the electrical information is not fully available, we need to extract additional
information from the images. As our action potential propagation model only needs as inputs the time of
initialisation and the action potential duration, we extract average values from the volume curves. On these,
one can observe the time of atrial contraction, the time of ventricular contraction, and the time of ventricular
relaxation (see Fig.3). One could introduce assynchrony between ventricles in the model, if observed on
these curves.

Mechanical Model. The passive mechanical parameters used are taken from the literature. For the active
component, we can use the volume curves to compute the ejection fraction, which is closely related to these
parameters, in order to initialise it. The rest position of the mechanical model is defined as the mid-diastole
mesh created.

4 Coupling Model and Data: Methodology

In this section, we describe a method for coupling a dynamic system, the electromechanical model of the
heart, and motion information from cine MRI. We start by discussing the choice of a metric to compare the
simulated and observed motion and then describe formally the problem at hand: having a dynamic system
that matches the available observations. Finally we show that motion tracking following a deformable
model approach is equivalent to a data assimilation formulation where the error is minimised. This data
assimilation formulation is directly inspired from the methodology of [7].

4.1 Metrics for comparing simulated and observed cardiac motion

Our objective is to minimize the discrepancy between the simulated cardiac motion and the actual one. One
of the major difficulty is that in cine-MRI (which is the main dynamic modality in clinical routine MRI),
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only the apparent motion is visible. We see how the boundary moves, but we loose information on the
tangential motion, which is important in the heart. We need to provide a metric to compare the model and
the data taking this into account.

Since at each image instant the binary segmentation of the right and left blood pools are available it is
reasonable to define the metric as the distance of the model endocardial surfaces to the blood pool surfaces
as they should ideally match. Thus, for each pointYi of one endocardium surface of the mesh, we find the
nearest pointY c

i on the corresponding surface extracted in the MR image. Ideally, we want the distancẽdi

betweenYi andY c
i to be zero. This approach is illustrated in Fig.4 (in green) in whichnc is the normal to

the blood pool surface at the pointY c
i .

Actually, in this paper, we propose to use the reverse metrics: the distance of the blood pool voxels to the
mesh vertices as shown in Fig.4 (in red). In this figure,Ni is the normal to the mesh at the pointYi. Thus, for
each pointYi of one endocardium surface, we find the pointY img

i of the corresponding surface in the image
contour for which the nearest point of the heart mesh isYi. Ideally, we want that the distancedi betweenYi

andY img
i to be zero.

Yi

Y img
i~Ni

di

~ncd̃i

Y c
i

Figure 4: Distances̃di of the mesh to the blood pool (green) anddi of the blood pool to the mesh (red).

Data interpolation. Due to limited temporal resolution, only few MR images are available for a cardiac
cycle. The time step used in the estimation is far lower the period between two MR images and we need
informations at each time step. Rather than interpolating the MR images, which would blur the contours,
we prefer to interpolate the image forces described in the previous paragraph and computed at the previous
and next images at each time step (see [14] for details).

4.2 Deformable Model Approach

This approach is based on segmentation by deformable modelsin which we minimise the sum of the energy
of the dynamic system representing the heart and the energy corresponding to images forces, which are
computed from contour images with distance maps for example.

The definition of image forces are consistent with the metrics chosen in the previous section. Namely, for
each mesh pointYi, we seek to find the closest pointY img

i along the normal directionNi of the mesh atYi.
Since the blood pool surfaces are roughly segmented as binary images, we computeY img

i as the intersection
of the normal line atYi with the isosurfaceI(x,y,z) = 127.5 for binary masks set toI = 255. This intersection
can be computed fairly efficiently and with a subvoxel accuracy. More complex image forces involving
intensity profiles, image blocks or textures could be used instead as shown in [3]. Here, we minimise the
following energy:

Ẽimg(Y,Ẏ ,Y img) =
m

∑
i=1

γi‖Yi −Y img
i ‖NiNT

i
. (5)
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Ni is the normal of the endocardium surface at the pointYi, m is the number of points of the endocardium
surfaces (the pointsYi are indexed from 1 tom for more simplicity) andγi is the confidence in the measure
Y img

i . When we differentiate this energy with respect toY , we obtain:

∂Ẽimg

∂Y
=









...
2γiNiNT

i (Yi −Y img
i )

...









=









...
2γid(Z,Yi)Ni

...









(6)

Finally, this approach consists in adding the image forces 2γid(Z,Yi)Ni to the vertexYi belonging to endo-
cardium surfaces. This is similar to the pro-active deformable model described in [14].

4.3 Data assimilation approach

We will show in the following that this minimisation of energy can be related to data assimilation approach.
The methodology of this data assimilation is directly inspired from [7]. In this approach, two parts are
taken into account: the electromechanical model describedby the equation3 with its inputs which consist
in electrical command and different external loads, and theavailable observations. We assume that the
parameters of the model are known, unlike the initial position conditionX0 on which we make an error of
ξX (X(0) = X0+ ξX ).

A new dynamical system calledstate observer takes as inputs the electric command and the image data
and returns theestimated state, written asX̂ which should converge to thetrue state X . In classical data
assimilation approach, theobservation Z (measures) can be directly computed from the true stateX , thanks
to anobservation operator H such thatZ = H X . Then, the observations computed from the estimate state
(Ẑ = HX̂) are compared to the measured observations (Z) and the difference(Ẑ − Z) called innovation is
taken into account in the sate observer dynamics.

In our case, if we noteZ the blood pool surfaces, we no longer haveZ = H X since with cine MRI, we
cannot track any material points during a cardiac cycle. Instead, we can compare the two surfacesX andZ
through a distance map which can be formalize asH(X ,Z) = 0. The observation operator is taken as the
gradient of the square distance between the two surfaceH(X ,Z) = ∇d2(Z,X) = 0

The estimate statêX does not match perfectly with the observation, and therefore the error between the
estimated state and the true state can be quantified with∇d2(Z, X̂) = 2d(Z, X̂)∇d(Z, X̂). Note that∇d2(Z, X̂)

is a vector of the same size asX and its components are 0 if they correspond to the velocity˙̂Y or if they
correspond to points that are not on endocardium surfaces. For points on the endocardium,∇d2(Z, X̂) ≡
2di∇di wheredi = ‖Ŷi −Y img

i ‖. Furthermore, by definition of a distance map,∇di = Ni whereNi is the
normal of the heart mesh at pointŶi. Then, the built state observer is:

{

˙̂X = AX̂ + R(u,θ)+ Kd∇d2(Z, X̂)
X̂(0) = X0

(7)

with Kd the gain associated with the data. We can see that with a high gain, the estimated state will rely more
on image data information than in the electromechanical model. Conversely, with no gain, the observer do
not take into account the data and is equivalent to the electromechanical model. Thus, the choice of the gain
Kd depends on the relative confidence in the model and the data.

It is of high interest to analyse the error between the estimated stateX̂ and the true stateX in order to choose
the gain. With a proper choice of the gain, the error should converge towards zero. We write the error
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dynamics by subtracting the model (equation3) from the observer (equation7):

{ ˙̃X = AX̃ + Kd∇d2(Z, X̂)
X̃(0) = ξX

(8)

After linearising the data and assuming that the estimated stateX̂ is close toX :

∇d2(Z,X) = ∇d2(Z, X̂)+ Hd(X̂)(X − X̂) (9)

whereHd(X̂) a matrixn×n wheren is the size of the state vectorX . Its components corresponding to points
on endocardium surfaces are the 3× 3 Hessian matrix of the squared distancedi and are null otherwise.
Since the real stateX is supposed to coincide the apparent boundaries in the imageZ, then∇d2(Z,X) = 0.
The error dynamics is:

{ ˙̃X = (A + KdHd)X̃
X̃(0) = ξX

(10)

A result of the control theory shows that this error converges to 0 if all eigenvalues of(A + KdHd) matrix
have negative real parts. This provides a criterion for selecting the gain matrixKd.

In practice, we choose the gainKd in the same way as in [7] : Kd = γM−1HT
d . Indeed, if we decompose the

error dynamics, we have:

M ¨̃Y +C ˙̃Y +(K + γHT
d Hd)Ỹ = 0 (11)

Therefore with this choice ofKd, the stiffness of the error dynamics is increased. It entails an increase of
the frequency and the damping of the eigenmodes, and therefore a better convergence toward zero.

We use the Houbolt implicit scheme to integrate equation7. Since the image term is also made implicit,
the generalised stiffness matrix that is involved in the linear system of equations should change at each
time step since matrixHd depends on the position of endocardium verticesYi. However, modifying the
generalised stiffness matrix at each time step implies thata Cholesky decomposition or a preconditioning
must be performed at each iteration which is computationally very expensive. Since the stiffness matrixK
is constant, we chose to estimate the termγHT

d HdŶt+dt numerically, by first computing the position̂Yt+dt

as if there were no image forces and then multiplying it withγHT
d Hd. This proved to be a fairly efficient

approach since the preconditioning of the generalised stiffness matrix is only done once which gives better
results than a semi-implicit scheme where image forces are estimated explicitly.

Finally, one should note thatNi is an eigenvector of the Hessian matrix of the distance mapdi with eigenvalue
1. Therefore, when using the gain matrix asKd = γM−1HT

d , the dynamic law of the state observer is given
as:

M ¨̂Y +C ˙̂Y + KŶ = FPV + FC + FB + γHT
d ∇d2(Z, X̂) = FPV + FC + FB +









...
2γd(Z,Yi)Ni

...









(12)

This corresponds exactly to the formulation we obtained with the deformable model approach.
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5 Results

5.1 Validation with synthetic data

In order to validate our state estimation method in a quantitative way, we generated synthetic cine-MR
images using the electromechanical model with standard values. We took 29 instants of the second simulated
cycle and we generated the corresponding segmented 3D images, using rasterisation of the tetrahedra. As
we assume here that the model is known, all parameters of the model used in the state estimation are the
same than the ones used to generate the synthetic data. Thus the only error is on the initial position. We can
then quantify the evolution of the mean position error in this ideal case.

Decrease of the mean position error (MPE). We observed, as expected, that the mean position error (MPE)
decreases with time, under the action of the state estimation filter. Here, the gainγ was set to 0.8. Fig.5.a
shows the evolution of the position error along three cardiac cycles. Fig.5.b shows the intensity of the
contraction forces and the intensity of the image forces forone endocardial vertex and along three cardiac
cycles. We can see that the image forces decrease rapidly in the first times of the first cycles and that the
images forces remain small compared to the intensity of physical forces such as the contraction forces. We
can see also that the image forces do not vanish exactly to zero. The decreasing of this MPE depends on the
spatial resolution of the images.

voxel size = 1x1x1 mm^3
voxel size = 0.75x0.75x0.75 mm^3
voxel size = 0.5x0.5x0.5 mm^3
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Figure 5: (a) Mean position error for three different spatial resolutions. Solid line: 1mm3, dashed line
0.75mm3, dashed dot: 0.5mm3. (b) Intensity of the contraction (dashed line) and intensity of the image
force (solid line) for an endocardial vertex along three cycles. (c) Left ventricle volumes curves from the
images (solid red), and for three different temporal resolutions: complete sequence (30 images, dash dot
blue), 15 (dash magenta) and 5 (long dash dot cyan).

Effect of the spatial resolution of the MR images. We tested the influence of the spatial resolution of the
images on the method. The voxel sizes used in the synthetic images are respectively 1mm3, 0.75mm3 and
0.5mm3. We can verify that the MPE decreases if we increase the spatial resolution of the images. As
the bounding box of the heart mesh used here is of 85mm3, the percentage of MPE made are respectively
0.38%, 0.27%, and 0.17%.

Effect of the temporal resolution of the MR images. We also tested the influence of the temporal resolution
of the images. For this we used real images (see details in next section). The first one was a complete
cine-MRI sequence (30 images), the second and the third oneswere subsamples of the cine-MRI sequence
(respectively 15 and 5 images). Fig.5.c shows that the left ventricle volume is better approximated in the
case of sequences with 30 or 15 images than in the case of the sequence of 5 images. Nevertheless, as the
contractility of the left ventricle was well calibrated, the knowledge of the model allows us to obtain good
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information on the left ventricle volume curve, and to compute good approximations of the ejection fraction.
The left ventricle ejection fractions obtained respectively from the complete segmented sequence, from the
estimations with complete MRI sequence, and with 15 and 5 images sequences are respectively: 59.20%,
59.34%, 57.56% and 56.84%.

Cardiac Function Estimation. Finally, in Fig.6, the physiological curves obtained from the state estimation
are compared with the ones given by the reference simulation. These physiological curves correspond to
the right and left ventricular pressures (Fig.6.a), volumes (Fig.6.b) and flows (Fig.6.c). In the isovolumic
phases, pressures are computed to counterbalance externalforces such as contraction forces and image forces
in the case of the estimation in order to keep the volume constant. We can see that in these phases, and in
the ejection phases in which the pressures depend on flows through the Windkessel model, the pressures are
well recovered. We can see also that after a small period due to the initial position error, the volumes and the
global evolution of the flow are well recovered. As flows are the derivative of volumes, errors on volumes
due to the oscillation of image forces are magnified.
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(b) Volumes
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Figure 6: Comparison of: a) Left (red) and right (blue) ventricular pressures(in mmHg). (b) Left (red)
and right (blue) ventricular volumes (in mL) (c) Left (red) and right (blue) flows (in mL/s) in the refer-
ence simulation (dashed curves) and in the estimation (solid curves) with reference images of voxel size of
0.5mm3.

5.2 Results with real data

In order to calibrate the electrical command of the heart, wecompute the volumes curves from the segmented
image sequence (see Section3.2). Due to the limited field of view, we only see part of the rightventricle
in the MR images. Futhermore, the right ventricle blood poolhas a grey level which varies along the
cardiac cycle in cine MR images, thus the thresholding not bereliable. Finally the trabeculae make the right
ventricle segmentation difficult. For all these reasons, wehave an important difference in volume between
the two ventricles, as shown on Fig.3. A more advanced segmentation method could overcome most ofthese
difficulties, but this is out of the scope of this article. Dueto this possible error on the right ventricle volume,
we use only the left ventricle volume curve to calibrate the global contractility (the maximum contractility
constant for all the volumetric mesh) in order to obtain the ejection fraction computed from the left ventricle
volume curve.

Several estimations were made with different values of the gain γ in order to see the effect of the gain on the
state estimation. Fig.7.) shows the MRI segmentation at a timeti of the cardiac cycle. The superimposed
lines represents the endocardium and epicardium surfaces of two heart meshes obtained with different values
of γ. The higher value of the gain gives more confidence in the datathan in the model, then the image forces
are bigger in this case as we see in Figs.7.b and7.c. We can see that the left ventricle is well tracked in
the two cases, while the right ventricle is better tracked inthe case of the higher gain. It shows that the
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(a) (b) (c)

Figure 7: a) Delineation of two estimated heart meshes at a given timeti during the contraction. These
delineation are superimposed to the short axis view of the segmentation. The cyan and red mesh were
obtained respectively with a gainγ equal to 0.8 and 0.2. b) and c): 3D view of the estimated heart meshes
with a gain of 0.8 (b) and a gain of 0.2 (c) at the same timeti. Colours correspond to the intensity of the
image forces (in MPa.mm−2).

contractility parameter in the right ventricle does not equal the one in the left ventricle, which we calibrated
with the left volume curve obtained from the cine-MRI. Thus,it allows to detect differences in parameters,
which can lead to parameter estimation.

In order to qualitatively evaluate the estimated motion, weused tagged MRI on the same subject to extract
the real cardiac motion. Tagged MRI analysis is still a challenge, due to the low image quality of this
modality. In this case, we used a non-rigid image registration algorithm (the diffeomorphic demons) to
extract the motion from the image sequence. The qualitativecomparison is promising, as we can observe
similar motion patterns. The estimated motion is much smoother due to the influence of the model. We
are currently validating the motion extraction method for the tagged MRI and working on more quantitative
comparison with the estimated motion.

(a) (b)

Figure 8: (a) End-diastolic motion extracted from tagged MRImages of the same subject. (b) End-diastolic
motion estimated with the presented method.

6 Conclusion

Coupling electromechanical models of the heart with clinical data in order to help diagnosis and therapy
planning is still very challenging. This article presents the link between deformable models and data as-
similation in order to estimate cardiac motion from cine-MRI. The proposed method allows to keep the
low computational cost of deformable models while using a rigourous mathematical framework. Motion
recovery is demonstrated on synthetic and real data. These promising preliminary results will be extended
in order to also introduce parameter estimation.
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Abstract

We present a framework for cardiac motion recovery using theadjustment of an electromechanical
model of the heart to cine Magnetic Resonance Images (MRI). This approach is based on a constrained
minimisation of an energy coupling the model and the data. Our method can be seen as a data assimi-
lation of a dynamic system that allows us to weight appropriately the confidence in the model and the
confidence in the data. After a short overview of the electromechanical model of the ventricles, we de-
scribe the processing of cine MR images and the methodology for motion recovery. Then, we compare
this method to the methodology used in data assimilation. Presented results on motion recovery from
given cine-MRI are very promising. In particular, we show that our coupling approach allows us to
recover some tangential component of the ventricles motionwhich cannot be obtained from classical
geometrical tracking approaches due to the aperture problem.

1 Introduction

The modelling of the heart’s electromechanical activity isan active research area [5, 9, 1, 13, 4]. The
simulation of the heart has received growing attention due to the importance of cardiovascular diseases in
industrialised nations and to the high complexity of the cardiac function.

In order to help the clinical practice of cardiologists, it is important however that those models not only
describe with some degree of realism the cardiac function but also be patient specific. Creating such person-
alised cardiac models implies that the anatomy of the patient is taken into account but also that the model
parameters are tailored such that the simulated cardiac motion matches well with the observed cardiac
motion. This represents a great challenge due to the intrinsic physiological complexity of the underlying
phenomena which combine tissue mechanics, fluid dynamics, electrophysiology, energetic metabolism and
cardiovascular regulation. Also only partial informationcan be derived from clinical data for a specific
patient making the parameter estimation an ill-posed problem.

The objective of this paper is to propose a methodology that aims at creating personalised electromechanical
model of the heart from cine MR images. Previous work [6, 10, 8, 12] on the adjustment of a geometrical
model of the heart on time series of medical images are mainlybased on the concept of deformable models.
In such a framework, a surface or volumetric mesh is fitted to the apparent boundaries of the heart by
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minimising the sum of two energies: an image term and a regularising or internal term. In such approaches,
the model can be considered as astatic system evolving under the minimization of an energy.

Conversely, electromechanical models of the heart aredynamic systems that evolve even in the absence of
any image term. Adjusting such dynamic systems to time series of data (a method also known as ”data
assimilation”) is fundamentally different from adjustinga static system since the parameters of the dynamic
system are additional degrees of freedom that should be estimated. In the medical imaging community,
P.C Shi and his group introduced data assimilation techniques by integrating cardiac models and Kalman
filters for state and parameter estimation, see for instance[16] and [18]. However, such techniques, such as
extended or unscented Kalman filtering, are often limited bythe curse of dimensionality since they involve
full covariance matrices whose size are equal to the square of the number of state variables augmented by
the number of parameters to estimate. In the case of clinicalapplications, as cardiac electromechanical
models are already complex dynamic systems with changing boundary conditions (cardiac phases), having
a computationnally efficient estimation method is crucial.

In this paper, we propose an efficient method to estimate the state (i.e. the position and velocity) of an
electromechanical model from cine MR images which is inspired from the deformable model framework
used in medical image analysis. The goal of this paper is to show the formal equivalence between this
approach and a filtering method introduced by Moireau et al. [7] used in data assimilation, which is different
from Kalman-like filters such as the one used in [18]. The filtering approach proposed in [7] does not
involve any matrix inversion (except the mass matrix which is a diagonal constant matrix), so that it allows
much faster computations: the motion of a whole cardiac cycle on a mesh with 50 000 tetrahedral elements is
estimated in about 10 minutes on a regular PC. This increaseslargely its potential future clinical application.
The theoretical efficiency of this filter for mechanical systems has been demonstrated in [7]. The theoretical
equivalence between the deformable model approach proposed here and this filtering approach leads to a
better understanding of the trade-off between the electromechanical model and the image data.

We assume in this paper that model parameters are well known,in order to focus only on state estimation.
Some preliminary results on parameter estimation are presented in conclusion, but this is not the goal of
this paper. The proposed approach is first validated on synthetic time series of images and then applied to
clinical cine MR images of a human heart.

2 Electromechanical model

We consider in this paper a fairly reduced electromechanical model since we want the complexity of the
model to match the relatively sparse measures available from imaging data. Furthermore, this coarse level
of modeling allows us to simulate a whole cardiac cycle on a mesh with 50 000 tetrahedral elements in about
5 minutes on a regular PC. Of course, the heart is a nonlinear material undergoing large strain. Thus, the
assumptions of our simplified model are not realistic, but the global behavior of the heart is well represented.
Furthermore, the limited computational time makes the estimation of the mechanical state and parameters
tractable and allows us to test the behaviour of the model on series of heart beats.

2.1 Anatomy Description

The two ventricles are represented as a tetrahedral volumetric mesh including some anatomical information
such as the myocardium geometry, the definition of some clinical anatomical regions (the American Heart
Association regions), and the local orientation of fibres. We can build such a mesh from MR images, as
explained below in section3.1. The local fibre orientation can be either created from basicanatomical
assumptions (elevation angle across the wall) or extractedfrom Diffusion Tensor MRI (DT-MRI) [11].
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2.2 Simulation of the cardiac electrophysiology

Several electrophysiological models have been proposed inthe literature. Due to its efficiency, we use an
Eikonal approach for the electrophysiology propagation, with a volumetric implementation of the algorithm
described in [15]. The depolarisation timetd of the electrical wave for a given vertex of the volumet-
ric mesh is computed by solving the anisotropic Eikonal equation v2(∇tT

d D∇td) = 1, wherev is the local
conduction velocity parameter andD is the tensor defining the conduction anisotropy. In the fibrecoordi-
nates,D = diag(1,ρ,ρ), whereρ is the conduction anisotropy ratio between longitudinal and transverse
directions. An anisotropic multi-front fast marching algorithm was developed in order to solve this model
very efficiently.

2.3 Simulation of the myocardium contraction

The biomechanical model presented here is derived from a multi-scale modelling of the myocardium de-
tailed in [2]. The mechanical model is composed of two elements, as shownon Fig.1.a. The former is a
parallel element which represents the passive properties of the tissue. This parallel element is anisotropic
linear visco-elastic. The second element is an active contractile element controlled by the electrophysiol-
ogy. More precisely, when the action potential is higher than a given threshold (i.e. when we reach the
depolarisation timetd), some calcium stored in the sarcoplasmic reticulum insidethe cardiac cells is used
for the ATP hydrolysis which provides energy to the molecular motors in the sarcomeres, generating the
contraction of the fibre. The duration of this depolarisation is the action potential duration (APD). The elec-
trical commandu is then set to a constantkATP which represents the rate of the hydrolysis of the ATP. After
contraction, during the repolarisation, calcium moves back into the sarcoplasmic reticulum and this calcium
decrease allows the relaxation of the muscle. The electrical commandu is then set to another constant−kRS

which represents the activity of the sarcoplasmic reticulum.

Thus, the contractile element is controlled by its corresponding commandu through the differential equa-
tion: σ̇C + |u|σC = |u|+σ0 whereσC is the strength of the contraction, andσ0 the maximum contraction.
Then, with its associated commandu described above, the strength of the contraction for each tetrahedron
element is :

σC(t) =

{

σ0
(

1− ekAT P(td−t)
)

during depolarisation td ≤ t < tr
σC(tr)ekRS(tr−t) during repolarisation tr ≤ t < td + HP

(1)

wheretr = td + APD is the repolarisation time andHP the heart period. The commandu and the intensity
of the resulting contraction are represented on Fig.1.b. Then, the active contractile element creates a stress
tensorσC~f ⊗~f where~f is the 3D fibre orientation and⊗ the dyadic product. For each vertex of each element,

this results in a 3D force vector~fC =
1
4

R

S(σC~f ⊗~f )~ndS with~n the surface normal andS the element surface.

Finally, we represent the simplified dynamic law by a stiffness matrixK for the transverse anisotropic
elastic part (parallel element), a diagonal mass matrixM, and a damping matrixC for the internal viscosity
part, which is the Rayleigh damping matrixC = αM + βK, the contraction force vectorFC created by the
contractile elements, a force vectorFP corresponding to the pressure forces in the ventricles and aforce
vectorFB corresponding to other boundary conditions. The resultinglaw of motion is:

MŸ +CẎ + KY = FPV + FC + FB (2)

with Y = (x1,y1,z1, . . .xi,yi,zi, . . .xN ,yN ,zN)T the position vector,N the number of mesh vertices,(xi,yi,zi)

the position of theith vertex,Ẏ = dY
dt the velocity,Ÿ = d2Y

dt2 the acceleration andFC = (~fC1, . . .
~fCi , . . .

~fCN ) the
assembled contraction force.
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Figure 1: (a) Simplified biomechanical model. (b) Electrical command and intensity of contraction.

Let X = (Y,Ẏ )T . Then,X is the state vector of the following dynamical system:

{

Ẋ = AX + R(u,θ)
X(0) = X0

(3)

whereX0 is the initial state vector,θ is the set of parameters of the model such as maximum contractility for
example and whereA (which depends of some parameters too) andR are defined by:

A =

(

03N,3N I3N,3N

−M−1K −M−1C

)

R =

(

03N

FPV + FC + FB

)

(4)

We simulate the four cardiac phases (filling, isovolumetriccontraction, ejection and isovolumetric relax-
ation) as described in [14]. The arterial pressures were computed using a 3-element Windkessel model
described in [17].

3 Mesh Creation and Model Initialisation

3.1 Mesh Creation

4D (3D + t) cine MRI provides time series of high resolution images of the heart that describe in part or
in total one (averaged) cardiac cycle. A cine-MRI typicallyconsists in a sequence of 15 to 20 3D images
for one cycle. The high intensity contrast between myocardium and ventricular blood pool allows a rough
segmentation of the blood pools based on the combination of thresholding and connected component ex-
traction. This segmentation is only used to demonstrate thepossibilities of the method, a discussion on
the various segmentation methods is out of the scope of this article. Fig. 2.c presents these two connected
components for one image of the cardiac cycle. We need to build a computational mesh of the myocardium,

(a) (b) (c)

Figure 2: (a) Mid-diastole image. (b) Segmented mesh with synthetic fibre directions. (c) Segmented blood
pools of one MR image of the cardiac cycle.
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adjusted to the MRI image corresponding to the beginning of our simulation cycle. The first instant of our
simulation cycle is the mid-diastole which corresponds to an instant when the ventricles are almost filled,
just before the atrial contraction (P wave). We select for this the mid-diastole image, using the volume
curves, detailed in the next paragraph. Then, the epicardium and left and right ventricles endocardia were
delineated on this image using an interactive tool. These delineations generate three binary masks of the
epicardium and the endocardia which are combined to obtain the binary mask of the myocardium used to
create the mesh. This is done with isosurface extraction andtetrahedral mesh generation, using the INRIA
software GHS3D (http://www.simulog.fr/mesh/gener2.htm).

We also need the local fibre orientation for this mesh. We generate synthetic fibre by linearly interpolating
the elevation angle between the fibre and the short axis plane, from 80o on the endocardium to−80o on the
epicardium. Fig.2.b represents the obtained anatomical mesh with its synthetic fibre directions.

3.2 Model Initialisation
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Figure 3: Left (solid line) and right (dashed line) ventricle volumes from MRI.

Electrical Model: As cardiac MRI is ECG-gated, we know the heart rate (here the heart period is 0.8 s)
and the acquisition times of the 3D images related to the R-wave instant. This allows a first synchronisation
between the image sequence and the simulation cycle. As the electrical information is not fully available,
we need to extract additional information from the images. Due to the limited field of view, we only see part
of the right ventricle in the MR images. Futhermore, the right ventricle blood pool has a grey level which
varies along the cardiac cycle in cine MR images, thus thresholding is not reliable. Finally the trabeculae
make the right ventricle segmentation difficult. For all these reasons, we have an important difference in
volume between the two ventricles, as shown in Fig.3. A more advanced segmentation method could
overcome most of these difficulties, but this is out of the scope of this article. As our action potential
propagation model only needs as inputs the time of the initialisation of the electrical wave and the action
potential duration for each element, we extract average values from the volume curves. On these, one can
observe the times of the beginning of the atrial contraction(P wave), of the ventricular contraction (R wave),
and of the ventricular relaxation (T wave) independently for each ventricle (see Fig.3). These times were
set respectively to 0.0827 s, 0.125 s, 0.425 s. Then, we set the average value of the APD to the difference
between the times of the beginning of the ventricular contraction and relaxation. Thus, for each vertex, APD
is equal to 300 ms.

Mechanical Model: The passive mechanical parameters used are taken from the literature [16]. For the
active component, we can use the volume curves to compute theejection fraction, which is closely related to
these parameters, in order to initialise it. However, due tothe possible error on the right ventricle volume, we
use only the left ventricle volume curve to calibrate the global contractility (the maximum contractilityσ0

constant for all the volumetric mesh) in order to obtain the same ejection fraction as the one computed
from the left ventricle volume curve. For our data,σ0 was set to 0.073 MPa/mm2. The rest position of the
mechanical model is defined as the mid-diastole mesh created.
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4 Coupling Model and Data: Methodology

In this section, we describe a method for coupling a dynamic system, the electromechanical model of the
heart, and motion information from cine MRI. We start by discussing the choice of a metric to compare the
simulated and observed motion and then describe formally the problem at hand: having a dynamic system
that matches the available observations. Finally we show that motion tracking following a deformable
model approach is equivalent to a data assimilation formulation where the error is minimised. This data
assimilation formulation is directly inspired from the methodology of [7].

4.1 Metrics for comparing simulated and observed cardiac motion

Our objective is to minimize the discrepancy between the simulated cardiac motion and the actual one. One
of the major difficulty is that in cine-MRI (which is the main dynamic modality in clinical routine MRI),
only the apparent motion is visible. We see how the boundary moves, but we loose information on the
tangential motion, which is important in the heart. We need to provide a metric to compare the model and
the data taking this into account.

Since at each image instant the binary segmentation of the right and left blood pools are available it is
reasonable to define the metric as the distance of the model endocardial surfaces to the blood pool surfaces
as they should ideally match. Thus, for each pointYi of one endocardium surface of the mesh, we find the
nearest pointY c

i on the corresponding surface extracted in the MR image. Ideally, we want the distancẽdi

betweenYi andY c
i to be zero. This approach is illustrated in Fig.4 (in green) in which~nc is the normal to

the blood pool surface at the pointY c
i .

Howewer, the distance maps must be either precomputed (storage costs) or computed during the estimation
(computationnal costs). Thus, in this paper, we propose to use the reverse metrics: the distance of the
blood pool voxels to the mesh vertices as shown in Fig.4 (in red). In this figure,~Ni is the normal to the
mesh at the pointYi. Thus, for each pointYi of one endocardium surface, we find the pointY img

i of the
corresponding surface in the image contour for which the nearest point of the heart mesh isYi. Ideally, we
want the distancedi betweenYi andY img

i to be zero.

Yi

Y img
i~Ni

di

~ncd̃i

Y c
i

Figure 4: Distances̃di of the mesh to the blood pool (green) anddi of the blood pool to the mesh (red).

Data interpolation: Due to limited temporal resolution, only a few MR images are available for a cardiac
cycle. The time step used in the estimation is far smaller than the period between two MR images and
we need information at each time step. Rather than interpolating the MR images, which would blur the
contours, we prefer to interpolate the image forces described in the previous paragraph and computed at the
previous and next images at each time step (see [14] for details).

4.2 Deformable Model Approach

This approach is based on segmentation by deformable modelsin which we minimise the sum of the energy
of the dynamic system representing the heart and the energy corresponding to images forces, which are
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computed from contour images with distance maps for example. The introduction of the model in the
minimised energy allows us to recover some movement which cannot be obtained from classical geometrical
tracking approaches. Of course, the image forces have no physiological meaning, but if we couple the
model and the data and if we estimate the model parameters (which is the next step of this work), the
motion generated by the model should converge to the one observed in the images. Thus, the intensity
of image forces should decrease along the estimation and theestimated motion should be more and more
physiological.

The definition of image forces are consistent with the metrics chosen in the previous section. Namely, for
each mesh pointYi, we seek the closest pointY img

i along the normal direction~Ni of the mesh atYi. Since
the blood pool surfaces are roughly segmented as binary images, we computeY img

i as the intersection of the
normal line atYi with the isosurfaceI(x,y,z) = 127.5 for binary masks set toI = 255. This intersection can
be computed fairly efficiently and with a subvoxel accuracy.More complex image forces involving intensity
profiles, image blocks or textures could be used instead as shown in [3]. Here, we minimise the following
energy:

Ẽimg(Y,Ẏ ,Y img) =
m

∑
i=1

γi‖Yi −Y img
i ‖~Ni~NT

i
. (5)

where~Ni is the normal of the endocardium surface at the pointYi, m is the number of points of the endo-
cardium surfaces (the pointsYi are indexed from 1 tom for more simplicity) andγi is the confidence in the
measureY img

i . When we differentiate this energy with respect toY , we obtain:

∂Ẽimg

∂Y
=









...
2γi~Ni~NT

i (Yi −Y img
i )

...









=









...
2γid(Z,Yi)~Ni

...









(6)

Finally, this approach consists in adding the image forces 2γid(Z,Yi)~Ni to the vertexYi belonging to endo-
cardium surfaces. This is similar to the pro-active deformable model described in [14].

4.3 Data assimilation approach

We will show in the following that this minimisation of energy can be related to a data assimilation approach.
The methodology of this data assimilation is directly inspired from [7]. In this approach, two parts are taken
into account: the electromechanical model described by Equation3 with inputs consisting in the electrical
command and different external loads, and the available observations. We assume that the parameters of the
model are known, unlike the initial position conditionX0 on which we make an error ofξX (X(0) = X0+ξX ).

A new dynamical system calledstate observer takes as inputs the electrical command and the image data
and returns theestimated state, written asX̂ which should converge to thetrue state X . In classical data
assimilation approach, theobservation Z (measures) can be directly computed from the true stateX , thanks
to an observation operator H such thatZ = H X . Then, the observations computed from the estimate
state (̂Z = HX̂) are compared to the measured observations (Z) and the difference(Ẑ −Z) calledinnovation
is taken into account in the sate observer dynamics.

In our case, if we noteZ the blood pool surfaces, we no longer haveZ = H X since with cine MRI, we
cannot track any material points during a cardiac cycle. Instead, we can compare the two surfacesX andZ
through a distance map which can be formalized asH(X ,Z) = 0. The observation operator is taken as the
gradient of the square distance between the two surfacesH(X ,Z) = ∇d2(Z,X) = 0
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The estimated statêX does not match perfectly with the observation, and therefore the error between the
estimated state and the true state can be quantified with∇d2(Z, X̂) = 2d(Z, X̂)∇d(Z, X̂). Note that∇d2(Z, X̂)
is a vector of the same size asX and its velocity components and its components which correspond to
points that are not on endocardium surfaces are 0. For pointson the endocardium,∇d2(Z, X̂) ≡ 2di∇di

wheredi = ‖Ŷi −Y img
i ‖. Furthermore, by definition of a distance map,∇di = ~Ni where~Ni is the normal of

the heart mesh at pointŶi. Then, the built state observer is:
{

˙̂X = AX̂ + R(u,θ)+ Kd∇d2(Z, X̂)
X̂(0) = X0

(7)

with Kd the gain associated with the data. We can see that with a high gain, the estimated state will rely more
on image data information than in the electromechanical model. Conversely, with no gain, the observer do
not take into account the data and is equivalent to the electromechanical model. Thus, the choice of the
gainKd depends on the relative confidence in the model and the data.

It is of high interest to analyse the error between the estimated stateX̂ and the true stateX in order to choose
the gain. With a proper choice of the gain, the error should converge towards zero. We write the error
dynamics by subtracting the model (equation3) from the observer (equation7):

{ ˙̃X = AX̃ + Kd∇d2(Z, X̂)
X̃(0) = ξX

(8)

After linearising the data and assuming that the estimated stateX̂ is close toX :

∇d2(Z,X) = ∇d2(Z, X̂)+ Hd(X̂)(X − X̂) (9)

whereHd(X̂) a matrixn×n wheren is the size of the state vectorX . Its components corresponding to points
on endocardium surfaces are the 3×3 Hessian matrix of the squared distancedi and are null otherwise. Since
the real stateX is supposed to coincide with the position and the movement ofthe apparent boundaries in
the imageZ, then∇d2(Z,X) = 0. The error dynamics is:

{ ˙̃X = (A + KdHd)X̃
X̃(0) = ξX

(10)

A result of the control theory shows that this error converges to 0 if all eigenvalues of(A + KdHd) matrix
have negative real parts. This provides a criterion for selecting the gain matrixKd.

In practice, we choose the gainKd as in [7] : Kd = γM−1HT
d . Indeed, if we decompose the error dynamics,

we have:

M ¨̃Y +C ˙̃Y +(K + γHT
d Hd)Ỹ = 0 (11)

Therefore with this choice ofKd , the stiffness of the error dynamics is increased. It implies an increase of
the frequency and the damping of the eigenmodes, and therefore a better convergence toward zero. Here
we see the difference between this filtering method and Kalman filtering methods such as the one proposed
in [18]. The gainKd is not the Kalman gain, so that the result of the filter is not the optimal result in a
stochastic way, butKd is chosen in order to ensure the convergence of the errorX̃ toward zero. Although we
do not ensure an optimal result, we avoid to compute the inverse of a combination of covariance matrices,
thus leading to a much faster filter than the Kalman approach.

We use the Houbolt implicit scheme to integrate equation7. Since the image term is also made implicit,
the generalised stiffness matrix that is involved in the linear system of equations should change at each
time step since the matrixHd depends on the position of endocardium verticesYi. However, modifying the
generalised stiffness matrix at each time step implies thata Cholesky decomposition or a preconditioning
must be performed at each iteration which is computationally very expensive. Since the stiffness matrixK is
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constant, we chose to estimate the termγHT
d HdŶt+dt numerically, by first computing the position̂Yt+dt as if

there were no image forces and then multiplying it byγHT
d Hd. This proved to be a fairly efficient approach

since the preconditioning of the generalised stiffness matrix is only done once. This also gives better results
than a semi-implicit scheme where image forces are estimated explicitly.

Finally, one should note that~Ni is an eigenvector of the Hessian matrix of the distance mapdi with eigen-
value 1. Therefore, when using the gain matrix asKd = γM−1HT

d , the dynamic law of the state observer is
given by :

M ¨̂Y +C ˙̂Y + KŶ = FPV + FC + FB + γHT
d ∇d2(Z, X̂) = FPV + FC + FB +









...
2γd(Z,Yi)~Ni

...









(12)

This corresponds exactly to the formulation we obtained with the deformable model approach.

5 Results

5.1 Validation with synthetic data

In order to validate our state estimation method in a quantitative way, we generated synthetic cine-MR
images using the electromechanical model with standard values. We took 29 instants of the second simulated
cycle and we generated the corresponding segmented 3D images, using rasterisation of the tetrahedra. As
we assume here that the model is known, all parameters of the model used in the state estimation are the
same than the ones used to generate the synthetic data. Thus the only error is on the initial position. We can
then quantify the evolution of the mean position error in this ideal case.

State error analysis: We observed, as expected, that the root mean squared error (RMSE) decreases with
time, under the action of the state estimation filter. Here, the gainγ was set to 0.8. Fig. 5.a shows the
evolution of the position error along three cardiac cycles.Fig. 5.b shows the intensity of the contraction
forces and the intensity of the image forces for one endocardial vertex and along three cardiac cycles. We
can see that the image forces decrease rapidly in the first times of the first cycles and that the images forces
remain small compared to the intensity of physical forces such as the contraction forces. We can see also
that the image forces do not vanish exactly to zero. The decreasing of this RMSE depends on the spatial
resolution of the images.
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Figure 5: (a) Root mean squared error for three different spatial resolutions. Solid line: 1mm, dashed
line 0.75mm, dash-dot: 0.5mm (in all three directions). (b) Intensity of the contraction force (dashed
line) and intensity of the image force (solid line) for an endocardial vertex along three cycles. (c) Left
ventricle volume curves from the images (solid red), and forthree different temporal resolutions: complete
sequence (30 images, dash-dot blue), 15 (dash magenta) and 5(long dash-dot cyan).
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Effect of the spatial resolution of the MR images: The voxel sizes used in the synthetic images are respec-
tively 1mm, 0.75mm and 0.5mm in all three directions. The RMSE decreases if we increase the spatial
resolution of the images and seems to converge to values which are smaller than the spatial resolution of the
images and which should correspond to numerical approximation errors (see Fig.5.a).

Effect of the temporal resolution of the MR images: For this we used real images (see details in next sec-
tion). The first one was a complete cine-MRI sequence (30 images), the second and the third ones were
subsamples of the cine-MRI sequence (respectively 15 and 5 images). Fig.5.c shows that the left ventri-
cle volume is better approximated in the case of sequences with 30 or 15 images than in the case of the
sequence of 5 images. Nevertheless, as the contractility ofthe left ventricle was well calibrated, the knowl-
edge of the model allows us to obtain good information on the left ventricle volume curve, and to compute
good approximations of the ejection fraction. The left ventricle ejection fractions obtained respectively from
the complete segmented sequence, from the estimations withcomplete MRI sequence, and with 15 and 5
images sequences are respectively: 59.20%, 59.34%, 57.56% and 56.84%.

Cardiac Function Estimation: Finally, in Fig.6, the physiological curves obtained from the state estimation
are compared with the ones given by the reference simulation. These physiological curves correspond to
the right and left ventricular pressures (Fig.6.a), volumes (Fig.6.b) and flows (Fig.6.c). In the isovolumic
phases, pressures are computed to counterbalance externalforces such as contraction forces and image forces
in the case of the estimation in order to keep the volume constant. We can see that in these phases, and in
the ejection phases in which the pressures depend on flows through the Windkessel model, the pressures are
well recovered. We can see also that after a small period due to the initial position error, the volumes and the
global evolution of the flow are well recovered. As flows are the derivative of volumes, errors on volumes
due to the oscillation of image forces are magnified.
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Figure 6: Comparison of: a) Left (red) and right (blue) ventricular pressures(in mmHg). (b) Left (red)
and right (blue) ventricular volumes (in mL) (c) Left (red) and right (blue) flows (in mL/s) in the reference
simulation (dashed curves) and in the estimation (solid curves) with reference images of voxel size of 0.5mm
in all three directions.

5.2 Results with clinical data

Several estimations were made with different values of the gain γ in order to see the effect of the gain on the
state estimation. Fig.7 shows the MRI segmentation at a timeti of the cardiac cycle. The superimposed lines
represents the endocardium and epicardium surfaces of two heart meshes obtained with different values ofγ.
The higher value of the gain gives more confidence in the data than in the model, then the image forces are
larger in this case as we see in Figs.7.b and7.c. We can see that the left ventricle is well tracked in the two
cases, while the right ventricle is better tracked in the case of the higher gain. It shows that the contractility
parameter in the right ventricle does not equal the one in theleft ventricle, which we calibrated with the left
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(a) (b) (c)

Figure 7: a) Delineation of two estimated heart meshes at a given timeti during the contraction. These
delineation are superimposed to the short axis view of the segmentation. The cyan and red mesh were
obtained respectively with a gainγ equal to 0.8 and 0.2. b) and c): 3D view of the estimated heart meshes
with a gain of 0.8 (b) and a gain of 0.2 (c) at the same timeti. Colours correspond to the intensity of the
image forces (in MPa.mm−2).

volume curve obtained from the cine-MRI. Thus, it allows us to detect differences in parameters, which can
lead to parameter estimation.

In order to qualitatively evaluate the estimated motion, weused tagged MRI on the same subject to extract
the projection of the 3D real cardiac motion in a number of short axis view (Fig. 8.a). The qualitative
comparison with the projection of the 3D estimated motion (Fig. 8.b) is promising, as we observe similar
motion patterns. The estimated motion is much smoother due to the influence of the model. We are working
on a more quantitative comparison with the estimated motion.

(a) (b)

Figure 8: Projection on a short axis view of the 3D end-diastolic motion respectively extracted from tagged
MR images (a) and estimated from cine-MRI with the presentedmethod (b). (same subject)

6 Conclusion

Coupling electromechanical models of the heart with clinical data in order to help diagnosis and therapy
planning is still very challenging. This article presents the link between deformable models and data as-
similation in order to estimate cardiac motion from cine-MRI. The proposed method allows to keep the
low computational cost of deformable models while using a rigourous mathematical framework. Motion
recovery is demonstrated on synthetic and real data. These promising preliminary results will be extended
in order to perform parameter estimation, which is the ultimate goal of the approach.
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