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ABSTRACT 
 

Surgical repair of the mitral valve results in better 
outcomes than valve replacement, yet diseased valves 
are often replaced due to the technical difficulty of the 
repair process. A surgical planning system based on 
patient-specific medical images that allows surgeons to 
simulate and compare potential repair strategies could 
greatly improve surgical outcomes. The system must 
simulate valve closure quickly and handle the complex 
boundary conditions imposed by the chords that tether 
the valve leaflets. We have developed a process for 
generating a triangulated mesh of the valve surface 
from volumetric image data of the opened valve. The 
closed position of the mesh is then computed using a 
mass-spring model of dynamics. In the mass-spring 
model, triangle sides are treated as linear springs 
supporting only tension. Chords are also treated as 
linear springs, and self-collisions are detected and 
handled inelastically. The equations of motion are 
solved using implicit numerical integration. The 
simulated closed state is compared with an image of the 
same valve taken in the closed state to assess accuracy 
of the model. The model exhibits rapid valve closure 
and is able to predict the closed state of the valve with 
reasonable accuracy. 
 
Keywords: mitral valve, surgical planning, mass-spring 
model, simulation 
 
 

1.  INTRODUCTION 
 

The mitral valve is the most complex of the four heart 
valves and is the one most often associated with disease 
[21]. It consists of two leaflets that open and close as 
the heart beats to ensure one-way flow of blood into the 
left ventricle. The leaflets are restrained by fibrous 
chords during closure. See Fig. 1. Mitral regurgitation 
(MR) occurs when the valve fails to close adequately 
during ventricular contraction and blood leaks 
backward through the incompetent valve. It can be 
caused by ischemic heart disease, dilated 

cardiomyopathy, rheumatic valve disease, or infection 
[5]. MR can lead to heart failure if left untreated, and 
the only effective treatment is surgery. The two primary 
surgical treatment options are repair of the native mitral 
valve tissue and replacement of the valve with a 
prosthetic valve. Repair has been shown to result in 
better function and long-term survival than replacement 
[9,15,20], so surgical repair of the mitral valve is 
preferable to valve replacement for the majority of 
patients who require treatment for MR [7]. However, 
replacement is often performed instead of repair due the 
technical difficulty of valve repair [18].  
 
Valve repair typically requires use of cardiopulmonary 
bypass, a procedure which involves arresting the heart 
and emptying it of blood. The surgeon must try to 
imagine how the valve leaflets, and/or the chords that 
tether them, must be modified to make the valve close 
effectively after the heart is refilled with blood and 
pumping has been restored. For example, the surgeon 
must often decide how much tissue to cut out of an 
open valve leaflet to cause a particular change in the 
closed shape of the valve or how to modify the length 
or attachment point of a chord to result in effective 
valve closure. Practice and experience are crucial for 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Cross section of the left heart with mitral valve 
shown in the closed position. Mitral valve structures are 
identified by arrows. 
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the development of the skills necessary to reliably 
repair mitral valves. Studies show that experienced 
surgeons at large clinical centers have a much better 
record of successful repairs, and valve replacement is 
often chosen instead of repair at low volume centers 
[8]. 
 
Surgical simulation has the potential to enable less 
experienced surgeons to effectively repair valves. This 
would allow many patients to undergo valve repair who 
would otherwise have undergone valve replacement. 
We propose that computer simulations of mitral valve 
closure can be used to help the surgeon plan effective 
repair strategies on a patient-specific basis. Under the 
proposed scheme, the geometry of a particular patient’s 
valve would be extracted from medical images acquired 
prior to the date of surgery. The surgeon could then 
modify a computer model of that valve to reflect a 
particular surgical repair strategy and would use 
computer simulation to predict the closed state of the 
valve, indicating the effectiveness of that particular 
repair strategy. In this way, many potential repair 
strategies could be simulated and compared prior to the 
actual surgery, informing the surgeon to help choose the 
best strategy for a particular patient.  
 
An important component of the proposed surgical 
simulation system is the computational model of the 
mitral valve.  The proposed surgical simulation 
environment places two important requirements on the 
computational model. First, the valve geometry must be 
sufficiently detailed to allow predictive modeling on a 
patient-specific basis. Second, the model must be able 
to compute the closed state relatively quickly. A 
surgeon may want to simulate ten or more surgical 
strategies for a given patient. For practical use, the time 
to simulate one valve closure must be on the order of 
minutes.  
 
Several groups have developed finite element models of 
the mitral valve to study its function [6,11,23]. While 
these studies modeled important aspects of the complex 
behavior of the valve, their methods are not well-suited 
for the surgical simulation environment.  They were 
based on averaged valve data, rather than subject-
specific images, assuming symmetry of the leaflets 
through their midline and neglecting the branching 
structure of the chords. Another finite element study 
modeled the valve structures asymmetrically and 
obtained boundary conditions dynamically using 
implanted sonomicrometry crystals in an animal model 
[12]. Unfortunately their sonomicrometry method 
cannot be used clinically. All of these finite element 
models have execution times that are too slow for this 

surgical planning application.  
 
In developing a computational model of valve closure 
to meet the requirements of speed and anatomic detail, 
several assumptions were made. First we assumed that 
a single static loading state, that of the peak pressure 
reached during ventricular systole, was sufficient to 
assess the viability of a given repair strategy. A partial 
justification of this assumption is that the present 
technique used at the end of the repair surgery to test 
the repaired valve is to load the valve by injecting 
saline under static pressure [5]. This assumption allows 
us to ignore the complex interaction between blood 
flow and the valve structures during ventricular filling 
and ejection.  
 
The second assumption concerns the role of tissue 
deformation in determining the shape of the closed 
valve. The valve leaflets undergo both conformational 
changes as well as deformation (tissue strain) in going 
from the open to the closed, loaded state. While the 
constitutive properties of valve leaflets and chords are 
know to be complex and to play a role in maintaining 
relatively low and uniform stress concentrations across 
the valve leaflets, we hypothesize that the 
conformational changes largely dictate whether the 
valve closes completely and that modeling the 
conformational changes along with a simple model of 
tissue properties will enable us to accurately predict the 
closed state given a particular valve geometry.  
 
To meet these requirements, we have developed a 
computational model based on a mass-spring system, a 
method used in computer graphics to simulate the 
dynamics of fabric [16]. Mitral valve geometry is read 
directly from computed tomography (CT) data. This 
data is used to generate a triangular mesh. The mesh is 
treated as a system of masses connected by springs, and 
dynamics equations are used to evolve the closed state 
of the valve. The closed state predicted by the model is 
compared directly with images of the actual valve taken 
in the closed state.  
 
 

2.  METHODS 
 

2.1  Image acquisition 
 
The mitral valves of two explanted porcine hearts were 
statically loaded with air via tubing inserted through the 
aorta, past the aortic valve, and into the left ventricle. 
The aorta was then cinched tightly around the tubing. 
To prevent air leakage through the coronary arteries, 
they were sutured closed. In order to supply air at low 



pressure with high accuracy, a circuit consisting of low-
pressure regulators and electronic pressure sensors was 
constructed. The hearts were imaged in two different 
states using a micro-CT system (microCAT, Siemens, 
Munich, Germany): (1) with the mitral valve in the 
open position (no applied pressure), and (2) with the 
mitral valve in the closed position under typical porcine 
peak systolic pressure of 100 mmHg. Images were 
acquired at 100 µm isotropic voxel size.  
 
2.2  Image processing 
 
The volumetric CT image of the hearts were cropped to 
include only the mitral valve leaflets and chords. The 
resulting image of the valve was segmented, and an 
isosurface was fit to the data in Matlab (Mathworks, 
Natick, MA). The surface consists of an unstructured 
triangular mesh of points covering all surfaces of the 
leaflets and chords. The set of triangles comprising the 
atrial surface of the leaflets was isolated, and all chords 
that attach to either the free edge or the belly of the 
leaflets were approximated with line segments.  
 
2.3 Mass-spring model 
 
2.3.1 Model structure 
The dataset consisting of the triangulated mesh of the 
open valve leaflets along with the line segments 
representing the chords was used as the basis for a 
mass-spring model. All edges of triangles were treated 
as translational springs supporting only tension, and the 
mass of each triangular element (assuming finite 
thickness and known mass density) is treated as being 
lumped at the nodes. An example of a simple mass-
spring mesh is shown in Fig. 2. Spring constants for the 
springs comprising the valve leaflets were chosen using 
the following equation for approximating elastic 
membrane behavior with spring meshes [22]: 

 

 
 

(1) 
 
 

where kc is the spring constant for a given triangle side, 
E2 is the two-dimensional Young’s modulus for the 
leaflet tissue, the summation term represents the area of 
all triangles sharing side c, and the denominator is the 
squared length of side c. The two-dimensional Young’s 
modulus is the product of Young’s modulus and leaflet 
thickness. We assume uniform leaflet thickness of 
1mm.  
 
The stress-strain relationship for mitral valve leaflet 
tissue in known to be nonlinear, with a highly 
extensible pre-transitional region followed by a linear 
post-transitional region of much higher stiffness (see 
Fig. 3). We approximated this relationship using a 
bilinear fit, with pre- and post-transitional stiffness of 
100 and 6000 kPa and transition point of 25% strain 
[14]. Chord segments were also treated as translational 
springs supporting only tension, and spring constants 
were computed as 1-d Young’s moduli based on chordal 
length, cross-sectional area and Young’s modulus for 
the chords [11]. Nodal mass was computed as the 
product of the nodal area (one third of the sum of the 
areas of triangles sharing that node), leaflet thickness, 
and mass density.  
 
2.3.2  Model dynamics 
The dynamics of the mass-spring system can be 

Fig. 3. Example of typical stress-strain relationship 
observed in mitral valve leaflets. Young’s modulus of 
the pre-transitional region, Epre, is the slope of the 
stress-strain curve at low strains, and Young’s 
modulus of the post-transitional region, Epost, is the 
slope at high strains. The transition point is denoted 
as ε*.  

Epost 

ε* ε 

σ 

Epre 

Fig. 2. Example of a simple mass-spring mesh. All 
triangle sides are treated as translational springs, and 
mass is lumped at the nodes. 
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expressed in state-space form as: 
 

(2) 
 
 
where x and v are vectors of nodal positions and 
velocities, respectively, M-1 is the inverse mass matrix 
(a diagonal matrix with the reciprocal of nodal mass on 
the main diagonal), and f is the vector of net nodal force 
due to springs and external forces. Implicit numerical 
integration is used because it allows larger integration 
step sizes and correspondingly faster simulations [1]. In 
order to use implicit integration, we discretized 
equation (2) using a second-order backward-difference 
formula as: 
 
 

(3) 
 
 
 
where h is the integration time step. The net nodal force 
at step n+1 depends on the nodal positions at step n+1 
making the set of equations nonlinear. It can be 
linearized by replacing f at step n+1 with a first-order 
Taylor series approximation: 
 
 

(4) 
 
 
Following a method used in a study simulating the 
behavior of cloth [3], equations (3) and (4) can be 
combined and expressed as the linear system: 
 
 
 
 

(5) 
 
 
 
 
The Jacobian matrix expressing the partial derivative of 
the net force vector with respect to velocity is an N x N 
block matrix where N is the number of nodes in the 
system, and each block is 3 x 3, representing the three 
spatial coordinates. The forces due to springs as well as 
those due to applied pressure do not depend explicitly 
on nodal velocity, so their contributions are zero. Only 
the viscous damping term depends on nodal velocity, 
and its partial derivative yields –bI where b is the 
damping coefficient and I is the 3N x 3N identity 
matrix.  

 
The Jacobian matrix expressing the partial derivative of 
the net force vector with respect to position is the same 
size as the Jacobian described above. In this case, the 
forces due to viscous damping and those due to applied 
pressure do not depend explicitly on position, so their 
contributions are zero. The forces due to the 
translational springs depend directly on nodal position, 
and their contribution to the Jacobian was evaluated 
analytically. For the translational spring between nodes 
i and j, elements of the Jacobian are computed as: 
 

(6) 
 
and 

(7) 
 
where  
 
 
 

(8) 
 
 
In this equation, l is the undeformed length of the 
spring between nodes i and j, {sx sy sz}

T is the vector 
from node i to node j, and r = {sx sy sz}*{sx sy sz}

T. 
 
2.3.3  Integration method 
Equation (5) is a linear system where the first term on 
the left side is a sparse 3N x 3N matrix and the second 
term is a 3N x 1 vector of unknowns. All of the terms 
on the right side are 3N x 1 vectors which are known. It 
can be solved by inverting the sparse matrix. We used 
an iterative technique based on the method of conjugate 
gradients [2]. 
 
2.3.4  Boundary conditions 
Points that lie on the annulus as well the locations 
where chords attach to the heart wall are treated as 
fixed (zero-displacement). However, both of these sets 
of points move considerably as the valve closes – both 
during physiological valve closure and during the 
passive loading that we use to image the closed valve. 
The closed shape of the valve leaflets is strongly 
dependent upon the locations of the annulus and chord 
attachment points, so it is important that we use their 
positions in the closed state for our simulations. To do 
so, we took a CT scan of the valve in the closed, loaded 
state then generated a mesh and identified the annulus 
and chord attachment points on the mesh. The annulus 
points were registered to those from the mesh of the 
open valve using the iterative closest point algorithm 
[24]. Points lying on the annulus of the open mesh were 
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then linearly warped onto the annulus from the closed 
image, and the points of attachments of the chords were 
moved directly to their positions measured in the image 
of the closed valve. All of the nodes in the mesh will be 
disturbed by the jump in positions of the annulus and 
chord attachments. To calculate their equilibrium state, 
the spring network was solved using a quasistatic 
approach. This was done by assembling the global 
stiffness matrix and solving it subject to homogeneous 
boundary conditions on the free edge of the leaflet and 
nonhomogeneous boundary conditions on the annulus 
and chord attachment points [13]. Then, during 
dynamic simulations, the constraint on the free edge of 
the leaflet is relaxed while annulus and chord 
attachment points are constrained to remain fixed. 
 
Zero-displacement boundary conditions are 
implemented during simulations through use of the 
inverse-mass matrix appearing in equation (5). A 
particle i acted upon by springs but not subject to any 
displacement constraints will contribute the 3 x 3 
diagonal matrix given by (1/mi)I to the main diagonal of 
the 3N x 3N inverse-mass matrix. However, we could 
prevent the velocity of the particle from changing by 
making the inverse-mass equal to zero, i.e., giving the 
particle an infinite mass. An infinite mass cannot be 
accelerated, so it effectively ignores all forces exerted 
on it. The zero displacement boundary conditions at the 
mitral valve annulus and at nodes where chords 
terminate in the heart wall are handled this way.  
 
2.3.5  Collision handling 
Self-collisions of the leaflet were identified using a 
simple method based on proximity of vertices. Detected 
collisions were handled by inserting forces to render the 
collisions inelastic. 
 
2.3.6  Model parameters and implementation 
Some of the model parameters, such as constitutive 
properties of the tissues and applied transleaflet 
pressure, affect the closed shape of the valve at 
equilibrium. These parameters are assigned physically 
realistic values and are listed in Table 1. The remaining 
model parameters affect model dynamics and/or 
stability but not the closed shape of the valve, and those 
are assigned in order to minimize execution time and 
instability. The model was implemented in the Matlab 
programming language. 
 

Table 1. Model parameters.  
 
 
 
 
 

 

3.  RESULTS 
 

Images from several stages of the simulation process 
for two different data sets are shown in Fig. 4. The top 
pair of panels shows CT images of the portion of the 
volume containing the mitral valve (oblique view from 
the top) in the opened position. The next pair of panels 
shows the initial states of the mass-spring model of the 
valve from the same view. The chords are depicted by 
line segments. The next pair shows the meshes in the 
initial state but after the annulus and chord attachments 
have been moved to their positions for the closed state. 
The bottom pair of panels shows the meshes in the final 
closed and loaded state. The model shown in the left 
column of Fig. 4 contains 381 nodes, 631 triangles, and 

 

 

 

 
 
 
Fig. 4. Four stages of the modeling and simulation 
process are shown above for two different datasets 
(left and right columns). Panels, from top to 
bottom, show (1) CT scan of open mitral valve, 
(2) mesh of open valve, (3) mesh of open valve 
with annulus and chord attachment points moved 
to their positions from image of closed valve, and 
(4) mesh following simulation of valve closure.  

 

Parameter Value 
Epre, leaflets 100 kPa 

Epost, leaflets 6,000 kPa 

E, chords 40,000 kPa 
ε* 25% 
transleaflet pressure 13 kPa (100 mmHg) 

 



1013 translational springs. The model shown in the 
right column contains 276 nodes, 419 triangles, and 700 
springs. For the simulations, it took approximately 4000 
steps to close the valve leaflets. The valve model closed 
completely in approximately 5 minutes on a computer 
with 2.33 GHz dual core CPU.  
 
To quantitatively compare the closed state predicted by 
the model to the closed state generated from the image 
of the closed valve, the two surfaces were co-registered, 
again using the iterative closest point method based on 
vertices lying on the valve annuli. The error in the 
closed state predicted by the model is estimated by 
computing the magnitude of the distance between 
points on the closed image and their nearest points on 
the closed model. This distance is mapped to color and 
is plotted in Fig. 5, with the error map on the left and 
right corresponding to the data sets in the left and right 
columns of Fig. 4. The mean error across the surface 
was 1.7 mm for the error map on the left and 1.1 mm 
for the error map on the right. Maximum error was 
about 4 mm for both error maps. 
 
The sensitivity of model results to changes in several 
important model parameters was evaluated. We define 
sensitivity, S, as: 
 

(9) 
 
 
where Y is the measure of model accuracy, X is a 
parameter being tested, and X0 is the value of that 
parameter used for our simulations and listed in Table 
1. For Y, we use the mean error across the model 
surface. We approximate equation (9) as ΔY/ ΔX by 
increasing parameter X by 10%, repeating a simulation, 
and computing the resulting change in Y. Sensitivity to 
the constitutive properties of the leaflets is shown in 
Table 2.  

 
 

Table 2. Sensitivity to parameters. 
 
 
 
 
 
 
 

4.  DISCUSSION 
 

The goal of this study was to develop a simplified 
model of mitral valve mechanics specifically for use in 
surgical planning. There are three main requirements 
for the model. First, the model must represent the 
geometry of the valve structures in sufficient detail to 
allow patient-specific simulation. Second, the model 
must be able to simulate valve closure quickly (on the 
order of minutes) and robustly. The third requirement 
concerns accuracy. Accuracy of simulations is affected 
by model assumptions, choice of mechanical 
parameters, and the discretization of the leaflets and 
chords. Each of these requirements will be discussed 
below. 
 
To produce models capable of conveying patient-
specific anatomical detail, our models are based on 
dense meshes produced directly from image data rather 
than on a parametric fit or on geometry data averaged 
across many valves. We used micro-CT images of 
explanted hearts statically loaded with air to acquire 
mitral valve geometry. This method provided high 
resolution and contrast and enabled us to acquire 
images under carefully controlled loading conditions. 
Micro-CT scans cannot be used to acquire images in the 
clinical setting because of the small bore diameter, and 
a patient’s heart cannot be statically loaded for imaging. 
However, flat-panel volume CT can be used to image a 
human heart in vivo with similar resolution to our data 
[10], and cardiac gating allows images to be captured at 
any point in the cardiac cycle, obviating the need for 
static loading. Our use of air to load the valve provided 
excellent contrast and allowed us to use very simple 
methods for segmenting the valve leaflets and chords. 
However, it is likely that valve tissues could be 
adequately segmented by introducing contrast agents to 
the blood and by using more sophisticated segmentation 
methods. 
 
Our mitral valve models were able to simulate one 
closing cycle in approximately 5 minutes, and 
significant speed gains can likely be made by 
implementing some of the bottleneck sections of the 
program in the C programming language. Further gains 
could be made by taking advantage of multiple CPU’s 

Fig. 5. Error between the closed state of the valve 
simulated by the model and the mesh produced 
directly from the image of closed valve. Error, in 
millimeters, is mapped to color.  

4 mm 

0 

0XX

Y
S

∂
∂=

Parameter Sensitivity 
Epre -0.00349 mm/KPa 
Epost 2.13 x 10-7 mm/kPa 
ε* -0.0221 mm/% 



or by using the GPU [19]. Simulations proved to be 
very robust. Stable simulations resulted for every mesh 
geometry tested, and stability was not affected by the 
quality of triangles in the mesh.  
 
In choosing mass-spring modeling over finite element 
approaches, we have deliberately traded off some 
accuracy in the interest of speed and robustness. Finite 
element methods are based on continuum mechanics 
and can rigorously handle the anisotropy and 
nonlinearity that are known to characterize valve 
biomechanics [17]. Furthermore, they provide detailed 
analysis of stresses throughout the structures under 
load. However, our accuracy goals are more modest. At 
present, the surgeon hopes simply to create a mitral 
valve repair geometry that closes completely at peak 
load; our model is presented as a tool that could better 
inform surgeons as they try to understand the 
relationship between the geometry of the opened valve 
and its closed state. Analysis of stress concentrations 
throughout the leaflets is beyond the capability of the 
type of model presented here.  
 
Based on our experience both during surgery and in 
experiments with explanted hearts, the ability of the 
mitral valve to close effectively is primarily governed 
by gross geometric factors rather than by constitutive 
properties of the leaflets and chords. To be useful, a 
model only needs to be able to predict whether a valve 
complex with given geometry will close completely 
under load. To validate our model, we qualitatively and 
quantitatively compare the closed state predicted by the 
model to the image of the closed valve. 
 
Results can be qualitatively assessed by comparing 
features of the closed surface predicted by the model 
with those of the surface produced directly from the 
closed image. The main contours of the leaflet that were 
visible in the image of the closed valve were present in 
the model in the closed position, and the curve formed 
by the coaptation (meeting) of the leaflets was similar. 
For both mitral valves that we modeled, the maximum 
error of approximately 4 mm occurred in the middle of 
the leaflets. Two factors probably contribute to this 
error. First, by representing the mitral valve leaflets as 
an isotropic membrane, we neglect it strong orthotropic 
behavior, which is likely to play a role in determining 
leaflet shape. Second, for chords that attach to the free 
edge of a leaflet, we attach them at a single point on the 
edge, while in reality, the chord inserts into the leaflet 
over a long overlapping region and imparts high 
stiffness in the direction of the chord to the adjacent 
leaflet. 
 

By quantifying and plotting the error in the closed state 
predicted by the model, we can clearly see in which 
regions the model succeeds or fails to capture the actual 
behavior. Our method for simulating the mitral valve 
makes significant progress toward meeting the 
requirements of a surgical planning system. Model 
geometry is derived directly from images, simulating 
the closed state of the valve is rapid and has the 
potential to be sped up significantly, and the model is 
able to predict many features of the closed state 
accurately and estimates the actual position of the 
closed leaflets with mean errors of 1.7 mm or less.  
 
The limited sensitivity analysis that we performed 
demonstrates that the accuracy of the model in 
predicting the closed state of the leaflets is not highly 
sensitive to the choice of leaflet properties. For 
example, a 1 kPa (i.e., 1%) increase in the pre-
transitional Young’s modulus for the leaflets results in a 
decrease in model error of less than 1/100th of a 
millimeter. It is desirable for our model to be relatively 
insensitive to leaflet properties. Measured values for 
these properties show a large variance [14], and 
predictive value of the model is questionable if different 
physiological choices of parameters lead to large 
changes in model accuracy.  
 
It is important to note that closure of the valve leaflets 
is not the only metric of valve function, and hence 
quality of potential repair. One might also consider 
stress levels in the leaflets, a metric important for long-
term durability of the valve. However, accurate 
simulation of the closed state is a good first-order 
criterion for valve function.  
 
 

5. CONCLUSIONS 
 

Our method of simulating closure of the mitral valve 
meets the requirements of surgical planning for valve 
repair. Simulations are fast and robust, and patient-
specific models can be derived directly from images. 
Results are in reasonable agreement with images of the 
loaded valve. The relationship among the full set of 
model parameters need to be better understood, and the 
effect of changing the mesh density on speed and 
accuracy needs further investigation. 
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