Fast image-based model of mitral valve closurefor surgical planning
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ABSTRACT

Surgical repair of the mitral valve results in better
outcomes than valve replacement, yet diseased valves
are often replaced due to the technical difficulty of the
repair process. A surgical planning system based on
patient-specific medical images that alows surgeons to
simulate and compare potential repair strategies could
greatly improve surgical outcomes. The system must
simulate valve closure quickly and handle the complex
boundary conditions imposed by the chords that tether
the valve leaflets. We have developed a process for
generating a triangulated mesh of the valve surface
from volumetric image data of the opened valve. The
closed position of the mesh is then computed using a
mass-spring model of dynamics. In the mass-spring
model, triangle sides are treated as linear springs
supporting only tension. Chords are also treated as
linear springs, and self-collisions are detected and
handled inelastically. The equations of motion are
solved using implicit numerical integration. The
simulated closed state is compared with an image of the
same valve taken in the closed state to assess accuracy
of the model. The model exhibits rapid valve closure
and is able to predict the closed state of the valve with
reasonable accuracy.
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1. INTRODUCTION

The mitral valve is the most complex of the four heart
valves and is the one most often associated with disease
[21]. It consists of two leaflets that open and close as
the heart beats to ensure one-way flow of blood into the
left ventricle. The leaflets are restrained by fibrous
chords during closure. See Fig. 1. Mitral regurgitation
(MR) occurs when the valve fails to close adequately
during ventricular contraction and blood leaks
backward through the incompetent valve. It can be
caused by ischemic heat disease, dilated

cardiomyopathy, rheumatic valve disease, or infection
[5]. MR can lead to heart failure if left untreated, and
the only effective treatment is surgery. The two primary
surgical treatment options are repair of the native mitral
valve tissue and replacement of the valve with a
prosthetic valve. Repair has been shown to result in
better function and long-term survival than replacement
[9,15,20], so surgical repair of the mitral vave is
preferable to valve replacement for the majority of
patients who require treatment for MR [7]. However,
replacement is often performed instead of repair due the
technical difficulty of valve repair [18].

Valve repair typically requires use of cardiopulmonary
bypass, a procedure which involves arresting the heart
and emptying it of blood. The surgeon must try to
imagine how the valve leaflets, and/or the chords that
tether them, must be modified to make the valve close
effectively after the heart is refilled with blood and
pumping has been restored. For example, the surgeon
must often decide how much tissue to cut out of an
open valve lesflet to cause a particular change in the
closed shape of the valve or how to modify the length
or attachment point of a chord to result in effective
valve closure. Practice and experience are crucial for
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Fig. 1. Cross section of the left heart with mitral valve
shown in the closed position. Mitral valve structures are
identified by arrows.



the development of the skills necessary to reliably
repair mitral valves. Studies show that experienced
surgeons at large clinical centers have a much better
record of successful repairs, and valve replacement is
often chosen instead of repair at low volume centers

(8].

Surgical simulation has the potential to enable less
experienced surgeons to effectively repair valves. This
would allow many patients to undergo valve repair who
would otherwise have undergone valve replacement.
We propose that computer simulations of mitral valve
closure can be used to help the surgeon plan effective
repair strategies on a patient-specific basis. Under the
proposed scheme, the geometry of a particular patient’s
valve would be extracted from medical images acquired
prior to the date of surgery. The surgeon could then
modify a computer model of that valve to reflect a
particular surgical repair strategy and would use
computer simulation to predict the closed state of the
valve, indicating the effectiveness of that particular
repair strategy. In this way, many potential repair
strategies could be simulated and compared prior to the
actual surgery, informing the surgeon to help choose the
best strategy for a particular patient.

An important component of the proposed surgical
simulation system is the computational model of the
mitral valve.  The proposed surgical simulation
environment places two important requirements on the
computational model. First, the valve geometry must be
sufficiently detailed to allow predictive modeling on a
patient-specific basis. Second, the model must be able
to compute the closed state relatively quickly. A
surgeon may want to simulate ten or more surgical
strategies for a given patient. For practical use, the time
to simulate one valve closure must be on the order of
minutes.

Several groups have developed finite element models of
the mitral valve to study its function [6,11,23]. While
these studies model ed important aspects of the complex
behavior of the valve, their methods are not well-suited
for the surgical simulation environment. They were
based on averaged valve data, rather than subject-
specific images, assuming symmetry of the leaflets
through their midline and neglecting the branching
structure of the chords. Another finite element study
modeled the valve structures asymmetrically and
obtained boundary conditions dynamicaly using
implanted sonomicrometry crystals in an animal model
[12]. Unfortunately their sonomicrometry method
cannot be used clinically. All of these finite element
models have execution times that are too slow for this

surgical planning application.

In developing a computational model of valve closure
to meet the requirements of speed and anatomic detail,
several assumptions were made. First we assumed that
a single static loading state, that of the peak pressure
reached during ventricular systole, was sufficient to
assess the viability of a given repair strategy. A partial
justification of this assumption is that the present
technique used at the end of the repair surgery to test
the repaired valve is to load the valve by injecting
saline under static pressure [5]. This assumption alows
us to ignore the complex interaction between blood
flow and the valve structures during ventricular filling
and ejection.

The second assumption concerns the role of tissue
deformation in determining the shape of the closed
valve. The valve leaflets undergo both conformational
changes as well as deformation (tissue strain) in going
from the open to the closed, loaded state. While the
congtitutive properties of valve leaflets and chords are
know to be complex and to play a role in maintaining
relatively low and uniform stress concentrations across
the valve ledflets;, we hypothesize that the
conformational changes largely dictate whether the
valve closes completely and that modeling the
conformational changes along with a simple model of
tissue properties will enable us to accurately predict the
closed state given a particular valve geometry.

To meet these requirements, we have developed a
computational model based on a mass-spring system, a
method used in computer graphics to simulate the
dynamics of fabric [16]. Mitral valve geometry is read
directly from computed tomography (CT) data. This
data is used to generate a triangular mesh. The mesh is
treated as a system of masses connected by springs, and
dynamics equations are used to evolve the closed state
of the valve. The closed state predicted by the model is
compared directly with images of the actual valve taken
in the closed state.

2. METHODS

2.1 Image acquisition

The mitral valves of two explanted porcine hearts were
statically loaded with air via tubing inserted through the
aorta, past the aortic valve, and into the left ventricle.
The aorta was then cinched tightly around the tubing.
To prevent air leakage through the coronary arteries,
they were sutured closed. In order to supply air at low



pressure with high accuracy, a circuit consisting of low-
pressure regulators and electronic pressure sensors was
constructed. The hearts were imaged in two different
states using a micro-CT system (microCAT, Siemens,
Munich, Germany): (1) with the mitral valve in the
open position (no applied pressure), and (2) with the
mitral valve in the closed position under typical porcine
peak systolic pressure of 100 mmHg. Images were
acquired at 100 pm isotropic voxel size.

2.2 Image processing

The volumetric CT image of the hearts were cropped to
include only the mitral valve leaflets and chords. The
resulting image of the valve was segmented, and an
isosurface was fit to the data in Matlab (Mathworks,
Natick, MA). The surface consists of an unstructured
triangular mesh of points covering al surfaces of the
leaflets and chords. The set of triangles comprising the
atrial surface of the leaflets was isolated, and all chords
that attach to either the free edge or the belly of the
|eaflets were approximated with line segments.

2.3 Mass-spring model

231 Modd structure

The dataset consisting of the triangulated mesh of the
open vave leaflets along with the line segments
representing the chords was used as the basis for a
mass-spring model. All edges of triangles were treated
as trandational springs supporting only tension, and the
mass of each triangular element (assuming finite
thickness and known mass density) is treated as being
lumped at the nodes. An example of a simple mass-
spring mesh is shown in Fig. 2. Spring constants for the
springs comprising the valve |eaflets were chosen using
the following equation for approximating elastic
membrane behavior with spring meshes [22]:

Fig. 2. Example of a simple mass-spring mesh. All
triangle sides are treated as trandational springs, and
mass is lumped at the nodes.

E,> area(T)
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where k. is the spring constant for a given triangle side,
E, is the two-dimensional Young's modulus for the
leaflet tissue, the summation term represents the area of
all triangles sharing side ¢, and the denominator is the
squared length of side c. The two-dimensional Young's
modulus is the product of Young's modulus and leaflet
thickness. We assume uniform leaflet thickness of
Imm.

The stress-strain relationship for mitral valve leaflet
tissue in known to be nonlinear, with a highly
extensible pre-transitional region followed by a linear
post-transitional region of much higher stiffness (see
Fig. 3). We approximated this relationship using a
bilinear fit, with pre- and post-transitional stiffness of
100 and 6000 kPa and transition point of 25% strain
[14]. Chord segments were also treated as translational
springs supporting only tension, and spring constants
were computed as 1-d Young's moduli based on chordal
length, cross-sectional area and Young's modulus for
the chords [11]. Nodal mass was computed as the
product of the nodal area (one third of the sum of the
areas of triangles sharing that node), leaflet thickness,
and mass density.

2.3.2 Mode dynamics
The dynamics of the mass-spring system can be

Fig. 3. Example of typica stress-strain relationship
observed in mitral valve leaflets. Young's modulus of
the pre-transitional region, Ee, is the slope of the
stress-strain  curve at low strains, and Young's
modulus of the post-transitional region, Eysg, is the
slope at high strains. The transition point is denoted
ase*.



expressed in state-space form as:

e

where x and v are vectors of nodal positions and
velocities, respectively, M is the inverse mass matrix
(a diagonal matrix with the reciprocal of nodal mass on
the main diagonal), and f is the vector of net nodal force
due to springs and externa forces. Implicit numerical
integration is used because it alows larger integration
step sizes and correspondingly faster simulations [1]. In
order to use implicit integration, we discretized
equation (2) using a second-order backward-difference
formulaas:
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where h is the integration time step. The net nodal force
at step n+1 depends on the nodal positions at step n+1
making the set of equations nonlinear. It can be
linearized by replacing f at step n+1 with a first-order
Taylor series approximation:
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Following a method used in a study simulating the
behavior of cloth [3], equations (3) and (4) can be
combined and expressed as the linear system:
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The Jacobian matrix expressing the partial derivative of
the net force vector with respect to velocity isan N x N
block matrix where N is the number of nodes in the
system, and each block is 3 x 3, representing the three
spatial coordinates. The forces due to springs as well as
those due to applied pressure do not depend explicitly
on nodal velocity, so their contributions are zero. Only
the viscous damping term depends on nodal velocity,
and its partial derivative yields —bl where b is the
damping coefficient and | is the 3N x 3N identity
matrix.

The Jacobian matrix expressing the partia derivative of
the net force vector with respect to position is the same
size as the Jacobian described above. In this case, the
forces due to viscous damping and those due to applied
pressure do not depend explicitly on position, so their
contributions are zero. The forces due to the
trandational springs depend directly on nodal position,
and their contribution to the Jacobian was evaluated
analytically. For the trandational spring between nodes
i and j, elements of the Jacobian are computed as:
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In this equation, | is the undeformed length of the
spring between nodes i and j, {s s s} is the vector
fromnodei tonodej, and r = {sxsysz}*{s(sysz}T.

2.3.3 Integration method

Equation (5) is a linear system where the first term on
the left side is a sparse 3N x 3N matrix and the second
term is a 3N x 1 vector of unknowns. All of the terms
on the right side are 3N x 1 vectors which are known. It
can be solved by inverting the sparse matrix. We used
an iterative technique based on the method of conjugate
gradients[2].

2.3.4 Boundary conditions

Points that lie on the annulus as well the locations
where chords attach to the heart wall are treated as
fixed (zero-displacement). However, both of these sets
of points move considerably as the valve closes — both
during physiological valve closure and during the
passive loading that we use to image the closed valve.
The closed shape of the valve ledaflets is strongly
dependent upon the locations of the annulus and chord
attachment points, so it is important that we use their
positions in the closed state for our simulations. To do
so, we took a CT scan of the valve in the closed, loaded
state then generated a mesh and identified the annulus
and chord attachment points on the mesh. The annulus
points were registered to those from the mesh of the
open valve using the iterative closest point algorithm
[24]. Points lying on the annulus of the open mesh were



then linearly warped onto the annulus from the closed
image, and the points of attachments of the chords were
moved directly to their positions measured in the image
of the closed valve. All of the nodes in the mesh will be
disturbed by the jump in positions of the annulus and
chord attachments. To calculate their equilibrium state,
the spring network was solved using a quasistatic
approach. This was done by assembling the global
stiffness matrix and solving it subject to homogeneous
boundary conditions on the free edge of the leaflet and
nonhomogeneous boundary conditions on the annulus
and chord attachment points [13]. Then, during
dynamic simulations, the constraint on the free edge of
the leaflet is relaxed while annulus and chord
attachment points are constrained to remain fixed.

Zero-displacement boundary conditions are
implemented during simulations through use of the
inverse-mass matrix appearing in equation (5). A
particle i acted upon by springs but not subject to any
displacement constraints will contribute the 3 x 3
diagonal matrix given by (1/my)I to the main diagonal of
the 3N x 3N inverse-mass matrix. However, we could
prevent the velocity of the particle from changing by
making the inverse-mass equal to zero, i.e., giving the
particle an infinite mass. An infinite mass cannot be
accelerated, so it effectively ignores all forces exerted
on it. The zero displacement boundary conditions at the
mitral valve annulus and a nodes where chords
terminate in the heart wall are handled this way.

2.3.5 Coallision handling

Self-callisions of the leaflet were identified using a
simple method based on proximity of vertices. Detected
collisions were handled by inserting forces to render the
collisionsinelastic.

2.3.6 Model parameters and implementation

Some of the model parameters, such as congtitutive
properties of the tissues and applied trandeaflet
pressure, affect the closed shape of the valve at
equilibrium. These parameters are assigned physically
realistic values and are listed in Table 1. The remaining
model parameters affect model dynamics and/or
stability but not the closed shape of the valve, and those
are assigned in order to minimize execution time and
instability. The model was implemented in the Matlab
programming language.

Table 1. Model parameters.

Parameter | Value

Epre: ledflets 100 kPa

Epos l€aflets 6,000 kPa

E, chords 40,000 kPa

e* 25%

trandeaflet pressure | 13 kPa (100 mmHg)

3. RESULTS

Images from several stages of the simulation process
for two different data sets are shown in Fig. 4. The top
pair of panels shows CT images of the portion of the
volume containing the mitral valve (oblique view from
the top) in the opened position. The next pair of panels
shows the initial states of the mass-spring model of the
valve from the same view. The chords are depicted by
line segments. The next pair shows the meshes in the
initial state but after the annulus and chord attachments
have been moved to their positions for the closed state.
The bottom pair of panels shows the meshesin the final
closed and loaded state. The model shown in the left
column of Fig. 4 contains 381 nodes, 631 triangles, and

Fig. 4. Four stages of the modeling and simulation
process are shown above for two different datasets
(left and right columns). Panels, from top to
bottom, show (1) CT scan of open mitra valve,
(2) mesh of open valve, (3) mesh of open vave
with annulus and chord attachment points moved
to their positions from image of closed valve, and
(4) mesh following simulation of valve closure.



1013 trandlational springs. The model shown in the
right column contains 276 nodes, 419 triangles, and 700
springs. For the simulations, it took approximately 4000
steps to close the valve leaflets. The valve model closed
completely in approximately 5 minutes on a computer
with 2.33 GHz dual core CPU.

To quantitatively compare the closed state predicted by
the model to the closed state generated from the image
of the closed valve, the two surfaces were co-registered,
again using the iterative closest point method based on
vertices lying on the valve annuli. The error in the
closed state predicted by the model is estimated by
computing the magnitude of the distance between
points on the closed image and their nearest points on
the closed model. This distance is mapped to color and
is plotted in Fig. 5, with the error map on the left and
right corresponding to the data sets in the left and right
columns of Fig. 4. The mean error across the surface
was 1.7 mm for the error map on the left and 1.1 mm
for the error map on the right. Maximum error was
about 4 mm for both error maps.

The sensitivity of model results to changes in several
important model parameters was evaluated. We define
sensitivity, S, as.

Y

S=""
X

(9)

where Y is the measure of model accuracy, X is a
parameter being tested, and X, is the value of that
parameter used for our simulations and listed in Table
1. For Y, we use the mean error across the model
surface. We approximate equation (9) as AY/ AX by
increasing parameter X by 10%, repeating a simulation,
and computing the resulting change in Y. Sensitivity to
the congtitutive properties of the leaflets is shown in
Table 2.

’ i: E '0

Fig. 5. Error between the closed state of the valve
simulated by the model and the mesh produced
directly from the image of closed valve. Error, in
millimeters, is mapped to color.

Table 2. Sensitivity to parameters.

Parameter | Sensitivity

Epre -0.00349 mnVKPa
Epost 2.13 x 107 mm/kPa
£* -0.0221 mm/%

4. DISCUSSION

The goal of this study was to develop a simplified
model of mitral valve mechanics specifically for use in
surgical planning. There are three main requirements
for the model. First, the model must represent the
geometry of the valve structures in sufficient detail to
allow patient-specific simulation. Second, the model
must be able to simulate valve closure quickly (on the
order of minutes) and robustly. The third requirement
concerns accuracy. Accuracy of simulations is affected
by model assumptions, choice of mechanical
parameters, and the discretization of the leaflets and
chords. Each of these requirements will be discussed
below.

To produce models capable of conveying patient-
specific anatomical detail, our models are based on
dense meshes produced directly from image data rather
than on a parametric fit or on geometry data averaged
across many valves. We used micro-CT images of
explanted hearts statically loaded with air to acquire
mitral valve geometry. This method provided high
resolution and contrast and enabled us to acquire
images under carefully controlled loading conditions.
Micro-CT scans cannot be used to acquire imagesin the
clinical setting because of the small bore diameter, and
apatient’s heart cannot be statically loaded for imaging.
However, flat-panel volume CT can be used to image a
human heart in vivo with similar resolution to our data
[10], and cardiac gating allows images to be captured at
any point in the cardiac cycle, obviating the need for
static loading. Our use of air to load the valve provided
excellent contrast and allowed us to use very simple
methods for segmenting the valve leaflets and chords.
However, it is likely that valve tissues could be
adequately segmented by introducing contrast agents to
the blood and by using more sophisticated segmentation
methods.

Our mitral valve models were able to simulate one
closing cycle in approximately 5 minutes, and
significant speed gains can likely be made by
implementing some of the bottleneck sections of the
program in the C programming language. Further gains
could be made by taking advantage of multiple CPU'’s



or by using the GPU [19]. Simulations proved to be
very robust. Stable simulations resulted for every mesh
geometry tested, and stability was not affected by the
quality of triangles in the mesh.

In choosing mass-spring modeling over finite element
approaches, we have deliberately traded off some
accuracy in the interest of speed and robustness. Finite
element methods are based on continuum mechanics
and can rigorousy handle the anisotropy and
nonlinearity that are known to characterize valve
biomechanics [17]. Furthermore, they provide detailed
analysis of stresses throughout the structures under
load. However, our accuracy goals are more modest. At
present, the surgeon hopes simply to create a mitral
valve repair geometry that closes completely at peak
load; our model is presented as a tool that could better
inform surgeons as they try to understand the
relationship between the geometry of the opened valve
and its closed state. Analysis of stress concentrations
throughout the leaflets is beyond the capability of the
type of model presented here.

Based on our experience both during surgery and in
experiments with explanted hearts, the ability of the
mitral valve to close effectively is primarily governed
by gross geometric factors rather than by constitutive
properties of the leaflets and chords. To be useful, a
model only needs to be able to predict whether a valve
complex with given geometry will close completely
under load. To validate our model, we qualitatively and
quantitatively compare the closed state predicted by the
model to the image of the closed valve.

Results can be qualitatively assessed by comparing
features of the closed surface predicted by the model
with those of the surface produced directly from the
closed image. The main contours of the |eaflet that were
visible in the image of the closed valve were present in
the model in the closed position, and the curve formed
by the coaptation (meeting) of the leaflets was similar.
For both mitral valves that we modeled, the maximum
error of approximately 4 mm occurred in the middle of
the leaflets. Two factors probably contribute to this
error. First, by representing the mitral valve leaflets as
an isotropic membrane, we neglect it strong orthotropic
behavior, which is likely to play a role in determining
leaflet shape. Second, for chords that attach to the free
edge of aleaflet, we attach them at a single point on the
edge, while in reality, the chord inserts into the leaflet
over a long overlapping region and imparts high
stiffness in the direction of the chord to the adjacent
leaflet.

By quantifying and plotting the error in the closed state
predicted by the model, we can clearly see in which
regions the model succeeds or fails to capture the actual
behavior. Our method for simulating the mitral valve
makes significant progress toward meeting the
requirements of a surgical planning system. Model
geometry is derived directly from images, simulating
the closed state of the valve is rapid and has the
potential to be sped up significantly, and the model is
able to predict many features of the closed state
accurately and estimates the actual position of the
closed leaflets with mean errors of 1.7 mm or less.

The limited sensitivity analysis that we performed
demonstrates that the accuracy of the model in
predicting the closed state of the leaflets is not highly
sensitive to the choice of leaflet properties. For
example, a 1 kPa (i.e, 1%) increase in the pre-
transitional Young's modulus for the leaflets resultsin a
decrease in model error of less than 1/100" of a
millimeter. It is desirable for our model to be relatively
insensitive to leaflet properties. Measured values for
these properties show a large variance [14], and
predictive value of the model is questionableif different
physiological choices of parameters lead to large
changes in model accuracy.

It is important to note that closure of the valve leaflets
is not the only metric of valve function, and hence
quality of potential repair. One might also consider
stress levels in the leaflets, a metric important for long-
term durability of the valve. However, accurate
simulation of the closed state is a good first-order
criterion for valve function.

5. CONCLUSIONS

Our method of simulating closure of the mitral valve
meets the requirements of surgical planning for valve
repair. Simulations are fast and robust, and patient-
specific models can be derived directly from images.
Results are in reasonable agreement with images of the
loaded vave. The relationship among the full set of
model parameters need to be better understood, and the
effect of changing the mesh density on speed and
accuracy needs further investigation.
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