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Abstract

Very little is known about the deformation effects of tumour growth within the brain. Computer simulations have the potential to
calculate such deformations. A method for computing localised high deformations within the brain's soft tissue is presented. Such
knowledge would be significant towards neuroscience and neurosurgery, particularly for quantifying tumour aggressiveness,
therapy planning, as well as surgical planning and simulation. A Finite Element mesh used in the vicinity of a growing tumour is
very quickly destroyed and cannot be used reliably unless complicated automatic re-meshing exists. Mesh-free methods are
capable of handling much larger deformations, however are known to be less reliable that Finite Element analysis for moderate
deformations. A mixed-mesh approach utilises mesh-free regions within localised high-deformation zones, with the remaining
model comprised of a Finite Element mesh. In this study, a new algorithm is proposed coupling the Finite Element and Element
Free Galerkin methods for use in applications of high localised deformation, such as brain tumour growth. The algorithm is
verified against a number of separate Finite Element and mesh-free problems solved via validated/commercial software.
Maximum errors of less than 0.85 mm were maintained, corresponding to the working resolution of an MRI scan. A mixed-mesh
brain model is analysed with respect to different tumour growth volumes located behind the left ventricle. Significant
displacements of up to 9.66 mm surrounding a 4118 mm’ sized tumour are noted, with 14.5% of the brain mesh suffering
deformation greater than 5 mm.
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In biomechanics of soft tissues, it is common to encounter extreme deformations that cannot be handled
by traditional modelling methods, such as the Finite Element method. An example of this is brain tumour
growth. Very little is known within this field and such a model should be useful for medical use,
particularly in quantifying tumour aggressiveness, therapy planning, as well as surgical planning and
simulation. The three dimensional mechanical response of the brain is highly non-linear, involving
extremely complex constitutive models and geometry, which is very time consuming to model using
public Finite Element (FE) software (Miller, Taylor, ef al., 2005). Furthermore the Finite Element method
on its own will be inaccurate and problematic for modelling the brain deformation response to tumour
growth, since the mesh surrounding the tumour is easily distorted, consequently destroying elements.
Alternatively a solely mesh-free Element Free Galerkin (EFG) model will prove to be inefficient,
suffering from consistency and stability issues, as well as Dirichlet boundary difficulties. A coupled
Finite Element / Element Free Galerkin approach is proposed to overcome the shortcomings of each
individual method, by placing a mesh-free domain around the tumour affected location, with the

remaining brain tissue modelled as a hexahedral mesh.

1. Background Theory

The Finite Element method is a numerical approach for solving systems of partial differential equations,
by discretising the domain into small volumes (elements) and estimating the solution in each of the
elements via shape functions. The estimated solutions are then substituted into integral differential
equations of the weak form with the residuals minimised (Bathe, 1996). The Element Free Galerkin
method (Horton, 2006) conducts the same process, without requiring the connectivity of elements. Shape
functions are not within elements but small neighbourhoods of nodes, called support domains, each of
which is associated to an integration point (Belytschko, Krongauz, et al., 1996). The Moving Least

Squares formulation is used to minimise residuals within the EFG method.

2. Coupled Finite Element / Element Free Galerkin Method

Mixed-mesh coupling is achieved by constructing interface support domains in between FE and EFG
boundaries, as shown in Figure 2.1. Interface support domains are created by allowing the EFG nodal
support domains to extend into the FE region, consuming nodes. They follow the same numerical
approach as the EFG method. FE nodes that exist within a nodal support domain are considered by both
the EFG and FE methods with their nodal forces summed together.
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3. Program Implementation

The implementation of the tailor made localised soft tissue deformation simulator is divided into three
main sections:
® Preprocessor - Reads in mixed mesh model and constraints, pre-computing all initial
configuration stationary properties.
® Analysis Solver - Executes the main time loop performing calculations in accordance with the
Total Lagrangian Explicit Dynamics Algorithm.
o Postprocessor - Uses series of visualisation tools to view and identify implications of analysis.
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Figure 3.1: Block diagram of the preprocessing phase (red) and analysis solver (green).

The script language, MATLAB, was chosen for the preprocessing and postprocessing stages of the
simulator. MATLAB is a very powerful, high level, language, containing many built in functions, which
are of particular use for dealing with matrices. This was beneficial for the preprocessing stage, which
requires many large matrix operations. Furthermore MATLAB holds significant advantages for the
postprocessing phase as it has excellent visualisation tools, allowing for advanced analysis of the results.
Unfortunately MATLAB performs much slower than compiled languages, hence it was not feasible for
use in the implementation of the analysis solver. The functional programming language, C, was chosen as

it is very fast, with inbuilt optimisation compilation abilities.

3.1 Preprocessor

The implementation of the preprocessor phase can be broken down into a number of smaller subsections.
It should be noted that the computational performance of this phase is less important than the analysis
solver, since for coarse mixed-meshes, the run time is negligible in comparison.



3.1.1 Simulation Properties

All of the major simulation properties are user defined and must be set prior to running the preprocessor.
This includes the maximum displacement, time-step, and the total simulation time. The simulation
properties provide enough information to setup the deformation loading curve, for applying incremental
displacements at each time-step. The default deformation loading curve is defined in (3.1),
2 3
4 4 t
d(t)=|10-15(=)+6(=) |(= 1
(0=[10-15(£)+6(L) (L) | G

where T is the total simulation time.

3.1.2 Mixed-Mesh Reader

The nodes, elements, and boundary conditions of the mixed-mesh are read in from ABAQUS output files.
Two ABAQUS output files are required, both containing nodal positions and boundary conditions for
each method, with the FE output file containing addition information about element composition. The
data format of the information read from the FE and EFG ABAQUS files is displayed in Table 3.1. A
coupled list of all nodes, Xcoupled, s then formed by combining Xrg and Xgre in that order.

FE Nodes XrE (Niodes-re X 3) matrix of all FE node locations. Each row of
the matrix corresponds to the FE node number.

Elements Ere (Neemensre X 8) matrix of all FE elements. Each row of the
FE matrix corresponds to the element number, containing eight
ABAQUS node numbers forming a hexahedral.
Output  Constrained FE Nodes FE_node_fix (N,ou.re X 3) binary matrix of all FE nodes, 1
represents if the node is fixed for that dimension.
Displaced FE Nodes FE_node_disp (N,odesre X 3) binary matrix of all FE nodes, 1
represents if the node is displaced for that dimension.
EFG Nodes XerG (Nodes-er6 X 3) matrix of all EFG node locations. Each row
EFG of the matrix corresponds to the EFG node number.
ABAQUS / Constrained EFG Nodes EFG_node_fix (Nyoues.gr6 X 3) binary matrix of all EFG nodes, 1
LS-Dyna represents if the node is fixed for that dimension.
Output Displaced EFG Nodes EFG node_disp (Nyessrc X 3) binary matrix of all EFG

nodes, 1 represents if the node is displaced for that dimension.
Table 3.1: Data format of information read in from the ABAQUS output files.

An integration point grid for the EFG and interface region should also be read in. This is just a matrix
holding the three dimensional coordinates of the integration point locations. It is ideal to have a regular
grid, such that each integration point can be assigned the same volume.

3.1.3 Material Model

The material model information is to be set, requiring Young's modulus, Poisson's ratio, and the density



for each material identified within the mixed-mesh. From this data the lame’ material constants can be
calculated as follows.

_ \%
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The material model is based upon the Neo-Hooken model (Bathe, 1996).

3.1.4 Support Domains

The construction of nodal support domains for the EFG and interface region is quite simple following on
from Horton (2007). The method requires a fixed number, 7, of nodes per support domain, which is user
defined. Support domains are then constructed by finding the n closest nodes to each integration point. A
limit on the number of Finite Element nodes allowed within a single support domain removes the
possibility of an entire element being consumed by a support domain, which would have no hourglass
control measures. Having a fixed number of nodes per support domain is faster and more robust than
typical support domain constructions, which rely on defining a fixed local volume with a varying number
of nodes.

3.1.5 Hexahedral Shape Functions

The hexahedral shape functions and derivatives are determined from a series of calculations. The matrix
of hexahedral shape function natural derivatives is defined as,

I -1 -1 1 I -1 -1 1

1 1 -1 -1 1 I -1 -1 (3.4)

1 1 1 I -1 -1 -1 -1

using the node numbering convention as described in Bathe (1996). Each elemental Jacobian, J, is then

Ohr'=—

o0 | —

calculated based on the element nodal position vector, X .

J=0hr"x (3.5)
Using the elemental Jacobians, hexahedral shape function derivatives, O/, are then computed by,
oh=0hr(J " (3.6)

3.1.6 Moving Least Squares Shape Functions

Calculations of the Moving Least Squares shape functions for each nodal support domain of size n, are
derived from Fries and Matthies (2003). Consider a three dimensional space vector of monomial basis
functions, p, of length m.
T 2 2 2 3.3 3

p(x)Z[l X y z xy xz yz x Yy z xyz .. x Y z]
The nodal displacement approximation, u”"(x), is calculated with respect to the coefficient vector, a(x).
ie. u"(x)=p"(x)a(x) (3.7)
The formulation of a(x) is determined by minimising the weighted residual function, J, where,

=3 W (d)(p (x)alx)-ulx)) G8)



Minimising J is done by considering

9 _
oa (3.9
which leads to the following linear relationship,
A(x)a(x)=B(x)U (3.10)
In (3.10) 4 is an m x m matrix known as the moment matrix defined by,
A(x):ZW(dl.)p(xi)pT(xi) 3.11)
i=1

B is an m x n matrix given by,
B(x)=[W(d,)p(x,) W(d,)p(x,) W(d)p(xy) .. W(d,)p(x,)] (3.12)

and U is the vector of length » as shown,

U'=[u, u, uy, .. u] (3.13)
By finding the inverse of 4 equation (3.14) can be solved,

a(x)=A4"'(x)B(x)U (3.14)
Substituting (3.14) back into (3.7) we get the nodal displacement approximation,

u'(x)=®,(x)U (3.15)
where the shape function vector @ of length # at the i" node in the support domain is given by,

,(x)=2, p;(x)(47(x)B(x)),, (3.16)

J

The length m of p is user defined and should be chosen such that shape functions are all interpolated in a
similar fashion in each dimension. There is a trade-off between the total number of integration points and
the size of m due to the limitations on computational speed. Single point integration is well suited for low
order interpolations, hence a lower value of m is chosen, while using a larger number of support domains.
More support domains relieve the emphasis on stress calculations at any integration point. It has been
found in Horton (2007) that setting m = 4 and using 8 nodes per support domain (n = §) is substantial
enough for deformation to be transferred between support domains. In addition it has been noted that by
using very small support domain sizes, the weighting of each node can be considered equal, without
having a negative impact on the accuracy of the solution. This reduces the risk of generating singular
matrix A.

3.1.7 Mass Allocation

Initially a matrix, Mgg, is setup for handling the mass of all nodes within the FE domain. The mass of
each node within an element for Mg is calculated using the determinant of each elemental Jacobian from
(3.5) and the material density, p.

AM, . =pdet(°]) (3.17)

The nodal contributions for all elements are then summed up to give M.

A coupled mass matrix, Meeupiea, 1S then created for allocating masses to all EFG and interface nodes
involved in support domains. Each integration point is allocated a volume and consequently a mass based



upon the materials density. This mass is equally divided amongst the number of nodes within the support

domain,

A

de —
node n

AM (3.18)

where, n represents the number of nodes per support domain, and 7 is the volume of the specific
integration point, g. The mass of each FE node in Myg is then added to Meeupiea, giving the entire nodal
mass of the system. This is a very effective method of distributing mass throughout the EFG/interface
region since nodes that appear in more support domains will receive more forces. One concern, however,
is that nodes not included in many support domains will have a low mass, which can result in unbalanced
forces and high accelerations. This is undesired, often leading to unstable simulations. It can be avoided
by involving each node in at least two or three support domains as suggested in Horton (2007). A further
measure is implemented so that any node that manages to escape support domain allocation is removed to
prevent massless nodes entering the analysis.

3.2 Analysis Solver

The analysis solver is the most computationally intensive phase of the simulator. It consists of the main
time loop described in the Total Lagrangian Explicit Dynamics Algorithm (Miller, Joldes, et al., 2007),
with a few additional considerations. Efficient programming is very important to minimise the number of
calculations required in the main time loop, substantially increasing the performance of the algorithm.

3.2.1 Main Time Loop

Both the Finite Element and Element Free Galerkin methods follow the same calculations for the main
time loop of the TLED algorithm, making it quite easy to implement the coupling as treating the entire
domain as a single method.

t+

. . . t—At t At t
Three displacement matrices representing, o, o, ol , and a global nodal force vector, F,

were defined. Psuedocode below presents the implementation of the main time loop.

Begin Time Loop (¢ = 4¢)

- Update Displacements t_A‘t,u:Ju
t __t+At
M= U
— Reset Global Nodal Force Vector "F=0

— Loop Over All Elements & Support Domains
— Compute elemental/support domain displacement derivatives

(k) _Apt
uz. , {— Ohyu
"t
u*=® u
— Calculate deformation gradient (t,X =u; i+,

- Inverse Right Cauchy-Green deformation tensor
[ty Tty 1
C,;=[yX X
- Jacobian Determinant J=det(,X)



— Second Piola-Kirchoff Stress
S,=u(1—C,)+AJ(J—1)C,
(;Sll OtSIZ (;S3l
t —
OS_ (;SIZ 0tS22 (t)S23

t t t
0S31 0S23 OSSS

— Integrate to get Elemental/Support domain nodal force
‘FY=gs!xson"

A

- Update Global Force (ple) =t (,.mm’)+tF Ek)—i-tF (l.g )

— End Loop Over Elements/Support Domains
- Use Central Difference Method to Calculate Displacements

2
t+At - A t t t t—At
o= 7 F+2 oU—
- Loop Over Constrained Nodes t+A(t,ui =0
-  Loop Over Displaced Nodes t+A3ui =d(At)

End Time Loop (t = T)

3.2.2 Hourglass Control

One of the biggest disadvantages to using single-point integration for hexahedral elements is the
requirement for controlling zero energy modes, known as hour-glassing (Hallquist, 2006). In order to
control hour-glassing within the Finite Element domain, resistance providing artificial stiffness is
implemented, which has a negligible effect on stable global modes. This is an efficient method following
on from modifications of Flanagan and Belytschko (1984) perturbation method (Joldes, Wittek, et al.,
2007). An additional hourglass control force is added to the total force of the system, based on the
hourglass resistance and displacement. Hourglass base matrix is setup as:

1 =1 1 -1 1 -1 1 -1
1 1 -1 -1 -1 -1 1 1

H'=
1 =1 =1 1 -1 1 1 -1 (3.19)
101 -1 1 1 -1 1 -1

The k™ elemental hourglass control force, 'F (hl;) , can then be calculated by the following series of

equations:

ah("),,g=H—6 h(k)[x(k)]TH (3.20)
=i, =100, 1 " (3.21)

Wijng=oli, jng = i



R, (A+2pu) Vol o h(k)]'ah(h’gu
8

‘Fi)= b (3.22)

K. . .
where O A )hg is the k™ elemental hourglass shape function derivative, ¥, represents the elemental
hourglass displacement derivatives, and R, is the hourglass resistance constant. The hourglass force is
then added to the elemental force calculated without hourglass control as shown in (3.23).

tF(k):tF(k)_i_tF(hkg) (3.23)

A good value for the hourglass resistance, R, was found to be Ry, = 0.04/9.

4. Validation & Results

4 .1 Validation

The coupling method was validated by a series of quasi-static deformation tests, using the material
properties of healthy brain tissue. Initially the algorithm was trialled and compared against a Finite
Element solution using commercial software (ABAQUS) for a cylinder undergoing compression,
extension, and shear deformations. The mixed-mesh contained an outer FE region with an inner EFG
core. The results were further compared against validated Element Free Galerkin software, showing that
the coupling method performs slightly better than a solely EFG method and is still very close to the FE
solution. The results shown in Table 4.1 reflect the maximum nodal displacement error in comparison to
the FE ABAQUS solution.
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Figure 4.1: Final deformed mixed mesh cylinders. Compression (left), Extension (middle), Shear (right).
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Figure 4.2: Coupled cylinder edge deformation comparisons against FE ABAQUS solution and validated EFG

model undergoing extension (left), compression (middle), and shear (right).

The final validation test involved a partially constrained ellipsoid undergoing indentation on the surface.

The mixed mesh gave highly accurate results in comparison with a FE mesh simulated in ABAQUS.
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Figure 4.3: Cross-section comparison of deformed boundary for indented ellipsoid.

Deformation Model

Maximum Error (mm)

Ax Ay Az
Cylinder Extension 0.1744 0.0055 0.0694
Cylinder Compression 0.1058 0.0177 0.0672
Cylinder Shear 0.0193 0.0273 0.0097
Ellipsoid Indentation 0.1628 0.0734 0.1055

Table 4.1: Maximum displacement errors in coupling method compared against FE ABAQUS solutions.

It is evident from Table 4.1, Figure 4.2, and Figure 4.3 that the maximum error in all cases falls within

the allowable 0.85 mm tolerance for surgical accuracy (Bourgeois, Magnin, et al., 1999).

An additional investigation has been conducted comparing tumour growth on an ellipsoid using a stand

alone FE mesh and a mixed-mesh, containing an EFG region of high density surrounding the proposed

area of localised high deformation. The accuracy of the FE results became questionable as tumours grew
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larger than 523.6 mm’. Figure 4.4 demonstrates the localised deformation to the FE mesh with a series of
increasing tumour growths. The onset of hour-glassing is present during the very early stages of tumour
growth, despite control measures in place to prevent this. Table 4.2 compares the maximum nodal
displacements, surrounding the localised high deformation region, using the stand alone FE mesh and the
mixed-mesh. It is apparent that initially both methods give quite similar results, however they begin to
differ significantly as the distortion to the FE mesh increases. Discrepancies between the two methods are
observed for tumour growths greater than 523.6 mm’.

BN
el

Figure 4.4: Ellipsoid FE mesh tumour progression —268.1 mm’, 523.6 mm”, and 817.3 mm’ respectively.

Maximum Difference (mm)

Tumour Volume (mm3) Ax Ay Az
261.8 0.0076 0.0082 0.0061
523.6 0.0188 0.0007 0.0112
817.3 0.0273 0.0133 0.0617

Table 4.2.: Maximum displacement differences for tumour growths.

Figure 4.5: Failed 3053.6 mm’ tumour growth on FE ellipsoid mesh.



11

.
'y

\"

-

e
.
[

]

T - -
B " | - . .
e = wq:,"’-_ o b TS
_ SCT D !
Toe
’_ . S

!‘“
2
.
N T

e

Figure 4.6: Final deformation due to 3053.6 mm’ tumour using coupled method.
The FE mesh fails as the tumour reaches a volume of 3053.6 mm’. Significant distortion to the FE mesh is
present in Figure 4.5, with the hexahedral elements compressing up to 70%, well beyond the reliable
limits as discussed in Wittek, Dutta-Roy, et al. (2008). The mixed-mesh deformation for the same tumour

growth volume is shown in Figure 4.6.

4.2 Tumour Growth Analysis

A mixed-mesh of a brain was created allowing for tumour growth to occur behind the left ventricle,
mimicking an MRI scan of a tumour affected brain in Urbach, Binder, ef al. (2007). An EFG nodal
domain of high density surrounds the proposed tumour region allowing for large deformation. The tumour
was grown as an ideal sphere, of which the analytical equations are well defined.

For healthy brain tissue and tumour we assume that Young's modulus, £, is 3000 Pa, and Poisson's ratio,
v, 1s 0.49 (Miller, Chinzei, et al., 2000, Miller, 2002). The ventricles contains cerebro-spinal fluid (CSF),
which has very similar material properties to water, hence they are modelled as a soft elastic compressible
solid, with £ = 10 Pa and a low Poisson's ratio, v = 0.1. A low Poisson's ratio allows to simulate leakage
of the cerebro-spinal fluid which may occur under static deformation conditions. (Wittek, Miller, et al.,
2006).

A number of different tumour growth sizes were investigated, with deformation volume change in the

ventricles, from an initial volume of 57.1 ml, noted in Table 4.3.
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Vtumour (mm’) 113.1 523.6 1436.8 2144.6 4118.8
AV Lete-ventricte (ml) -0.099 -0.524 -1.224 -1.312 -1.968
AV Right-ventricte (1) -0.075 -0.331 -1.099 -1.143 -1.310
AV ventrictes (ml) -0.174 -0.855 -2.323 -2.455 -3.278

Table 4.3: Change in left (AVieq-ventricte), Tight (AVrighe-venticle), and total ventricular volume (AVyenices) due to tumour
volume (Viumour)-

Given the location of the tumour, the ventricular deformation and associated volume loss, displayed in
Table 4.3, is likely to correspond to the leakage of CSF. In reality CSF may leak between the left and
right ventricles, however it is also known to leak out of the ventricles completely, particularly under static
deformation (Rando and Fishman, 1992). Furthermore, large tissue deformation is apparent, particularly
for the 4118 mm’ tumour, as shown in Figure 4.7, with local displacements of up to 9.66 mm. For this
example 14.5% of the brain mesh experienced displacements greater than 5 mm.
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Figure 4.7: Undeformed brain cross-section (left). Deformed brain cross-section due to 4118 mm’ tumour (right).

This follows on from Clatz, Bondiau, et al. (2004), which declared volume variation within the ventricles
and large tissue deformation in response to brain tumour growth mass effect. It should be noted that
simulated tumour growths larger than 14000 mm’ on the given mixed-mesh reduced the reliability of the
method as the resulting deformation to the Finite Element region became too large. A greater EFG
domain would be required surrounding the tumour affected region in order to simulate larger growths
accurately.

5. Conclusion

A new coupling method has been proposed to combine the Finite Element and Element Free Galerkin
methods for modelling the non-linear soft tissue deformation of the brain in response to tumour growth.
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The method was verified against FE commercial software and a validated EFG simulator on a number of
different mixed meshes. All results were very accurate, easily falling within the 0.85 mm error tolerance,
corresponding to the working resolution of an MRI scan. Simple analytical tumour growths were
conducted on a comprehensive brain mesh. The tumour's close proximity to the ventricles caused
observable volume changes, which may involve leakage of CSF. Furthermore large tissue displacements
were noted, with a significant portion of the brain undergoing moderate deformation. In reality this may
have a detrimental effect on the cell metabolism and function of the brain, altering the stress distribution
and blood flow. Further investigation into realistic tumour growth models and implementation of a brain-
skull contact algorithm would increase the reliability of the results. Ultimately this would become
beneficial for both clinical prognosis and operation planning as well as for simulated training

applications.
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