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Abstract. Since the 1970’s B-splines have evolved to become the de facto stan-
dard for curve and surface representation due to many of their salient properties.
Conventional least-squares scattered data fitting techniques for B-splines require
the inversion of potentially large matrices. This is time-consuming as well as sus-
ceptible to ill-conditioning which leads to undesired results. Lee et al. proposed a
novel B-spline algorithm for fitting a 2-D cubic B-spline surface to scattered data
in [1]. The proposed algorithm utilizes an optional multilevel approach for better
fitting results. We generalize this technique to support /N-dimensional data fitting
as well as arbitrary degree of B-spline. In addition, we generalize the B-spline
kernel function class to accommodate this new image filter.

1 Introduction

Given a set of uniformly or nonuniformly distributed data samples, the process of scat-
tered data approximation constructs a smooth surface which best approximates the scat-
tered data. This provides a smooth representation of the scattered data for further anal-
ysis. It also allows for the inference of function values at points which are not part of
the original scattered data set.

Much research has been done since Riesenfeld’s dissertation first introduced B-
splines to approximation problems in computer-aided design [2]. The ubiquity of B-
splines in graphics, CAD, modeling, etc. is due to many of their salient properties
which are discussed in many sources including [3]. The most popular technique for
approximation of scattered data using B-splines is least-squares fitting [4]. However,
such techniques require the inversion of potentially large matrices which is not only
computationally demanding but susceptible to memory problems as well as ill-fitting
which leads to undesired results.

Lee et al. proposed a B-spline approximation algorithm in [1] which circumvents
the problematic issues associated with conventional least-squares fitting for 2-D cubic
B-spline surfaces. They also introduce a multilevel approach for better surface fitting.
Unfortunately, their algorithm is restricted to 2-D surfaces and cubic B-splines. We
present our generalization of Lee’s algorithm to include N-D data and arbitrary degree
of B-spline. We also describe the necessary modifications to the original B-spline kernel
function class to accommodate this generalization.

2 B-Spline Kernel Function

A B-spline is piecewise polynomial function which, in the calculation of B-spline ob-
jects, e.g. curves, surfaces, etc., acts as a weighting kernel over the set of the control



points. For example, a univariate B-spline curve is defined by the equation
C(u) =Y P;Nix(u) (1)

where P; is the it" control point and N; , is the i*" B-spline of degree k. As can be seen
from the above formulation, the B-spline curve is derived as a weighted contribution of
the set of control points.
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Fig. 1. B-splines of different degrees (solid line) plotted with their derivatives (dashed line).
Shown are B-splines of (a) degree 0, (b) degree 1, (c) degree 2, (d) degree 3, and (e) degree 4.
Note that the previous incarnation of the B-spline kernel function class is incapable of producing
B-splines of degree > 3.

Currently, the B-spline kernel function is only capable of producing B-splines of de-
gree less than or equal to three. However, to generalize to any degree we implemented
the Cox-DeBoor recursion relation [3] within the BSplineKernelFunction class
to generate the necessary polynomial pieces (using the vnl_real_polynomial
class of the vnl library). This allows one to change the degree of the B-spline kernel
function during the existence of a particular instantiation even though it is templated



over a specific order. The templated aspect was kept to maintain backwards compatibil-
ity. In addition, we added the following functions:

— double EvaluateDerivative( const double & u )
MatrixType GetShapeFunctions ()

MatrixType GetShapeFunctionsInZeroToOnelInterval ()
— void SetSplineOrder ( unsigned int order )

The first function evaluates the derivative exactly at the given parameter value (unlike
the derivative calculated in the BSplineKernelFunctionDerivative class).
This function would render the BSplineKernelFunctionDerivative class ob-
solete. The second function returns a matrix where each row contains the coefficients of
a single polynomial piece which, together with the coefficients in the other rows, form
the basis function. The third function is similar except it returns the piecewise polyno-
mials in the zero-to-one interval. Finally, the fourth function simply resets the Kernel to
be of an arbitrary order. Shown in Figure 1 are both the B-splines of different degrees
and their derivatives reproduced from the revised kernel class.

3 B-Spline Scattered Data Approximation

Technical details of the 2-D algorithm (along with pseudocode) are found in Section 3 of
[1]. Our generalized algorithm is implemented as an image-to-image filter. The protocol
for instantiation of the filter as well as specification of the user-defined parameters is as
follows:

typedef itk::BSplineScatteredDatalmageFilter
<InputImageType, OutputImageType> FilterType;
FilterType::Pointer filter = FilterType::New/();

filter->SetSplineOrder (3);
filter->SetNumberOfControlPoints (ncps);
filter->SetNumberOflLevels (5);
filter->SetExcludeBackground (true) ;
filter->SetBackgroundValue (0) ;

The filter is defined by the B-spline order (= polynomial degree), the number of con-
trol points in each dimension (which is of type itk: :Array<unsigned int>),
the number of levels (> 1), and whether or not to exclude irrelevant pixels which are
defined by the background value. Each of these parameters have defaults if they are not
set explicitly. If the multilevel approach is used by specifying the number of levels to be
greater than one, the number of control points that is specified by the user is the number
of control points at the coarsest level of the multilevel scheme.

We illustrate our implementation in Figure 2. Figure 2(a) shows a segmented brain
2-D image slice in which only the pixels associated with gray matter are nonzero. The
values of these pixels are used to estimate a fourth order B-spline surface using the
multilevel approach.
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Fig. 2. (a) Original segmented 2-D brain slice showing pixels labeled as gray matter. Using this
image we calculate 2-D fourth order B-spline surfaces using a multilevel approach where the
coarsest level is defined by 5 X 5 control points. The number of levels in each of the subsequent
images are (b) 1 level, (c) 3 levels, (d) 5 levels, (e) 7 levels, and (f) 10 levels.
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