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Abstract

We present a new method for the simultaneous, nearly avimsggmentation of liver contours, vessels,
and tumors from abdominal CTA scans. The method repeatgxilijes multi-resolution, multi-class
smoothed Bayesian classification followed by morpholdgidfustment and active contours refinement.
It uses multi-class and voxel neighborhood information @ampute an accurate intensity distribution
function for each class. Only one user-defined voxel seethtiver and additional seeds according
to the number of tumors inside the liver are required foratitation. The algorithm do not require
manual adjustment of internal parameters. In this work,t@spective study on a validated clinical
dataset totaling 20 tumors from 9 patients CTAs’ was perémmAn aggregated competition score of
61 was obtained on the test set of this database. In addiganeasured the robustness of our algorithm
to different seeds initializations. These results sugtiedtour method is clinically applicable, accurate,
efficient, and robust to seed selection compared to mangeligrated ground truth segmentation and to
other semi-automatic segmentation methods.
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1 Introduction

Liver tumors segmentation is a key task in many clinical eapions. Clinical applications include hep-
atomegaly and liver cirrhosis assessment, hepatic volyntetpatic transplantation planning, liver regener-
ation after hepatectomy, evaluation and planning for itemediver surgery, and monitoring of liver metas-
tases, among many others. However, most of these applisatgjuire the entire liver segmentation, includ-
ing liver contour and volume estimation, blood vessels fifieation, and, when present, tumor detection
and characterization. To be of practical clinical use, thgnsentation must be accurate, robust, fast, and
nearly automatic, so that the radiologist can perform itirmlly without the assistance of a technician.

Nearly automatic CT-based liver segmentation is known ta tery challenging task. The main difficulties
include the ambiguity of the liver boundary, the complexifythe liver surface, the presence of surrounding
organs, the contrast variability between liver parenchame vessels, the different tumor sizes and shapes,
and the presence of many small metastases.

Over the past decade, researchers have developed a vdriestimds for semi-automatic and automatic
segmentation and visualization of liver structures. Mdshese methods segment only one structure (liver
contours I, 2, 3, 4, 5, 6, 7] or vessels §]), or segment one structure at a time, usually starting with
liver surface, followed by the vessels and the tumors. Thesigual structure segmentation uses various
techniques, such as intensity thresholding, region grgwand level-sets based methods. For example,
[9, 10] use adaptive binary thresholding to separately segmetitégr surface, vessels, and tumors, followed
by a deformable model refinement for each. Since it does mvaoel neighborhood information, it may
yield noisy or erroneous liver surface segmentations,@sibewhen large tumors are present, as they bias
the intensity distribution function. Peitgen et al1] describe an edge-based segmentation method for the
liver contour and an interactive region-growing methodtf@ vessels and tumors. Since it requires many
seeds per CT slice, it is of limited clinical use.

A key observation is that by considering each liver struetimdividually, the intrinsic relations between
the liver parenchyma, vessels, and tumors are lost. Thigsdie classification more sensitive and error-
prone. As an alternative, we presented a new method for theltsineous segmentation of liver contours,
vessels, and metastatic lesions from abdominal CTA sch?s [The method repeatedly applies multi-
resolution, multi-class smoothed Bayesian classificdidlowed by morphological adjustment and active
contours refinement. The method requires only one or twoss@éadcase of presence of large tumors)
for initialization, with no manual adjustment of internarameters. By using the multi-class and voxel
neighborhood information, it significantly improves theaimination quality of the intensity distribution
function for each class. The multi-resolution iterativpagach allows the segmentation of the entire liver
surface without prior shape information and/or significagér interaction. Our method yields accurate
and robust results on two clinically validated datasetalitog 56 CTA studies, and achieved a very high
score compared to other semi-automatic methods presented MICCAI 2007 grand-challenge for liver
segmentation3]. In this work we described the tumors segmentation vatidastudy of our method on
the current MICCAI 2008 grand-challenge workshagd][database.

2 Method

Our method consists of four steps: 1) multi-class intensitgel generation; 2) voxel classification; 3) mor-
phological adjustment, and; 4) geodesic active contodisemment. The steps are performed in sequence
and repeatedly applied to the image until no further chamgesr. After each iteration, the internal pa-
rameters of the multi-class intensity model are updateds fdpetitive updating is designed to overcome a
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biased classification due to ambiguous liver boundariebastd seed selection. The classification updates
the classes intensity models by first computing the mean aridnce of the liver and tumor classes from
the current liver and tumor regions, and then updates thiegbaend classes by computing their mean and
variance parameters. The output of the classification geotsea labels map, which classify each voxel as
either background, liver, blood vessels, or tumors. Thepmalogical adjustment and the active contours re-
finement are then applied on the resulting regions to finddfieed liver and tumors regions. The iterations
are necessary for two reasons. The first is to fine-tune tkasity model which improve the classification
and the second is to minimize the influence of the initial V@ezd selection.

To speed up the segmentation and make it more robust andagecwe use a multi-resolution approach. The
first few iterations are performed on a downsampled CTA @atimsobtain a rough contour segmentation.
Subsequent iterations are performed on the original CTAsgatuntil no further improvements can be made.
To improve the accuracy of tumors segmentation, a refineiteration is applied to each tumor Region Of

Interest (ROI) separately. We describe each step in dedzil n

2.1 Multi-class intensity model generation

The first step is the construction of an intensity model thiimkntiates between the liver parenchyma, the
liver inner vessels, the tumors, and the remaining orgadgiasues, which are interpreted as background.
The main challenges are the ambiguous boundary betweenghparenchyma and the outside organs (e.g
the kidney), the ambiguous boundary between liver paranehgnd the liver vessels, and the similarity

between lesions intensity values and other backgrounesalu

To overcome these difficulties, we first classify the voxets iwo main classes, liver and lesions, according
to their graylevel value. A refined five-class model is theitt lfor each main class. The central class is the
main class (e.g. liver or tumor); the remaining four clagsgsesent other organs and tissues. We model
each class with a normal distribution defined by its meamaitg value and variance. In the initial model,
the mean and the variance of a rectangular neighborhooas@eme manually selected seed inside the liver
and additional seeds inside the liver tumors (one seed fir ®emor is required, Fidl(a,d)) are computed
and interpreted as the parameters of the liver and tumosedasin subsequent iterations, the segmented
region from the previous iteration is used to compute themaea the variance of the liver and tumor
classes. The remaining four classes model background ®gih intensities above/below the liver and
tumor values.

Formally, the liver and tumor classes are defined<@ssr,Xiumor Where

Xeentral ~ N (Keentrals O-(Z;entral) (1)

where central € {liver,tumor}. For each object classdier,tumor) we defined other four background
classes:

X ~N(u,07) (2)
for eachi, i € {near_low, near_high, far_low, far_high}, wherecentral is the liver or tumor class. The

means of these classes defined as:

Mnear_high = Hcentral + knear X Ocentral
Hnear_low = Mcentral — Knear X Ocentral
Hfar_high = Heentral + Kfar X Ocentral
Hfar_low = Hecentral — Kfar X Ocentral €)
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The 'far’ classes represent voxels with a very high proligtiid belong to the background, while the 'near’
classes represent voxels in the ambiguous boundary of feetebThe factor&near andks,, are determined
from Chebyshev’s inequality:

1
Pr(|Xi — Ueentrall) > KOcentral) < @ @

This inequality ensures that at le@$t— k_12) x 100% of the values are withinstandard deviations from the
mean. By settindnear = 2.2 andksay = 4, we ensure that at least 80% of the main class voxels will be
classified as belonging to the main class, and at least 70%eofaxels that belong to theear classes will

be classified amear, even if the normal distribution assumption is incorrechisTensures that each voxel
from the ambiguous class boundary has a high probabilitewfgin either theentralandnearclasses. Its
final classification is then determined from its relation &gmboring voxels. Initially, we sei; = Gcentral

for all classes.

2.2 Voxel classification

This step uniquely classifies each voxel according to itsnisity value and its neighboring voxel&5].
Neighborhood information is important since voxel intéysialues are correlated. First, we use Bayes
rule to compute the probabilit€; ;) of a voxelV;j with intensity valuev; to belong to classi, where

i € {central near_low,near_high, far_low, far_high}:

Pr(ci|vj) OPr(vjlci)Pr(c) 5)

wherePr(c;|v;) is obtained from the intensity model (S€cl). SincePr(c;) is usually unavailable, we use
a uniform distribution. The resulting five maps quantify thembership probability of each voxel to each
class.

Next, we incorporate the neighborhood information to tlessification process by smoothing the probabil-
ity mapsC; ; for each classseparately using an anisotropic diffusion filt&6]. The anisotropic smoothing
process smoothes small islands in the membership prayaiidips considered as mis-classifications while
preserving sharp edges between different objects.

Finally, we apply the Maximum Posterior (MAP) rule:

C(j final) = argqma>Pr(ci Vj) (6)

to set the final membership of each voxel to the class with itjieglst probability that the voxel belongs to
it. The binary segmentation image is generated by seleotihgthe voxels that belong to the central class.

This step is applied twice, once for the liver class, andrafm@ithe tumor class. During the tumors classi-
fication, the liver class is considered as part of the backgtalasses. The results are combined by taking
into account only the tumor voxels inside the liver. Sinaevbssels appear as bright regions inside the liver,
the vessels class is defined by the ¥agar_nigh class for voxels inside the liver.

2.3 Adaptive morphological adjustment

The third step is the identification of the liver and tumorgioas. The previous classification yields most
of the liver region, with additional disconnected regiongsade the liver, and holes inside the liver. The
regions outside the liver correspond to anatomical strastwith intensity values similar to the liver, such
as the kidney and the spleen. The holes correspond to smadrsuand artery and portal veins inside the
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(c) 3D view

(d) IMGOS5 - Original slice (e) segmentation result () 3D view

Figure 1: Example of segmented livers and tumors. (a)-(st Base result (IMGO7). (d)-(f) worst case
result (IMGO05). The coloured dots in images (a) and (d)sthate the initialization seeds required as input
by our method. The arrows indicate tumors locations. Thgesan this figure produced using itksndg].

liver whose intensity values are distinctly different frahe liver intensity values because of the imaging
contrast agent. To obtain the correct liver segmentattoa disconnected regions must be eliminated, and
the holes inside the liver must be filled. This is done withgida morphological operations.

We first remove the disconnected regions outside the livéddaytifying the largest connected component in
the labeled image. Next, the holes inside the liver are ifledsas tumor or vessels according to the intensity
model in Sec2.1 Finally, we adjust the liver and tumors boundaries with dapive morphological
opening operator. To overcome the inter-patient varialolftthe liver and tumors sizes, the radiuses of the
morphological operators linearly depend on the estimated 4&nd tumors volumes.

2.4 Active contours refinement

The classification and the morphological adjustment mays méts of the liver and tumors volumes. In
addition, the objects boundaries may be inaccurate in akregions. To correct this, we repeatedly apply
a fine-tuning active contours segmentati@g][ The active contours segmentation drives the initial scef

according to a feature map generated from the original imdg@rovide a good feature image to the active



Table 1. Results of the comparison metrics and scores foerallest cases. The first column indicates the
dataset.

Overlap Error| Volume Diff. Avg. Dist. RMS Dist. Max. Dist. Total
[%] Score| [%] Score| [mm] Score| [mm] Score| [mm] Score| Score
IMGO5 L1 | 27.68 79 | 22.94 76 | 2.17 45 | 2.68 63 | 8.62 78 68
IMGO5L2 | 55.80 57 | 124.49 0 3.37 15 | 4.74 34 | 15.77 61 33
IMGO5 L3 | 48.19 63 | 89.48 7 2.70 32 | 3.34 53 | 9.26 77 46
IMGO6 L1 | 71.12 45 | 70.99 26 | 2.54 36 | 3.26 55 | 7.95 80 48
IMGO6 L2 | 36.33 72 | 21.79 77 | 0.93 77 | 1.27 82 | 4.84 88 79
IMGO7 L1 | 21.06 84 9.03 91 | 2.42 39 | 3.49 51 | 15.64 61 65
IMGO7 L2 | 26.14 80 6.76 93 | 1.19 70 | 1.58 78 | 6.92 83 81
IMGO8 L1 | 15.49 88 | 12.53 87 | 1.76 56 | 2.62 63 | 13.82 65 72
IMGO9 L1 | 41.40 68 | 34.64 64 | 1.48 63 | 2.17 70 | 7.52 81 69
IMG10L1 | 51.61 60 | 50.97 47 | 3.35 15 | 3.81 47 | 9.07 77 49

Average [3948 70 | 4436 57 [ 219 45 [ 290 60 | 994 75 | 61 |

Dataset

contours module, we generate a new image with a windowingtitum

Hiver + Otiver  if 1(X) > Wiver + Oliver,
I (x) = 1(x) if Wiver — Oliver < |(X) < Hiver + Oliver, (7)
Hiver — Oliver I 1(X) < Miiver — Oliver-

wherel is the original CTA datal’ is the new image, andiver andajiver are the liver class parameters as
computed in the intensity model. This process applied fdh tae liver and tumors boundaries.

3 Experimental results

We implemented our method using the ITK software librdt9] [and the smoothed Bayesian classification
module R0]. Computations were performed on an Intel Core2 Quad 2.4 BElzvith 3GB of memory.

We performed a retrospective study on the database probigiie MICCAI 2008 3D Liver Tumors Seg-
mentation workshopld]. The dataset consists of 20 tumors from clinical datase@spatients. It is divided
into two groups. The first group consists of 10 tumors fromtepés and is used for training and fine-tuning
of the algorithm; The second group consists of 10 tumors foiatients and is used to evaluate segmenta-
tion algorithms. Evaluation followed the method describefiL3]. We compared our segmentation results
to the ground-truth using five metrics: 1) volumetric ovprla) relative absolute volume difference; 3) aver-
age symmetric absolute surface distance; 4) symmetric RM&ce distance, and; 5) maximum symmetric
absolute surface distance. Taldlessummarizes the results. Based on these metrics resultsgregate
score was computed. Our average score was 61. The meandstdytation time for each liver, including
segmentation of the entire liver, blood vessels and tumas 834 (2.47) minutes . Note that the required
user-time was only a few seconds for seeds selection.1Higstrates our results on the test set for the best
and worst cases.

In addition, we measured the robustness of our method te ttifeerent seeds initializations on the 10
training tumors. Table@ summarizes the results. These results show that our mesheery robust to
different seeds initializations, whereas other semi+aatiic methods, which require significantly more user
interaction, are prone to be less robust.



Table 2. Results of the comparison between metrics and fooaés for different initializations on the ten
training cases. The values are the mean pairwise diffefegtvecen the results of three initializations

Dataset Overlap Error| Volume Diff. | Avg. Dist. | RMS Dist. | Max. Dist. | Total
[%] [%] [mm] [mm] [mm] Score
IMGO1 L1 1.05 0.21 0.24 0.28 1.05 0
IMGO1 L2 0.34 0.01 0.01 0.04 0.22 0
IMGO02 L1 8.52 0.27 0.29 0.13 6.23 2
IMGO02 L2 0.04 0.01 0.02 0.1 0.01 0
IMGO02 L3 0.76 0.05 0.05 0.02 0.82 0.67
IMGO3 L1 14.17 0 0.09 1.18 0.29 0.67
IMG04 L1 1.32 0.18 0.32 2.97 1.94 6
IMGO04 L2 2.94 0.06 0.08 0 0.96 4
IMGO04 L3 0.71 0.02 0.03 0.27 0.25 1.33
IMG04 L4 0.35 0.2 0.5 0.97 0.63 2.67
\ Average \ 3.02 \ 0.1 \ 0.16 \ 0.6 \ 1.24 \ 1.73 \

4 Conclusion

We have presented a new nearly-automatic segmentatiorochéh liver analysis. The main advantage
of our method is that it simultaneously segments the livattaar, the blood vessels, and tumors inside
the liver with only several user-selected seeds. Expetiaheasults on the current MICCAI 2008 grand-
challenge workshop databask], totaling 20 tumors from 9 patients, show that our methodliigcally
applicable, accurate, efficient, and robust to seed sete@gthencompared to manually generated ground
truth segmentation. In the future, we plan develop an iategr software package for the visualization and
guantitative analysis of the liver to support diagnosis sungjical planning.
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