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Abstract

We present a new method for the simultaneous, nearly automatic segmentation of liver contours, vessels,
and tumors from abdominal CTA scans. The method repeatedly applies multi-resolution, multi-class
smoothed Bayesian classification followed by morphological adjustment and active contours refinement.
It uses multi-class and voxel neighborhood information to compute an accurate intensity distribution
function for each class. Only one user-defined voxel seed forthe liver and additional seeds according
to the number of tumors inside the liver are required for initialization. The algorithm do not require
manual adjustment of internal parameters. In this work, a retrospective study on a validated clinical
dataset totaling 20 tumors from 9 patients CTAs’ was performed. An aggregated competition score of
61 was obtained on the test set of this database. In addition we measured the robustness of our algorithm
to different seeds initializations. These results suggestthat our method is clinically applicable, accurate,
efficient, and robust to seed selection compared to manuallygenerated ground truth segmentation and to
other semi-automatic segmentation methods.
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1 Introduction

Liver tumors segmentation is a key task in many clinical applications. Clinical applications include hep-
atomegaly and liver cirrhosis assessment, hepatic volumetry, hepatic transplantation planning, liver regener-
ation after hepatectomy, evaluation and planning for resection liver surgery, and monitoring of liver metas-
tases, among many others. However, most of these applications require the entire liver segmentation, includ-
ing liver contour and volume estimation, blood vessels identification, and, when present, tumor detection
and characterization. To be of practical clinical use, the segmentation must be accurate, robust, fast, and
nearly automatic, so that the radiologist can perform it routinely without the assistance of a technician.

Nearly automatic CT-based liver segmentation is known to bea very challenging task. The main difficulties
include the ambiguity of the liver boundary, the complexityof the liver surface, the presence of surrounding
organs, the contrast variability between liver parenchymaand vessels, the different tumor sizes and shapes,
and the presence of many small metastases.

Over the past decade, researchers have developed a variety of methods for semi-automatic and automatic
segmentation and visualization of liver structures. Most of these methods segment only one structure (liver
contours [1, 2, 3, 4, 5, 6, 7] or vessels [8]), or segment one structure at a time, usually starting withthe
liver surface, followed by the vessels and the tumors. The individual structure segmentation uses various
techniques, such as intensity thresholding, region growing, and level-sets based methods. For example,
[9, 10] use adaptive binary thresholding to separately segment the liver surface, vessels, and tumors, followed
by a deformable model refinement for each. Since it does not use voxel neighborhood information, it may
yield noisy or erroneous liver surface segmentations, especially when large tumors are present, as they bias
the intensity distribution function. Peitgen et al. [11] describe an edge-based segmentation method for the
liver contour and an interactive region-growing method forthe vessels and tumors. Since it requires many
seeds per CT slice, it is of limited clinical use.

A key observation is that by considering each liver structure individually, the intrinsic relations between
the liver parenchyma, vessels, and tumors are lost. This makes the classification more sensitive and error-
prone. As an alternative, we presented a new method for the simultaneous segmentation of liver contours,
vessels, and metastatic lesions from abdominal CTA scans [12]. The method repeatedly applies multi-
resolution, multi-class smoothed Bayesian classificationfollowed by morphological adjustment and active
contours refinement. The method requires only one or two seeds (in case of presence of large tumors)
for initialization, with no manual adjustment of internal parameters. By using the multi-class and voxel
neighborhood information, it significantly improves the discrimination quality of the intensity distribution
function for each class. The multi-resolution iterative approach allows the segmentation of the entire liver
surface without prior shape information and/or significantuser interaction. Our method yields accurate
and robust results on two clinically validated datasets totaling 56 CTA studies, and achieved a very high
score compared to other semi-automatic methods presented in the MICCAI 2007 grand-challenge for liver
segmentation [13]. In this work we described the tumors segmentation validation study of our method on
the current MICCAI 2008 grand-challenge workshop [14] database.

2 Method

Our method consists of four steps: 1) multi-class intensitymodel generation; 2) voxel classification; 3) mor-
phological adjustment, and; 4) geodesic active contours refinement. The steps are performed in sequence
and repeatedly applied to the image until no further changesoccur. After each iteration, the internal pa-
rameters of the multi-class intensity model are updated. This repetitive updating is designed to overcome a
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biased classification due to ambiguous liver boundaries andbiased seed selection. The classification updates
the classes intensity models by first computing the mean and variance of the liver and tumor classes from
the current liver and tumor regions, and then updates the background classes by computing their mean and
variance parameters. The output of the classification process is a labels map, which classify each voxel as
either background, liver, blood vessels, or tumors. The morphological adjustment and the active contours re-
finement are then applied on the resulting regions to find the refined liver and tumors regions. The iterations
are necessary for two reasons. The first is to fine-tune the intensity model which improve the classification
and the second is to minimize the influence of the initial voxel seed selection.

To speed up the segmentation and make it more robust and accurate, we use a multi-resolution approach. The
first few iterations are performed on a downsampled CTA dataset to obtain a rough contour segmentation.
Subsequent iterations are performed on the original CTA dataset until no further improvements can be made.
To improve the accuracy of tumors segmentation, a refinementiteration is applied to each tumor Region Of
Interest (ROI) separately. We describe each step in detail next.

2.1 Multi-class intensity model generation

The first step is the construction of an intensity model that differentiates between the liver parenchyma, the
liver inner vessels, the tumors, and the remaining organs and tissues, which are interpreted as background.
The main challenges are the ambiguous boundary between the liver parenchyma and the outside organs (e.g
the kidney), the ambiguous boundary between liver parenchyma and the liver vessels, and the similarity
between lesions intensity values and other background values.

To overcome these difficulties, we first classify the voxels into two main classes, liver and lesions, according
to their graylevel value. A refined five-class model is then built for each main class. The central class is the
main class (e.g. liver or tumor); the remaining four classesrepresent other organs and tissues. We model
each class with a normal distribution defined by its mean intensity value and variance. In the initial model,
the mean and the variance of a rectangular neighborhood around one manually selected seed inside the liver
and additional seeds inside the liver tumors (one seed for each tumor is required, Fig.1(a,d)) are computed
and interpreted as the parameters of the liver and tumor classes. In subsequent iterations, the segmented
region from the previous iteration is used to compute the mean and the variance of the liver and tumor
classes. The remaining four classes model background organs with intensities above/below the liver and
tumor values.

Formally, the liver and tumor classes are defined as:Xliver ,Xtumor where

Xcentral ∼ N(µcentral,σ2
central) (1)

wherecentral ∈ {liver, tumor}. For each object class (liver, tumor) we defined other four background
classes:

Xi ∼ N(µi ,σ2
i ) (2)

for eachi, i ∈ {near low,near high, f ar low, f ar high}, wherecentral is the liver or tumor class. The
means of these classes defined as:

µnear high = µcentral+knear×σcentral

µnear low = µcentral−knear×σcentral

µf ar high = µcentral+kf ar ×σcentral

µf ar low = µcentral−kf ar ×σcentral (3)
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The ’far’ classes represent voxels with a very high probability to belong to the background, while the ’near’
classes represent voxels in the ambiguous boundary of the objects. The factorsknear andkf ar are determined
from Chebyshev’s inequality:

Pr(|Xi −µcentral|) ≥ kσcentral) ≤
1
k2 (4)

This inequality ensures that at least(1− 1
k2 )×100% of the values are withink standard deviations from the

mean. By settingknear = 2.2 andkf ar = 4, we ensure that at least 80% of the main class voxels will be
classified as belonging to the main class, and at least 70% of the voxels that belong to thenearclasses will
be classified asnear, even if the normal distribution assumption is incorrect. This ensures that each voxel
from the ambiguous class boundary has a high probability of being in either thecentralandnearclasses. Its
final classification is then determined from its relation to neighboring voxels. Initially, we setσi = σcentral

for all classes.

2.2 Voxel classification

This step uniquely classifies each voxel according to its intensity value and its neighboring voxels [15].
Neighborhood information is important since voxel intensity values are correlated. First, we use Bayes
rule to compute the probabilityC( j,i) of a voxelVj with intensity valuev j to belong to classci , where
i ∈ {central,near low,near high, f ar low, f ar high}:

Pr(ci |v j) ∝ Pr(v j |ci)Pr(ci) (5)

wherePr(ci |v j) is obtained from the intensity model (Sec.2.1). SincePr(ci) is usually unavailable, we use
a uniform distribution. The resulting five maps quantify themembership probability of each voxel to each
class.

Next, we incorporate the neighborhood information to the classification process by smoothing the probabil-
ity mapsC( j,i) for each classi separately using an anisotropic diffusion filter [16]. The anisotropic smoothing
process smoothes small islands in the membership probability maps considered as mis-classifications while
preserving sharp edges between different objects.

Finally, we apply the Maximum Posterior (MAP) rule:

C( j, f inal) = argmax
ci

Pr(ci |v j) (6)

to set the final membership of each voxel to the class with the highest probability that the voxel belongs to
it. The binary segmentation image is generated by selectingonly the voxels that belong to the central class.

This step is applied twice, once for the liver class, and again for the tumor class. During the tumors classi-
fication, the liver class is considered as part of the background classes. The results are combined by taking
into account only the tumor voxels inside the liver. Since the vessels appear as bright regions inside the liver,
the vessels class is defined by the theXnear high class for voxels inside the liver.

2.3 Adaptive morphological adjustment

The third step is the identification of the liver and tumors regions. The previous classification yields most
of the liver region, with additional disconnected regions outside the liver, and holes inside the liver. The
regions outside the liver correspond to anatomical structures with intensity values similar to the liver, such
as the kidney and the spleen. The holes correspond to small tumors and artery and portal veins inside the
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(a) IMG07 - Original slice (b) segmentation result (c) 3D view

(d) IMG05 - Original slice (e) segmentation result (f) 3D view

Figure 1: Example of segmented livers and tumors. (a)-(c) Best case result (IMG07). (d)-(f) worst case
result (IMG05). The coloured dots in images (a) and (d), illustrate the initialization seeds required as input
by our method. The arrows indicate tumors locations. The images in this figure produced using itksnap [17].

liver whose intensity values are distinctly different fromthe liver intensity values because of the imaging
contrast agent. To obtain the correct liver segmentation, the disconnected regions must be eliminated, and
the holes inside the liver must be filled. This is done with adaptive morphological operations.

We first remove the disconnected regions outside the liver byidentifying the largest connected component in
the labeled image. Next, the holes inside the liver are classified as tumor or vessels according to the intensity
model in Sec.2.1. Finally, we adjust the liver and tumors boundaries with an adaptive morphological
opening operator. To overcome the inter-patient variablity of the liver and tumors sizes, the radiuses of the
morphological operators linearly depend on the estimated liver and tumors volumes.

2.4 Active contours refinement

The classification and the morphological adjustment may miss parts of the liver and tumors volumes. In
addition, the objects boundaries may be inaccurate in several regions. To correct this, we repeatedly apply
a fine-tuning active contours segmentation [18]. The active contours segmentation drives the initial surface
according to a feature map generated from the original image. To provide a good feature image to the active
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Table 1: Results of the comparison metrics and scores for allten test cases. The first column indicates the
dataset.

Dataset
Overlap Error Volume Diff. Avg. Dist. RMS Dist. Max. Dist. Total
[%] Score [%] Score [mm] Score [mm] Score [mm] Score Score

IMG05 L1 27.68 79 22.94 76 2.17 45 2.68 63 8.62 78 68
IMG05 L2 55.80 57 124.49 0 3.37 15 4.74 34 15.77 61 33
IMG05 L3 48.19 63 89.48 7 2.70 32 3.34 53 9.26 77 46
IMG06 L1 71.12 45 70.99 26 2.54 36 3.26 55 7.95 80 48
IMG06 L2 36.33 72 21.79 77 0.93 77 1.27 82 4.84 88 79
IMG07 L1 21.06 84 9.03 91 2.42 39 3.49 51 15.64 61 65
IMG07 L2 26.14 80 6.76 93 1.19 70 1.58 78 6.92 83 81
IMG08 L1 15.49 88 12.53 87 1.76 56 2.62 63 13.82 65 72
IMG09 L1 41.40 68 34.64 64 1.48 63 2.17 70 7.52 81 69
IMG10 L1 51.61 60 50.97 47 3.35 15 3.81 47 9.07 77 49

Average 39.48 70 44.36 57 2.19 45 2.90 60 9.94 75 61

contours module, we generate a new image with a windowing function:

I
′
(x) =











µliver + σliver if I(x) > µliver + σliver,

I(x) if µliver −σliver ≤ I(x) ≤ µliver + σliver,

µliver −σliver if I(x) < µliver −σliver.

(7)

whereI is the original CTA data,I ′ is the new image, andµliver andσliver are the liver class parameters as
computed in the intensity model. This process applied for both the liver and tumors boundaries.

3 Experimental results

We implemented our method using the ITK software library [19] and the smoothed Bayesian classification
module [20]. Computations were performed on an Intel Core2 Quad 2.4 GHzPC with 3GB of memory.

We performed a retrospective study on the database providedby the MICCAI 2008 3D Liver Tumors Seg-
mentation workshop [14]. The dataset consists of 20 tumors from clinical datasets of 9 patients. It is divided
into two groups. The first group consists of 10 tumors from 4 patients and is used for training and fine-tuning
of the algorithm; The second group consists of 10 tumors form5 patients and is used to evaluate segmenta-
tion algorithms. Evaluation followed the method describedin [13]. We compared our segmentation results
to the ground-truth using five metrics: 1) volumetric overlap; 2) relative absolute volume difference; 3) aver-
age symmetric absolute surface distance; 4) symmetric RMS surface distance, and; 5) maximum symmetric
absolute surface distance. Table1 summarizes the results. Based on these metrics results an aggregate
score was computed. Our average score was 61. The mean (std) computation time for each liver, including
segmentation of the entire liver, blood vessels and tumors was 8.34 (2.47) minutes . Note that the required
user-time was only a few seconds for seeds selection. Fig.1 illustrates our results on the test set for the best
and worst cases.

In addition, we measured the robustness of our method to three different seeds initializations on the 10
training tumors. Table2 summarizes the results. These results show that our method is very robust to
different seeds initializations, whereas other semi-automatic methods, which require significantly more user
interaction, are prone to be less robust.
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Table 2: Results of the comparison between metrics and final scores for different initializations on the ten
training cases. The values are the mean pairwise differencebetween the results of three initializations

Dataset
Overlap Error Volume Diff. Avg. Dist. RMS Dist. Max. Dist. Total

[%] [%] [mm] [mm] [mm] Score

IMG01 L1 1.05 0.21 0.24 0.28 1.05 0
IMG01 L2 0.34 0.01 0.01 0.04 0.22 0
IMG02 L1 8.52 0.27 0.29 0.13 6.23 2
IMG02 L2 0.04 0.01 0.02 0.1 0.01 0
IMG02 L3 0.76 0.05 0.05 0.02 0.82 0.67
IMG03 L1 14.17 0 0.09 1.18 0.29 0.67
IMG04 L1 1.32 0.18 0.32 2.97 1.94 6
IMG04 L2 2.94 0.06 0.08 0 0.96 4
IMG04 L3 0.71 0.02 0.03 0.27 0.25 1.33
IMG04 L4 0.35 0.2 0.5 0.97 0.63 2.67

Average 3.02 0.1 0.16 0.6 1.24 1.73

4 Conclusion

We have presented a new nearly-automatic segmentation method for liver analysis. The main advantage
of our method is that it simultaneously segments the liver contour, the blood vessels, and tumors inside
the liver with only several user-selected seeds. Experimental results on the current MICCAI 2008 grand-
challenge workshop database [14], totaling 20 tumors from 9 patients, show that our method isclinically
applicable, accurate, efficient, and robust to seed selection whencompared to manually generated ground
truth segmentation. In the future, we plan develop an integrated software package for the visualization and
quantitative analysis of the liver to support diagnosis andsurgical planning.
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