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Abstract. In this paper a specific method is presented to facilitate the
semi-automatic segmentation of liver metastases in CT images. Accurate
and reliable segmentation of tumors is e.g. essential for the follow-up of
cancer treatment. The core of the algorithm is a level set function. The
initialization is provided by a spiral-scanning technique based on dy-
namic programming. The level set evolves according to a speed image
that is the result of a statistical pixel classification algorithm with su-
pervised learning. This method is tested on CT images of the abdomen
and compared with manual delineations of liver tumors.

1 Introduction

Segmentation is an image processing operation to distinguish an anatomical
structure from the surrounding tissue. Tumor segmentation is an important is-
sue for cancer follow-up, where the oncologist is interested to evaluate the change
in size of the tumors. Early response prediction allows the oncologist to adapt the
therapy, which can lead to a higher survival rate [1]. Measuring the response of
a treatment can be done by uni-, bi- or tridimensional criteria. Clinical research
[1–3] indicates that volume measurements (3D) give the best reflection of the
tumor response. Volume measurements require the segmentation of the tumors,
which is very time consuming when it is done manually. Moreover, manual de-
lineations are subjected to intra- and interobservervariability, which is estimated
at about 8% for liver tumors [4]. Therefore, automatic or semi-automatic tumor
delineation algorithms are required.
This article focuses on the segmentation of liver tumors in contrast-enhanced
CT images. Because tumors generally have different shapes and intensities, the
segmentation is not straightforward. The gray values of a tumor depend on the
delay between the contrast injection and the image acquisition, the contrast dose
and the patient physiology. In general, liver tumors have a more or less round
shape. However, the shape can be influenced by the vicinity of blood vessels, the
edges of anatomical structures, the type of cancer,...
Several semi-automatic methods are already available for the segmentation of
CT liver tumor segmentation. These include methods based on watershed like



the paintbrush algorithm [5, 6], deformable models like the active contour algo-
rithm in [7] and a region growing technique using several constraints [8]. These
methods have in common that they all require an extensive amount of user in-
teraction.
The segmentation algorithm described in this paper combines several techniques
including a spiral scanning technique, pixel classification and level sets. The spi-
ral scanning technique is based on [9], where it is implemented for lung nodules.
Here the implementation is performed on liver tumor segmentation using a dif-
ferent parametrization and a additional gradient to enhance the tumor edges.
The pixel classification and level set method are based on the standard imple-
mentation for both algorithms.
The algorithm is validated on a test data set provided by “3D Segmentation in
the Clinic: A Grand Challenge II” [10] using 5 evaluation measures: volumetric
overlap, relative absolute volume difference, average symmetric absolute surface
distance, symmetric rms surface distance and maximum symmetric absolute
surface distance.
After this introduction, we first give a detailed description of the method. Next,
the validation results are given, followed by a discussion and conclusion.

2 Method

To start, the algorithm requires the user to place one point approximately in
the middle of the tumor and specify a maximal radius, which is about two times
the largest radius of the tumor. Next, this input is used to generate an initial-
ization for the level set using a spiral-scanning technique [9]. The speed image
guiding the propagation of the level set is calculated independently using fuzzy
classification. The heart of the algorithm is the standard level set function [11].
After level set segmentation, post-processing is used to transform the distance
map into a binary image. An overview of the method is given in Figure 1.

2.1 Initial Segmentation

The initial segmentation is provided by a Spiral-Scanning Technique [9]. This
technique transforms the 3D image to 2D space using a scanning technique,
allowing us to find a contour using dynamic programming for the segmentation.
The 3D image is sampled along scan lines. The endpoints form a spiral on the
surface of a sphere starting at the north pole and ending at the south pole. Our
parametrization of this spiral is given by

x = xC + ρ sin(t) cos(2Nt) (1)
y = yC + ρ sin(t) sin(2Nt) (2)
z = zC + ρ cos(t) (3)

with t = π
2 + arcsin( 2k1

2N2 − 1) en ρ = ρmaxk2
M . N is the number of rotations,

2N2 the number of scan lines and M is the number of samples on each scan



Fig. 1: Block Diagram of Segmentation Algorithm

line, k1 and k2 are the coordinates of the 2D space. The result of the spiral-scan
transformation is given in Fig. 2.

Fig. 2: Scan converted image

In the transformed image, a dynamic programming algorithm performs the
actual segmentation. This is done by calculation of the minimal cost path. The
sum of internal cost, Eint

C (i) = wt.|yi − yi−1|, and the external cost, Eex
C (i) =



|∇I|max − |∇I(xi, yi)|, is minimized to achieve a curve which separates the im-
age in a tumor and a non-tumor part. Instead of just using the image gradient
for the calculation of the external cost, the gradient of a binary image is added
to the image gradient in order to enhance the tumor edges. The binary image
is simply calculated by applying an interval thresholding operation. The used
upper-threshold is chosen as the average of the estimates of the mean gray value
of the tumor and the liver in the image. Those estimates are based on the in-
tensity distribution in a sphere with a radius of 10 voxels around the user click
respectively in the center of the tumor and outside the tumor.

The result of the dynamic programming algorithm is a 2D binary segmen-
tation. The back transformation to 3D uses the nearest neighbor principle. For
each voxel lying on a distance ρ < ρmax from the center of the spiral, the algo-
rithm searches the nearest sample on a spiral with radius ρ.
The final step to achieve an initial level set is a distance transformation. For
each voxel, the shortest distance to the surface is calculated and stored. Voxels
lying within the segmented surface get a negative value. The result is a signed
distance function [12].

2.2 Speed Function

The left branch in Fig. 1 results in a speed image that will deform the initial
segmentation to the final result. This speed image is based on supervised fuzzy
pixel classification. Fuzzy pixel classification calculates the probability that a
certain pixel belongs to a certain image class cj [13]. Within the liver two
classes can be distinguished: liver tissue and tumor tissue. The statistical model
uses a normal distribution where the parameters µ and σ are estimated based
on the gray values in spheres around the point inside and outside the tumor. To
increase reliability, not only the image intensities could be taken into account,
but also some texture features [14]. Initial experiments show that correlation
and variance could best distinguish liver tissue from tumor tissue, but the com-
putational complexity to calculate the features is too high to allow the use in
semi-automatic algorithms. After having calculated the fuzzy image, Filter 1 (see
Fig. 1) transforms the image in a speed image by applying

IV (x) = f3(p(ctumor|Ik)) = |2 p(ctumor|Ik)− 1|

The speed function has high values far from the tumor edges. To reduce noise
without eliminating the edges an anisotropic diffusion filter is used to filter the
speed image.

2.3 Level Sets

The initial level set is represented by an implicit function φ(x, t) and deformed
under influence of a speed image. For computational reasons, a local level set



method is used, because it defines φ(x, t + δt) only near the zero level set [15].
The partial differential equation which deforms the initial level set, is given by

d

dt
φ = −αA(x) · ∇φ− βP (x)|∇φ|+ γZ(x)κ|∇φ| (4)

where A is an advection term, P is a propagation term and Z is a spatial modifier
term for the mean curvature κ [16]. The advection term A(x) = −∇IV (x) evolves
the level set to the edges of the tumor. When the gradient of the speed function is
negative, the level set expands. A positive gradient causes the level set to shrink.
The propagation term P (x) = IV (x) causes a speed dependent expansion of the
level set and the curvature term Z(x) = IV (x) reduces sharp edges in the level
set.

2.4 Training

12 data sets of ct images of the abdomen from the university hospitals of Leuven
are used for the training of the algorithm. For calculation of the minimal cost
path, this training determines the relative weight of the external cost with respect
to the internal cost. Besides that, parameter tuning of the weighting factors for
the different terms for the level set equation (Eq. 4) is necessary to obtain the
optimal results. Afterwards the tuned parameters are checked with the training
data sets of “3D Segmentation in the Clinic: A Grand Challenge II” [10].

3 Results

Because the semi-automatic algorithm needs training, the results are discussed
separately. The liver tumor data were acquired on one 64-slice and two 40-slice
CT scanners using a standard four-phase contrast enhanced imaging protocol
with slice thickness of 1 mm or 1.5 mm and an in-plane resolution of 0.6 − 0.9
mm.

3.1 Validation

To evaluate the data, five measures are used: the overlap error (1 - volume over-
lap), the relative absolute volume difference between manual and semi-automatic
segmentation, the average surface distance, the rms surface distance and the
maximum surface distance. Those measures are compared with an independent
manual delineation by the organization of the challenge [10]. Based on this com-
parison a score is given to each evaluation measure and to each segmentation.
A score of 90% means that the semi-automatic segmentation is as good as the
manual delineation.



3.2 Training data

First, the parameters are tuned on 11 data sets of the university hospitals of Leu-
ven containing 31 metastases. Afterwards, the first results of the semi-automatic
liver tumor segmentation of the 10 clinical training data sets coming from 4 pa-
tients were assessed first visually and then quantitatively. Based on the visual
inspection, the parameters of the level set method and the dynamic program-
ming algorithm were further adjusted. To find the optimal parameters mainly
the volume overlap was used.

The quantitative results for the training data are given in Table 2 and Table 3.
The latter gives the surface distances in mm. There is made a distinction based
on which surface is the reference surface. Calculating the total score using the
same interobserver variability as the test data, gives a score of 79.1±9.2%. With
a score of 92.3% for the average volume difference, this difference is smaller than
the interobserver variability. This is not true for the scores of the other evaluation
measures: 81.8% for the overlap error, 83.5% 70.6% and 67.1% for respectively
the average, the rms and the maximum surface distance.

3.3 Test data

The algorithm is tested by [10] on 10 tumors coming from 6 patients. The results
of the test data are worse than the results of the training data, as can be seen
in Table 1.

Table 1: Results (source: [10])
Overlap Error Volume Diff. Ave. Surf. Dist. RMS Surf. Dist. Max. Surf. Dist.

Patient Tumor (%) Score (%) Score (mm) Score (mm) Score (mm) Score Total Score
5 1 32,49 75 13.64 86 2.58 35 3.47 52 12.91 68 63
5 2 38.30 70 29.64 69 1.35 66 1.72 76 5.00 87 74
5 3 31.23 76 22.91 76 1.12 72 1.51 79 5.97 85 78
6 1 37.42 71 22.74 76 1.06 73 1.44 80 5.45 86 77
6 2 33.84 74 18.27 81 0.72 82 1.10 85 4.46 89 82
7 1 38.89 70 28.39 71 5.00 0 6.51 9 26.45 34 37
7 2 24.53 81 5.17 95 1.05 73 1.52 79 6.39 84 82
8 1 31.64 76 2.93 97 3.65 8 4.52 37 16.13 60 55
9 1 50.52 61 8.58 91 2.07 48 2.90 60 10.35 74 67
10 1 26.92 79 25.61 73 1.46 63 1.99 72 7.82 80 74

Average 34.58 73 17.79 82 2.01 52 2.67 63 10.09 75 69

The average total score ± standard deviation is 68.9± 14.1%. The median is
74%. All average measures have a value below 90%,

4 Discussion

First, the effects of different aspects of the algorithm are discussed. The pixel
classification algorithm actually searches the most probable tumor based on gray
level intensities. Therefore, it can be seen as an optimization problem. To find
the correct local optimum an accurate initialization is necessary. Deviations from



this most probable tumor are provided by the curvature term which forbids un-
natural high curvatures in the segmentation. In [17] a 2D variant of the algorithm
described here, is implemented and tested. The improvement of applying a level
set method after the initial segmentation is an increase of the dsc of 1.5%.

By inverting the gradient when the tumor has higher intensity than the
surrounding liver, the algorithm is able to segment dark and light tumor with
respect to liver tissue. Another strength of the algorithm is the use of gray
level intensities, gradients and local shape. Taking more tumor information into
account, increases the reliability. Because the user has to define a maximum
radius, the tumor won’t grow out of the sphere with that radius.

On the other hand, the main shortcoming is the need that the tumor is
surrounded by more or less homogeneous liver tissue. By adding a rest class, the
pixel classification algorithm is capable to distinguish tissues with other gray
levels from tumor tissue. Problems occur for tumor 2, patient 7. The tumor is
adjacent to liver tissue and other structures in the abdomen. However, the worst
results in Table 1 are mainly due to high surface distance errors. The cause is
that those surface distances are not relative measures. In consequence big tumors
have higher surface distance errors.

The discrepancy between the results of test and training data is remarkable.
There are several possible explanations. Because we had no knowledge about
the manual segmentation of the test data, user intelligence was reduced when
placing the two seeds. In comparison to us, a physician does have that knowledge.
In consequence he is capable to provide a qualitatively better segmentation.
Another explanation could be that the tumors of the test data are inherently
more difficult to segment.

An improvement could be obtained by implementing an efficient texture filter
(see Fig. 1) which can increase the reliability of the pixel classification algorithm.
Within the Haralick features [18], we suggest using correlation and variance, but
also other features could be investigated. Another improvement of the pixel
classification algorithm is adding outlier detection [19].

5 Conclusions

The semi-automatic algorithm described here is able to segment liver tumors by
two user placed points. The tumor center and the maximum radius, both calcu-
lated from those two points, are used to provide a primary segmentation using
the spiral-scanning technique. A level set method adjusts this first segmentation
using a speed function obtained from a pixel classification algorithm. The accu-
racy is only sufficient in a small number of cases. The algorithm performs better
for tumors that have an obvious edge, a high difference between the average gray
level intensity of the tumor and the liver combined with a rather small standard
deviation for both intensity distributions.



A Appendix: Details Results Training Data

Table 2: Results of training set

patient tumor dsc [%] jsc [%] Vol. Diff.[%]
1 1 62,42 45,37 3,15

2 87,82 78,29 15,60
2 1 86,96 76,93 0,93

2 87,83 78,30 9,17
3 92,26 85,64 0,89

3 1 82,88 70,77 10,38
4 1 87,13 77,20 9,10

2 89,96 81,75 14,20
3 91,17 83,78 6,19
4 92,62 86,26 4,13

av 86,11 76,43 7,37
std 8,82 11,87 5,19

Table 3: Results surface distances of training set

manual algorithm
patient tumor SDmean SDmax SDRMS SDmean SDmax SDRMS
1 1 -3,46 -13,29 5,23 -1,42 -16,59 6,46

2 -1,57 -5,14 1,86 1,36 4,80 1,67
2 1 -1,31 -6,70 2,02 0,99 4,61 3,04

2 -0,73 4,04 1,69 0,44 -6,76 1,82
3 -1,08 -3,40 1,55 0,92 3,97 1,52

3 1 -1,88 -4,44 2,21 1,29 3,94 1,94
4 1 -0,88 -12,11 3,05 -0,02 8,29 2,98

2 -0,72 -3,11 1,52 0,42 -3,53 1,59
3 -1,70 -8,90 2,51 1,58 8,58 2,56
4 -0,92 -4,64 1,71 0,82 5,32 1,73

av. -1,42 6,57 2,33 0,64 6,64 2,40
std. 0,83 3,65 1,12 0,87 3,93 1,50
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