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Abstract

We present a method for tracking a coronary artery centerline given a single user supplied distal endpoint. Briefly, we first isolate
the aorta and compute its surface. Next, we apply a novel two-stage Hough-like election scheme to the image volume to detect
points which exhibit axial symmetry (vessel centerpoints). From the axial symmetry image a graph is constructed. This graph is
searched for the optimal path from the user supplied point to any point on the surface of the aorta. Our technique falls under
Challenge 2 of the Coronary Artery Tracking Challenge [1].
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1 Introduction and Related Work

Segmentation of coronary arteries in volumetric datasets facilitates several forms of useful analysis. For
example, the degree of patency of a stenotic lesion influences treatment decisions. And, the planning of
the placement of stents and by-pass graphs benefits greatly from the delineation of the vessel paths and



boundaries. Finally, a by-product of segmentation is enhanced visualizations such as fly-throughs, curved
reformats, and multiple vessel flattening.

In this paper, we introduce a novel semi-automatic algorithm for segmenting coronary arteries from
volumetric datasets which relies on axial symmetries for the detection of centerpoints of vessels.

First, we automatically extract the aorta from the image volume using a fast variant of the isoperimetric
algorithm [10]. Then, we apply a two-stage Hough-like election scheme to the volume which enhances
axial symmetries. In stage 1, the image is convolved with a gradient and each point votes on the vessel
center. Votes are cast in a conical region (with the tip of the cone on the point and its central axis oriented
in the gradient direction). The votes are weighted proportional to the intensity of the gradient at the point
and how close it is to the central axis of the cone. This creates the “standard Hough” image. In the same
manner, a “radius Hough” image is also created. That is: instead of each vote being a simple weighted
yes/no, the weighted radius (the distance between the point and the vote) is recorded. The sum of the
weights is additionally recorded so that the “radius Hough” image can be scaled to a “normalized radius
Hough” image.

In stage 2, we seek agreement between the “ standard Hough” and the “normalized radius Hough” images
in asecond round of voting. For each point in the volume, we create the same conical region of interest as
before and search the “standard Hough” image for the most popular location within the region: the
centerpoint candidate. We then compute the distance to the centerpoint candidate from the point. If this
distance is in agreement with the value for this location in the “normalized radius Hough” image, the
candidate receives avote. The resulting Hough is normalized to form the Axial Symmetry Image.

Finally, we form a graph based on the Axial Symmetry image and search the optimal path from a user
supplied endpoint to any point on the aorta surface (an ostium) to recover the vessel of interest.

Fast, accurate vessel segmentation has been a long sought goal in medical image analysis [12]. The
centerpoint detection aspect of our approach has its root in the work of Duda and Hart [2]. From the time
Duda introduced the usage of rho-theta parameterization for the detection of non-complex objects (lines,
circles), many papers have been published which generalize the idea to more complex shapes [3], [4] or
even to 3-D [5]. Iterative voting for the localization of the salience was first introduced by Parvin & Yang
[6]. They used radial voting for the detection of the centers of blob shaped objects in cell culture systems
and stellar data in 2D and 3D. Their approach bears resemblance to ours. We differ, however, in the
employment of the radius image, and, to our knowledge, we are the first to develop an iterative voting
scheme for the detection of axially symmetric points.

For the computation of vessel centerlines, Dijksta's shortest path (DSP) agorithm [13] is a natural fit
because of the applicability of the solution to the problem domain. However, there are many caveats that
should be addressed in DSP based solutions including but not limited to the following; (1) the scale of the
graph should be limited to keep the computational costs low, (2) final centerlines should not hug the
borders of the tubular object, (3) surrounding non-targeted objects should not define nodes. Egger
formulated an adaptively thresholded input image as a graph where non-eliminated voxels define the
nodes [7] (Caveat 1). Bitter built a graph from the coarse approximation of the 3D skeleton in their
skeleton extraction algorithm [8] (Caveats 1 and 3). Furthermore, they used the coarse object boundary to
node distances as a parameter for setting the edge weights (Caveat 2). Wan defined distance from border
(DFB) metric based on minimum cost spanning trees for more reliable non-hugging paths of their virtual
navigation algorithm [9] (Cavesat 2).
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2 Our Approach

First, the aorta mask, T (X), is extracted automatically from the image volume by first finding the left

ventricle. We used the fast variant of the isoperimetric algorithm [10] that is applied for segmenting only
a mask, presented in [11]. The mask in this case was generated by finding a connected component of
voxels with intensities crossing a threshold. This threshold was computed using the initial point given
inside the aorta. Theinitia point in the aorta was determined based on spatia and intensity priors relative
to left ventricle segmentation. The left ventricle was aso segmented using the variant of the isoperimetric
algorithm in [10], with an initial point given by searching for bright circular regions at the orientation
commonly assumed by the left ventricle. This procedure for segmenting the aorta (and left ventricle) was
extremely reliable, producing a correct segmentation in all of our test datasets.

Then, the Axial Symmetry volume is created using a two-stage algorithm. Stage 1. Three separate images
of the same dimensions as the input volume are created. These are: the “ standard Hough” image, ¥ (X) ,

whose purpose is to store the votes cast for vessel centers, a “radius Hough” image, A(X), used to
compute the expected vessel cross-sectional radii, and X(X), a sum image which will be used to

normalize the radius image. To collect the votes, we convolve the image, |(X), with a cone-shaped
kernel.

The kernel, based at the point X, has angular extent «,,, and is oriented in the direction of the image
VI(X)
VI
order to orient the cone. However, there are other approaches. For example, the direction could come

from the two eigen-values associated with the biggest two eigen-vectors of the Hessian matrix at X . For
performance reasons, we employ the gradient filter.)

gradient with amaximal height, h (see Figure) . (Footnote: We employ the gradient direction in

VI(Z) )

Conical Region: <(z. ay,,. k. 100
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Figure 1 Left: Conical voting region based on avoxel, X, oriented towards the image gradient. Point v
lies within the voting region. Right: View of the vessel cross-section with radius r. Voxels are shown
voting for a centerpoint of the vessel. The gray region contains the most popular candidates. In the
corresponding radiusimage, A(X), point a, receives weighted increments of value r for al three points
X,, X5, X5. At point 5, on the other hand, the weighted increments will be different from r (less r than for
X, and X;, greater than r for X, ).
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A point, v, within the cone may be described with respect to X as

[Vl Vil

rotation matrix aligning the central axis of the cone, Z, with the image gradient direction;

7= R[ v1(X) ][rCos (6)Sin (a), rSin (8)Sin (a), rCos ()T whereR( V'(X)J is a

& [~ O ] - iSthe angle v forms with the image gradient vector; 1 :[0,——————], isthelength
Cos(nay)
of the vector, v ; and 6:[0,27] serves as a sweep out parameter. These parameters form the conical
region, C()?,amax,h,L()f)).
Vi)

Thekernel K weightsapoint, v , by

202

KW(r,a)) = Cos(a)

Since we assume the centerpoint of the vessel is perpendicular to vessel wall, this weight function
penalizes angles deviating from the gradient. Also, the larger the radius, the more pixels to vote for that

: 1 .
centerpoint. The ———— term compensates for this.
rCos(a)

Voting is atwo stage process. In the first stage, we create the vote, radius, and sum images and reset their
values:

(%) =0,VX, A(X)=0,VX, X(X) = 0, VX

o - . . . : (X
Then, for each Xin 1(X), we align the cone-shaped kernel with the image gradient, ﬁ sweep out
X
the cone, and increment the vote image with kernel values weighted by the log of the strength of the
gradient at X.

W(X+7) = ¥(X+7) + K(7)log(VI (X))

In this way, each voxel casts multiple votes for where the centerpoint of the vessel is. On the vessel wall,
voxels will cast their votes for a centerpoint which is in the direction (more or less) of the image
gradient. Since the image gradient is strong those votes will have stronger weights.

In a similar fashion, votes are collected for the approximate radius of the vessel. Also, a sum of the
weightsin Z(X) is stored for normalization.

A(X+V) =A(X+7V)+K@)W|
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S(X+v)=2Z(X+v)+K(¥)
Finally, the radiusimage is divided by X(X) to create a normalized radiusimage A'(X) .

In stage 2, we create a second vote image, A(X) , and set its valuesto zero, A(X) =0,VX.

For each Xin W¥(X) we find the voxel, Ve » With the maximum number of votes within the cone-shaped

region emanating from X :

Vo =V (R V)2 P(R+V), VP eC(Y,amm,h,%)}

If the distance between X and the voxel with the maximum votes is approximately equal to the
normalized radius,

| A’(‘_/.) - ”fimax - X” |< &1
then avoteiscast for it in the second vote image

AX+V ) =AX+V 5 )+ K(Vmax)log(|VI (7()|)

max)

Once dl votes are tallied, A(X) isnormalized to form A'(X) , the axia symmetry image. High valuesin
A'(X) indicate increased likelihood of a point being a centerpoint.

Graph Creation: We then create a graph G ={V, E} based on A'(X) which will be searched to find the
coronary vessels. Vertices, V ={B,H,U} where

B ={X:VT(X) >0}, are the aorta surface points.

H ={X:A'(X) > ¢&,}, arethe axial symmetry voxels over athreshold

U ={0}, isthe user supplied distal endpoint.

Edges, E, are created between any two vertices which are less than or equal to 2 centimeters apart in
world coordinates (we do this to facilitate bridging occlusions shorter than that length). Edge weights are

computed as the line integral (again in world coordinates) between two vertices thru the multiplicative
inverse of the axial symmetry volume,

1
W(Eij ) = (E[A'—(S)ds

Where C;; istheline ssgment connecting vertex v; and v; .
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Vessel Extraction: Finaly, we apply Dijkstra’'s algorithm on G starting from U, the user supplied
endpoint to any point on the aorta surface to recover the vessel of interest. The point on the aorta will be
an ostium if the segmentation is correct.

3 Results

We received the following scores when applying our algorithm to the Test dataset.

Table 1: Average overlap per dataset

Dataset oV OF oT Avg.
nr. % score  rank % score  rank % score rank | rank
8 88.7 61.8 — 38.8 40.1 - 91.9 58.6 - —

9 90.5 56.9 — 50.6 27.5 — 92.2 46.1 — —
10 90.3 46.6 — 0.0 0.0 — 90.4 45.2 — —
11 87.8 45.0 — 12.1 16.4 — 87.8 45.0 - -
12 88.4 45.6 — 16.6 8.3 — 90.7 45.6 — —
13 97.7 67.6 — 51.1 38.8 — 98.6 61.9 — —
14 90.5 45.8 — 19.1 12.4 — 90.4 45.2 — —
15 98.1 76.3 — 25.0 25.0 — 99.1 62.0 — —
16 91.4 58.5 — 51.2 38.4 — 92.2 71.1 — —
17 73.3 45.4 — 7.6 4.3 — 73.2 38.7 — —
18 87.2 54.2 - 20.9 10.7 - 87.2 48.0 - -
19 99.7 91.1 - 24.8 24.4 - 99.7 51.9 - -
20 86.5 54.8 — 30.6 16.5 — 86.5 43.4 — —
21 94.5 58.1 — 23.6 17.7 — 96.5 61.2 — —
22 94.3 47.6 — 3.3 1.7 — 94.3 47.1 — —
23 95.4 52.7 0.0 0.0 95.4 47.7

Avg 90.9 56.7 - 23.5 17.6 - 91.6 51.2 — —

Table 2: Average accuracy per dataset

Dataset AD Al AT Avg.
nr. mm score  rank mm score  rank mm score  rank rank
8 0.61 36.5 - 0.41 38.8 - 0.50 37.6 - -

9 0.81 22.6 - 0.41 25.0 - 0.76 23.0 - -
10 0.69 21.4 - 0.46 23.1 - 0.70 20.9 - -
11 1.02 26.3 - 0.50 28.5 - 1.02 26.3 - -
12 0.81 20.6 - 0.51 22.5 - 0.77 20.1 - -
13 0.55 30.8 - 0.37 31.3 - 0.42 30.8 - -
14 0.76 23.8 - 0.55 25.1 - 0.77 23.6 - -
15 0.51 22.5 - 0.50 22.8 - 0.51 22.4 — —
16 0.57 23.6 - 0.44 25.5 - 0.59 22.3 - -
17 2.86 33.2 - 0.51 38.1 - 2.86 33.2 - -
18 2.01 21.1 - 0.44 24.0 — 2.01 21.1 — —
19 0.61 26.1 — 0.61 26.1 — 0.62 26.0 — —
20 0.96 24.2 - 0.52 27.4 - 0.96 24.2 - -
21 0.62 21.5 - 0.41 22.5 - 0.58 21.6 - -
22 0.75 20.8 - 0.56 21.7 - 0.75 20.5 - —
23 0.56 27.3 - 0.45 28.3 - 0.56 27.3 — —
Avg 0.92 25.1 — 0.48 26.9 — 0.90 25.0 — —

Table 3: Summary

Measure % / mm score rank
min. max. avg. min. max. avg. min. max. avg.
oV 66.6% 100.0% 90.9% 34.5 100.0  56.7 - - —
OF 0.0% 100.0% 23.5% 0.0 100.0 17.6 - - -
oT 66.6% 100.0% 91.6% 33.3 100.0 51.2 — - -
AD 0.29 mm 7.57 mm 0.92 mm 14.8 64.3 25.1 - - -
Al 0.29 mm 0.69 mm 0.48 mm 15.8 65.4 26.9 - - -
AT 0.29 mm 7.57 mm 0.90 mm 14.7 64.2 25.0 — — —
Total — — —
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4 Discussion and Conclusions

The axial symmetry algorithm is computationally expensive. Therefore we apply an automatic cardiac
extraction algorithm to isolate the heart. Then, we subdivide the image volume into sub-cubes. Any cube
which contains some part of the heart is included in the processing. Even so, the creation of the axial
symmetry image typicaly takes up to five minutes. Once this is calculated, however, extraction of a
vessel isdonein afew seconds.

Our algorithm has severa features. Non-tubular structures will not be both popularly selected in the first
voting image, and have a consistent radius as measure by the normalized radius image. Therefore, the
algorithm will not stray from the vessel. Second, since centerpoint detection is based on gradients rather
than intensities we are less prone to failure in cases where the vessel intensity fluctuates. Based on our
experiments, we believe we have developed an accurate and robust approach to the vessel segmentation
problem.
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