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Abstract. Liver tumour segmentation from computed tomography (CT) scans is 
a challenging task. A semi-automatic method based on 2D region growing with 
knowledge-based constraints is proposed to segment lesions from constituent 
2D slices obtained from 3D CT images. Minimal user involvement is required 
to define an approximate region of interest around the suspected legion area. 
The seed point and feature vectors are then calculated and voxels are labeled 
using a region-growing approach. Knowledge-based constraints are 
incorporated into the method to ensure the size and shape of the segmented 
region is within acceptable parameters. The individual segmented lesions can 
then be stacked together to generate a 3D volume. The proposed method was 
tested on a training set of 10 tumours and a testing set of 10 tumours. To 
evaluate the results quantitatively, various measures were used to generate   
scores. Based on the results obtained from the 10 testing tumours, the method 
was resulted in an average score of 64. 

1   Introduction 

According to a recent report on cancer statistics[1], liver tumor is the third highest 
cause of death due to cancer. Although the incidence rate is the sixth highest, at 5.7% 
of new cancer cases, or 626,000 cases, the mortality rate due to liver cancer is almost 
as high at 598,000. The high mortality rate has been attributed to poor prognosis of 
the disease, which underscores the need for an accurate assessment of the cancer. 

Computed Tomography (CT) scans are widely used mode of non-destructive and 
non-invasive imaging for observation of internal physiological structures in the body. 
The near-isotropic features of modern CT machines allows for volumetric 
reconstruction obtained via individual slices by stacking the CT slices accordingly. 
Particularly for diagnosis of liver cancer, it is important to obtain an accurate 
portrayal of the size of the tumour to determine its severity. Furthermore, tumour 
localization and volume determination is important for radiotherapeutic treatment 
management in techniques such as 3D Conformal Radiotherapy (3DCRT) and 



Intensity Moduldated Radiotherapy (IMRT), where tumor information is vital for 
correct dosimetry calculations. 

To identify tumours from CT slice images, there is a need for identification, or 
segmentation, of tumourous lesions. Typically, this has been manually done by 
trained clinicians. The task is time-consuming, requiring much effort and can be 
subjective depending on the skill, expertise and experience of the clinician. Objective, 
computer-aided segmentation of CT images would thus be a great boon for lesion 
identification. However, this remains a challenging task, due to a number of factors, 
mainly the low density contrast between lesions and surrounding normal liver tissues, 
but also,  and not limited to, the irregularity of the shape of the lesions and the 
similarities in image characteristics of the liver with surrounding organs. 

A number of methods have been proposed for the computer-aided segmentation of 
tumours from medical images. In [2], Mahr et al reviewed and compared the various 
techniques which included region-growing, isocontour, snakes, hierarchical and 
histogram-based methods, and found that region-growing and snakes, also sometimes 
known as active contour models, were the most promising for future investigation on 
liver volumetry determination. In [3], Liu et al reported on the use of a snake 
algorithm based on gradient vector flow for liver segmentation, incorporating the use 
of a liver template and edge detection for better initialization of the method. A 
possible limitation on the use of active contour models is their reliance on a model for 
initialization to produce an accurate segmentation. In tumour segmentation, the large 
variability of the shape of lesions for different patients and possibly even for different 
slices of the same tumour can be a challenge to model. 

Seeded region-growing [4] techniques are also another popular method for medical 
image segmentation[5]. Typically, features are generated from a select number of 
seed points, and the initial region is gradually increased by incorporating 
neighbouring pixels with similar feature vectors. The method takes advantage of the 
potential similarities of pixels belonging to the same structure and can be effective if 
proper features are chosen. However, the method requires the selection of proper seed 
points, as incorrect seeds would lead to wrong segmentations. Furthermore, region-
growing can be highly computationally-intensive particularly for large images. 

Recently, there has also been a trend to utilize a priori information into 
segmentation and classification methods to improve their effectiveness by 
incorporating heuristics specific to the task. Also known as knowledge-based 
techniques, these methods make use of domain-knowledge to filter out extraneous 
regions by employing heuristic-based contraints and filters, or to aid classification 
through use of templates and landmarks. Knowledge-based techniques have been used 
to identify abdominal organs [6] and identify brain tumours [7] from CT slices. 

In this paper, we propose a semi-automated method to identify tumours from 3D 
CT scans. After decomposing the 3D scan into its component slices, we apply 2D 
region growing with knowledge-based constraints on each slice. User interaction is 
employed to establish an approximate region of interest (ROI) around the lesion in 
each slice image. This improves the performance of region growing, as well as 
reduces computational requirements. During the region-growing process, knowledge-
based constraints are implemented to constrain the emergent segmented region to 
within acceptable parameters. In Section 2, an overall framework of the method 
employed will be presented, followed by a detailed description of the processes used 



in the method. Subsequently, in Section 3, we describe the data provided for 
benchmarking and report on the results obtained on applying our method to the testing 
data. Section 4 ends the paper with a discussion of the results and conclusion of the 
findings from the method presented here. 

2   Method 

For the method presented, we adopted a semi-supervised method based on 2D 
region growing with knowledge-based constraints to segment the lesions from the CT 
images. Figure 1 shows the overall framework for the lesion segmentation. The 
selection of the start and end slices for the segmentation would need to be manually 
defined, after which the method is applied on each of the selected slices. The 
following subsections describe the steps employed in greater detail. 

 
Fig. 1. Liver tumour segmentation process framework. 

Yes 

Pre-processing 
CT Slice

Contrast 
enhancement

Noise 
reduction

ROI selection

Supplementary 
feature generation 

2D region 
growing

Morphological 
operations

Segmented 
lesion

Logical fusion 
operations

 

No

2D region 
growing

Seed point 
and feature 
generation

Morphological 
operations

Knowledge-
based 

constraints 
met? 

Region growing 

Knowledge-based constraints 

End slice 
reached?

No 

Segmented 
Tumour

Yes 



2.1 Preprocessing, ROI selection and seed point generation 

First, to reduce the granular noise in the CT slice image, median filtering via a 3x3 
voxel square kernel is convolved across the entire image. Subsequently, the contrast 
of the CT slice is enhanced to improve visual perception of the structures in the 
image. Next, a region of interest (ROI) was manually determined by selecting two 
points on the CT slice image. The two points are used to indicate the diagonal limits 
of the ROI which contain the tumour lesion. This helps to localize and constrain the 
region-growing to within the ROI. Furthermore, it helps to avoid inaccurately 
identifying erroneous regions, particularly outside the liver. ROI selection has to be 
manually performed only on the first slice. For subsequent slices, the ROI can be 
reselected, or it can make use of the ROI from the prior slice. 

An additional benefit is the reduced processing time by limiting the ROI. For a 
typical CT slice image with a resolution of 512x512 voxels, generally the size of the 
lesion is less than 10% of the total number of voxels. Applying the region-growing on 
only the ROI instead of the entire CT slice would result in savings in the 
computational requirements.  

2.2 Region Growing 

Initialization 
Next, a seed point for the region growing algorithm is automatically defined at the 

centre of the ROI. Concurrently, the average voxel intensity in the neighbouring 
region is calculated and is defined as the initial feature metric. Subsequently, a search 
is conducted in the 4-connected neighbourhood to determine the voxel which has the 
least intensity difference from the initial average intensity. The determined voxel is 
then added to the region. 

 
Iteration 
After initialization, the subsequent iterative region-growing process is similar to 

the method described in [4]. Let L be the set of voxels labeled as part of the lesion, 
and I be the set of voxels t in the ROI which are not part of L but are neighbours to L. 
N(t) represents the voxels in the immediate neighbourhood of t. 
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Next, the difference in the grayscale intensity levels between the voxels in I and 

the voxels in L are calculated as ( )tδ . 
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The region-growing method then determines the minimum ( )tδ   
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The voxel t1 corresponding to the minimum ( )tδ  is determined and t1 is added to 
the set L. The segmentation labels are updated and the algorithm reiterates until the 
values of the grayscale intensity in the neighbouring voxels are higher than a pre-
defined threshold value, which is empirically obtained. Morphological closing using a 
flat, disc-shaped structuring element with a voxel radius of 15 is then performed on 
the segmented region to smoothen out the region boundaries. 

 

     
(a)     (b) 

   
(c)     (d) 

Fig. 2. Liver tumour segmentation process. (a) shows the manual ROI corner selection. The red 
crosses indicate the selected points and subsequent ROI is the rectangle with the white dotted 
outline. The contrast of the CT slice has been enhanced for better differentiation between the 
various structures. (b) shows the segmented lesion after region-growing and (c) presents the 
overlay of the boundary from (b) on the original CT slice image, as denoted by the red outline. 



(d) shows the ground truth segmentation in red of the lesion. The image is from Slice 139 from 
Lesion 2 of Patient Data 1. 

2.3 Knowledge-based constraints 

During the segmentation process, it was found that some attempts resulted in an 
unusually high regional average intensity, due to the initial seed point being located 
on bright spots. This caused premature termination of the region-growing algorithm 
and over-segmentation of the tumour lesion. To avoid these effects, a constraint was 
imposed on the initial segmented region to occupy a minimum fraction of the total 
ROI area. The fraction was empirically set but a good approximation was found to be 
half the size of the ROI. In circumstances where the initially segmented region does 
not meet this constraint, the region growing is performed again using the same ROI 
but with a larger area to calculate the initial average intensity. The subsequent 
segmentation is then fused with the initial segmentation using a logical addition 
operator, after which morphological closing is applied again to the combined region 
to obtain the final segmentation result for the CT slice. 

 

3   Testing Data & Results 

To evaluate the results using the proposed method, liver tumour CT data sets were 
provided by the organizers of the workshop. The slices were obtained via a 64-slice 
and two 40-slice CT scanner in a standard four-in-plane contrast enhanced imaging 
protocol with a slice thickness of 1mm of 1.5mm, and an in-plane resolution of 0.6-
0.9mm. 10 liver tumours from four patients were used for training, and another 10 
tumours from five patients were used in testing. A final ten images will be used for 
the onsite during the segmentation workshop. The datasets represent a range of 
patients, pathology and CT scanning phases. All the ground truths were manually 
segmented by an experienced radiologist and confirmed by another radiologist as 
reference for evaluation purposes. 

Figure 3 and 4 show the visual examples of the segmentation results for the 
training set and the testing set respectively. For Figure 3, the corresponding ground 
truth results as determined by the radiologists are also included for comparison. The   
results were also evaluated quantitatively using the following five measures, (1) 
relatively absolute volume differences, (2) average symmetric absolute surface 
distance, (3) symmetric RMS surface distance, (4) maximum symmetric absolute 
surface distance, and (5) volumetric overlap error, and are tabulated in Tables 1 and 2 
for the training set and the testing set respectively. For the testing set, an automatic 
scoring system [7] was used to assign scores to the results obtained under the five 
measures, with the score ranging from 0 to 100. A score of 100 represents the perfect 
segmentation while 0 is the minimum score one segmentation will get. Table 2 
includes the corresponding scores for the measures. 
 
 



 
 

 
 

 
 

 
Fig 3. Segmentation results (top row) and ground truth (bottow rom) for Slices 86-
93 of Lesion 2 from Dataset 4. 

 
Table 1. Quantitative results obtained from the training data set 

 

Tumor 
 

Overlap Error 
[%] 

Volume 
difference [%] 

Ave. Surf. Dist. 
[mm] 

RMS Surf. Dist. 
[mm] 

Max. Surf. 
Dist. [mm] 

IMG01_L1 34.45 11.2544 2.0702 2.832 14.2655 

IMG01_L2 28.7 8.86 1.0226 1.6305 9.8152 

IMG02_L1 25.07 3.8759 0.8661 1.3366 9.5636 

IMG02_L2 28.61 25.568 1.1983 1.8093 9.3226 

IMG02_L3 27.97 7.4968 1.0106 1.5866 8.8689 

IMG03_L1 41.99 21.0929 1.0384 1.6694 9.4826 

IMG04_L1 18.87 0.891 1.505 2.319 18.3036 

IMG04_L2 9.29 2.8418 0.3457 0.6532 5.133 

IMG04_L3 11.82 3.1932 0.9703 2.1005 17.7573 

IMG04_L4 20.84 12.5498 1.2445 2.0322 11.0206 
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Fig 4. Segmentation results for Slices 163 to 170 of Lesion 3 from Patient Dataset 5. 

 

 
     (a)         (b)   (c)      (d) 
Fig 5. Selected poor segmentation results from (a) Dataset 5 Slice 143, (b) Dataset 5 
Slice 149, (c) Dataset 7 Slice 88 and (d) Dataset 7 Slice 119. The poor segmentation 
can be attributed to low contrast visibility in (a) and (b), and non-uniform lesion 
texture in (c) and (d). 

 
Table 2. Quantitative results obtained from the testing data set 

  Overlap Error Volume Difference Ave. Surf. Dist.  RMS Surf. Dist.  Max. Surf. Dist.    

Tumor (%) Score (%) Score (mm) Score (mm) Score (mm) Score 
Total  
Score 

IMG05_L1 36.05 72 6.78 93 2.99 24 4.17 42 18.59 53 57 

IMG05_L2 41.85 68 23.52 76 1.73 56 2.53 65 12.48 69 67 

IMG05_L3 36.93 71 3.61 96 1.50 62 2.18 70 10.97 73 74 

IMG06_L1 50.06 61 41.81 57 1.20 70 1.61 78 5.23 87 70 

IMG06_L2 48.25 63 19.74 80 1.22 69 1.78 75 9.35 77 73 

IMG07_L1 40.76 69 35.73 63 5.61 0 7.59 0 29.87 25 31 

IMG07_L2 31.46 76 18.87 80 1.60 60 2.25 69 10.18 75 72 

IMG08_L1 18.24 86 12.18 87 2.16 45 3.11 57 13.62 66 68 

IMG09_L1 46.85 64 38.49 60 1.53 61 2.08 71 7.55 81 67 

IMG10_L1 43.50 66 41.22 57 2.45 38 2.95 59 9.07 77 60 

Average 39.40 70 24.20 75 2.20 49 3.02 59 12.69 68 64 



4   Discussion & Conclusions 

From an analysis of the results, the proposed method performs well for lesions that 
are well-defined and have uniform grayscale intensity throughout the lesion. Although 
some user interaction is required, the effort needed is minimal as the user need only to 
define an approximate ROI around the suspected lesion, rather than manually 
delineating the lesion boundary. Furthermore, the method, combined together with 
ROI constraints, is relatively fast, with each slice taking about one to two seconds to 
process in a MATLAB operating environment running on a 3GHz Dual Core Pentium 
PC with 4 GB RAM. Providing some allowance for adjusting of the parameters, 
segmenting an entire tumour typically consisting of approximately 25 slices should 
take about ten minutes. 

However, it was observed that for lesions with certain characteristics, segmentation 
performance was sub-optimal. In particular, for lesions with low contrast compared t0 
normal liver tissue, such as in Figs 5(a) and 5(b), the feature space separation between 
lesion voxels and normal tissue voxels can be minimal, leading to difficulty in 
accurately labeling voxels. Furthermore, when the lesion has a patchy, non-uniform 
appearance, as can be seen in Figs 5(c) and 5(d), the visual characteristics of the 
lesion can be observed to vary even on the same CT slice, since the resultant labeling 
of voxels would depend on the initial seed selection. Where parts of the lesion have 
characteristics which are too different from the seed points, these voxels would be 
mistakenly mis-labelled as non-tumour voxels. Possible strategies to overcome these 
challenges could be the selection of different features, or aggregating feature vectors 
from multiple seed regions to increase the robustness of the system. 

In this paper, we have presented a semi-automated method for 3D segmentation of 
tumours from CT slices. First, the 3D scans are decomposed into its constituent parts, 
after which 2D region-growing with knowledge-based constraints is applied to 
segment the lesion voxels from the normal tissue voxels. From the results obtained 
using the training data set and the testing data set, the method was found to perform 
adequately. Further improvements can be implemented to improve the performance of 
the proposed method. 
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