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Abstract

Liver cancer is the fifth most commonly diagnosed cancer hedhird most common cause of death
from cancer worldwide. A precise analysis of the lesions iddelp in the staging of the tumor and

in the evaluation of the possible applicable therapies.his paper we present the workflow we have
developed for the semi-automatic segmentation of liveritsin the data sets provided for the MICCAI

Liver Tumor Segmentation contest. Since we wanted to dpvalsystem that could be as automatic
as possible and to follow the segmentation process in evegjesstep starting from the image loading

to the lesion extraction, we decided to subdivide the wovkilotwo main steps: first we focus on the

segmentation of the liver and once we have extracted thexatgacture we segment the lesions applying
an adaptive multi-thresholding system.
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In the Introduction we analyze the problem of segmentindittiee lesions from the clinical point of view.
Then we overview the state-of-the-art in the field of liventur segmentation. In Secti@we describe the
complete workflow from the analysis of the dataset to the fxéaction of the lesions. In the Results part
(Section3) we present the results obtained and in Sedfiove discuss the future improvements we would
like to apply to our approach to further optimize the resatitained so far.



1 Introduction

In 2008, an estimated 21,370 adults (15,190 men and 6,18@&wpim the United States will be diagnosed
with primary liver cancer. An estimated 18,410 deaths (1@,Bhen and 5,840 women) from the disease
will occur this year. Liver cancer is the fifth most common sawf cancer death among men, and ninth
most common cause of cancer death among worthgh [The five-year relative survival rate (percentage
of patients who survive at least five years after the cancéetiscted, excluding those who die from other
diseases) of patients with liver cancer is 11%. Unlike mahgioforms of cancer, the number of people who
develop and die from liver cancer is increasing. Liver caicenuch more common in developing countries
within Africa and East Asia. In some countries, it is the momthmon cancer type and it is predicted that
for 2030 it will enter the top 20 causes of deadh [The liver is the second most commonly involved organ
by metastatic disease, after the lymph nodes. In Europetendnited States, a focal liver lesion is more
likely to represent a metastatic deposit than a primarygnalicy. The true prevalence of metastatic liver
disease is unknown because most figures are based on autoigsytlsat reflect the end stage of a disease
process. However, depending on the site of the primary tlB8at0% of patients dying of cancer have liver
metastases.

Prognosis for liver cancer is poor so incidence and moytpétterns are very similar. In order to improve the
curability of liver cancer, early detection and accurasgstg are critical. Staging is a way of describing a
cancer, such as where itis located, if or where it has spesgatiif it is affecting the functions of other organs
in the body. Doctors use diagnostic tests to determine theetastage, and CT scans are widely accepted
as the gold standard for liver tumor detection. Knowing tteggs helps the doctor decide what kind of
treatment is best suited and can help predict a patientgnois (chance of recovery). Moreover a proper
estimation of the tumor size is useful for several applaatisuch as evaluating the effect of therapies on
tumor and changing the treatment plans. Although the latgesor diameter is widely used as an indication
of the lesion size, because of 3D shape of the tumor it mayetltetct a proper assessment of this tumor
attributes 8]. The tumor volume, on the other hand, suggests an apptepearesentation of the tumor
size.

One way to find an estimation of tumor volume is to use segntientalgorithms. Even if many research
groups have developed different approaches for liver satatien and volume construction in the last few
years, only few have proposed systems for the segmentatitite diepatic lesions. Seo and Churid)][
have developed a method that involves the segmentationinadzation of the hepatic structure, the cre-
ation of the image based bounding box and the segmentatitinieatonvex deficiencies. Large convex
deficiencies are selected by pixel area estimation, theyharetransformed to gray-level deficiencies and
finally the boundary tumor is selected by evaluating theitavece. As stated by the authors, this approach
is only applicable to homogeneous boundary tumors. BeSdesin P] worked up the previous approach
to segment all the hepatic lesions: after the segmentafidrediver, the optimal threshold is calculated by
composite hypotheses and minimum total probability effarally, hepatic tumors are segmented using the
optimal threshold value. Promising results are shown, éviie approach produce diverse false positives,
especially for small tumors. Massoptier and Casci&idifst segment the liver by adopting a statistical
model-based approach and then apply a wavelet analysisafsifying the tumors. The method proposed
reaches good results in terms of sensitivity and specifieign if it doesn’t take into account lesions that
show pixel intensity values similar to the vessels. In faghpary and secondary liver tumors show different
attenuation values in the different contrast-enhancerpbkases, therefore their conspicuity to the normal
liver will change according to the phase that is analyzedst\doimary tumors and many secondary tumors
are hyperdense to the normal liver parenchyma (i.e. hypewar) in the arterial phase, whereas nearly all
malignant lesions (both primary and secondary) are hypsmlenthe portal and in the delayed phase.



Figure 1: Segmentation of the ribs

2 Materials and Methods

To develop a system which could be as automatic as possiblelesided to proceed sequentially starting
from the liver segmentation followed by the lesions segia@m. Our workflow is mainly divided into 2
steps:

e Segmentation of the liver using the ribs and diaphragm caimss.

e Segmentation of the tumor from the segmented liver usingdittiuesholding approach.

2.1 Segmentation of the liver
Segmentation of the ribs

With a simple thresholding method we extract the bones, Wesubdivide the skeleton in three parts from
the axial view and take into account only the first third onléfeside, in order to consider only those parts
of the ribs that surround the liver. In Figthe extraction and volumetric reconstruction of the ribshiswn.
After obtaining the ribs data for different slices we applguave interpolation slice by slice using Cubic-
Hermite shape preserving interpolation. Since the riba gdatlustered, the mean point for each ribs cluster
in a slice is used for the interpolation. All the voxels in #dernal part of these resulting boundaries are
setto O.

Segmentation of the diaphragm

One of the main problems in liver segmentation is the closgipiity between the liver itself and the heart.
These two tissues have almost the same density and usiog igggiwing methods usually results in the heart
being classified as part of the liver. To try to automatizealgorithm as much as possible, we implemented
a procedure to identify the diaphragm so that it could be @samnstrain the region where the algorithm
look for the liver. This idea has already been usedinhut we implemented a different approach which
is computationally more efficient. We have defined this apgihosince our focus is not in segmenting the
liver accurately but in finding the region where it is locatethich will then be used as starting point for our
tumor segmentation module. The first step toward our goa segment the lungs which is an easy task
since they are full of air whose Hounsfield value is known. \&ke then construct a map of the diaphragm
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Figure 2: Representation of a section of the lungs surfage isethe coronal plane

Figure 3: Diaphragm dome approximation

simply considering an axial plane whose dimensions areaitess those of the CT-scan, and assigning to
each pixel of the plane the minimum value of the z-axis in theesponding lung region. This result in an
approximation which is wrong in the central part, where tnagk walls are almost vertical. To obtain the
correct results, we must interpolate lungs surfaces sdhbgtwill be correctly closed (see F&j).

To do this we consider the curves obtained sectioning thiaaiwith the coronal plane; each one of
them will have an empty space around the center (where thghagas is placed) which we identify and,
starting from the center of this space, we look in both dioest until we find the two points of the lungs
surface where the slope reaches a threshold. By connebisg two points, we obtain an approximation
of the diaphragm for this section. After this procedure isesgted for all slices, we obtain a very good
approximation of the entire diaphragm dome, and then al/tixels which are above it are set to 0 (In Fig.
3 these parts are highlighed in blue).

Extraction of liver contours

Since the focus of our work consists in the extraction of liepasions, we only need to identify approximate
liver boundaries. In our approach, first of all, we requirgt the user identifies a slice where the liver appears
as the biggest organ or, in cases where it is not possiblewhen there are very large tumors), he selects
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a point inside the organ. With this initialization, the algiom, as described in Figl, starts. The algorithm
computes the gradient magnitude of the image and then iepses the results to highlight boundaries and
normalize image intensities.

We apply the watershed segmentation algorithm that hasibgeduced in L3] and then used and extended
in many fields. Watershed has two parameters that must béisgdethe threshold value (below which
everything is set to 0 in the input image) and the minimum tmed the basins. Both parameters need to be
selected to limit the oversegmentation that watershedllystraates.

If the user has previously identified a point inside the livez consider the class containing that point as the
one representing the liver. If a point has not been selectadses are ordered by their area and we consider
the first one having mean and variance values (computed osigigal image values) compatible with that
of the liver.

Given this first slice of the liver, we estimate its meai) énd varianced), so as to calibrate our system
on the specific dataset being studied, and the system stsegugnce of post-processing tasks in order to
obtain a mask to be used in subsequent steps. This postsprogéncludes level-set smoothing and dilation
of the region. The resulting region of interest (ROI) wilkthbe used in the next slice as a binary mask such
that, after the magnitude gradient and the watershed haredmmputed, only classes inside the mask will
be considered. For each cldassnean (i) and varianced;) are estimated and if the conditions i) @re
satisfied, the class is considered as part of the liver.

3_ - —
I —Hl <50 and |oi-of<0/2 @

In (1) we compare both the mean value and the variance, since iprixamity of the liver there could
be many structures whose mean values are close to the one lofeh but the texture may differ. Hence,
comparing thes gives us a hint to distinguish them. A more precise methodikare investigating consists
in using textures modelling to better discriminate livearfr other organs, as if7].

This process is repeated for each slice and ends when thefdtealiver becomes too small (i.e. below 25
pixels for standard images with resolution 512x512)

Since the process doesn’t start from a particular slicer #fie last slice has been reached it is necessary to
repeat it again from the starting slice in the other dirattiét the end, using all the slices a 3D model of
the liver is obtained. In Fi§ all the aforementioned steps are shown for the liver of @htas

2.2 Segmentation of the tumors

Using the liver data obtained, a Haar Wavelet based dergp@gorithm is used for removing the noise from
the liver images. Then a minimum cross-entropy multi- thodding algorithm segments out the tumors.
In order to smoothen the final results the system applies notogical closing and 3D level sets to the
bidimensional contours obtained. In the next paragrapgsetiprocessing steps are described more in detail.

2D segmentation using wavelet based de-noising followed by multi-thresholding

The first step is applying wavelet based de-noising to redluediigh frequency noise in the liver images.
For de-noising, a Haar wavelet transform is computed froendhginal image: the number of scales of
decomposition depends on the amount of noise present imthge. Noise level at each wavelet scale is
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Figure 4: Flowchart of liver segmentation technique

estimated separately and eliminated using soft threstmpldirhe computation of the thresholds for hori-
zontal, vertical and diagonal coefficient matrices at diffe: wavelet scales is done using the BayesShrink
thresholding technique. Then an inverse wavelet transfspplied on the coefficient matrices generating
the de-noised image with the tumor region being more unifasntompared to the tumor in noisy image

(Fig. 7 a,b).

On the de-noised liver images, a cross-entropy miniminabi@sed multi-thresholding techniqug [s ap-
plied slice by slice to segment out the tumor. De-noisingeaseassary before thresholding otherwise the
system would segment the tumor along with other regions tlgnosise) connected to it as shown in Fig.
7 ¢,d. The cross entropy was first proposed by Kullback3]n The cross entropy D between 2 probability
distributionsF = fy, fp,..., fy andG = 01,02, ...,,0n IS an information theoretic distance defined by
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Figure 5: Watershed segmentation step on dataset 5: (@yarighage (slice 140), (b) gradient image, (c)
result of the watershed segmentation and (d) computedrtiasik

The aforementioned approach selects the thresholds byniing the relative entropy between the original
image and its thresholded version. lLdie an image witth(i),i = 1,2,...n as the corresponding histogram
with n being the number of gray levels. The minimum cross entropgstiolding tries to calculate the
thresholdstg,tandg) by minimizing the cross entropy, given by

4 tJ+1*1_ _ i
D(t17t27t3) - J; i:ZtJ Ih(l)|Og <m> 3 to — 1, t4 — I’H—l (3)
where
b—1 b—-1
Wab) = 3 in(i)/ 3 hi) )

The number of thresholds applied in each slice is 3 and wahparticular slice the dark (i.e. hypodense)
tumors lie below the first threshold while the bright (i.e pbydense) tumors lie above the third threshold.
While moving from a normal liver slice to a slice which comisithe tumor, there is a sufficient amount of
shift in the first threshold but while moving among slicesteamng the tumor the first threshold value almost
remains the same. This criterion is used for differentgatime pathological slices from the normal ones and
estimating a global threshold below which the tumors in ¢hglices lie. The bright tumors are always
segmented as white regions lying above the third thresh®lte 3D regions obtained after thresholding
constitute the dark and the bright tumors as well as otheuéis having the intensity similar as the tumors.
The second stage involves segmentation of the tumor oesitéaking an input point from the user.
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Figure 6: (a) Original image, (b) de-noised image, (c) thoéding applied on the original image and (d)
thresholding applied on the de-noised image

Segmentation refinement of the thresholded tumors

For each segmented 3D region, meghdand varianced) are computed. A 3D neighbourhood connected
region growing is then initiated from the centre of that cegiaking the lower threshold limit ag{ 60) and
upper threshold limit agu+ 20). This method refines the boundary of all the regions segedeaind also
segments the complete tumor in those datasets in whichviireréigion excludes the lesion as we discuss in
Section3. The next step is to eliminate the noise attached to the sagheegions using slice connectivity
criteria. Starting from the first slice of each region, wereot the segmentation error by eliminating the
artifacts attached to the regions using the fact that théocos in adjacent slices must be similar. While
moving among slices we expand and smoothen the boundaryeattiion in the current slice using 2D
level sets and considering only that part of the region inrtégt slice which lies within this boundary.
The bi-dimensional region contours obtained are subjectedorphological dilation and closing to fill the
holes and obtain smoother 2D contours. After this step waioldifferent 3D structures that have to be
classified in order to distinguish between tumors and otlenents, e.g. vessels or non-filtered noise. For
this purpose the system applies shape constraints. Forsgamiture, a singular value decomposition is
estimated and the eigenvalugs }i—1. 3 obtained are analyzed applying the following rules:

e if the As have almost the same values, the structure is sphericaludie its mean Hounsfield value:



if its lower than the average pixel intensity of the liveassify it as a tumor;
e if two As are very big with respect to the third one, then let it ursifaes;

e if one A has a very large value compared to the other two and the Heldhsélue is higher than the
average pixel intensity of the liver, classify it as a vessel

¢ |eave all the other regions as unclassified.

Surface smoothening using 3D Level sets

To further improve on smoothness, 3D Min/Max flow is appliedhe segmented tumot]]. Min/Max
Flow is a kind of level set method based on the partial difige¢ equation

Iy = _Fmin/max‘Dl ’ (5)

wherel; is the temporal derivative of the time-varying image fuontitl the spatial gradientn/max the
propagation speed. The latter is calculated as

E | max—«k,0) if average(x,y) <0 (©)
min/max =\ min(—k,0)  otherwise

Herek is the curvatureaverage the average intensity value within radiksaround a pointx,y). For 3D
case we compute as follows:

(lyy+ 12212 4 (o + Iyy)12 + (hoc+ 12218 — 2lylylyy — 21l zlxz— 2lylly
(1I2+12+12)%/2

K3p =

(7)

Examples of the smooth surface of the tumor after applying/Max flow are demonstrated in Fig.

At the end, all the unclassified regions, as well as the tunaoeshighlighted to the user who can click on

those he recognizes to be of interest.

Figure 7: Results of the 3D level set smoothening step on tlw2of dataset 7



10

Table 1: Results of the comparison metrics and scores fteraliest tumors

Overlap Error| Volume Diff. | Avg. Surf. Dist. | RMS Surf. Dist.| Max. Surf. Dist.
Tumor (%) Score| (%) Score| (mm) Score | (mm) Score | (mm) Score | Tot.
IMGO5_L1 | 3510 73 | 1969 80 | 2.74 31 3.79 47 12.87 68 60
IMGO5_L2 | 2968 77 | 2565 73 | 1.00 75 141 80 6.03 85 78
IMGO5_L3 | 4366 66 | 3566 63 | 1.86 53 2.63 63 7.68 81 65
IMGO6_L1 | 30.34 77 | 952 90 | 0.77 81 1.03 86 4.23 89 84
IMGO6_L2 | 3527 73 | 2810 71 | 0.77 80 1.09 85 521 87 79
IMGO7_L1 | 2388 82 | 2.87 97 | 3.07 23 4.27 40 18.69 53 59
IMGO7_L2 | 3047 76 | 5.88 94 | 156 60 2.10 71 9.10 77 76
IMGO8_L1 | 1785 86 | 1161 88 | 1.99 50 2.76 61 11.72 71 71
IMG09_L1 | 4565 65 | 7818 19 | 211 47 2.60 64 9.74 76 54
IMG10_L1 | 2953 77 | 861 91 | 1.78 55 2.27 68 7.64 81 75
Average 3214 75 | 2258 77 | 177 56 2.40 67 9.29 77 70

3 Results

Our method has been applied to 10 CT datasets of oncologitigngs. Some functions are implemented
using the Insight Toolkit]]. For the gradient magnitude filtes,value of 1.7 was found to work perfectly for
all the cases. For the watershed segmentation, the levehegghold parameters depended on the protocol
used to acquire the data. A higher threshold value resuttedsmooth liver boundary but it also led to
the disappearance of weaker edges between the liver anedhleynorgans in images with poor resolution.
A lower level value resulted in oversegmentation of therlivecause of the high amount of noise present
inside the organ. However, for most of the cases the optilrakhold value for watershed segmentation
was determined to be 0.1 after contrast enhancement of #ukegt magnitude image. For de-noising the
number of decomposition levels was either 2 or 3 dependin®extent of noise present in the image and
the non-homogeneity of the tumor regions (e.g. for dataskeisSvalue was set to 3 and for dataset 6 it was
set to 2). The system evaluates the segmentation accuramynigyaring the segmentation results with the
manual segmentation done by experienced radiologistss §ystem has been successfully applied to the
data sets provided for the contest, with a final score of 70evdent from the Tabld, the accuracy was
greater in case of uniform and smaller tumors while for biggee the accuracy was lower mainly due to
greater non-uniformity in their intensities. There werengoproblems with the watershed segmentation of
the liver in datasets in which the tumor occupied a major péitie organ, like dataset 10 (F& and hence
the tumor was left out. But since we have some slices of tleg tientaining the lesion, so by initiating 3D
region growing from any of these tumor slices obtained dftersholding, we can segment out the complete
tumor from the dataset. Therefore, we decided to apply 3i@negrowing as a post processing step to refine
the segmentation of the tumor in all datasets.

4 Discussion and Future Work

In this work we have developed a complete workflow aimed ats#mai-automatic segmentation of hep-
atic lesions. After the extraction of the organ boundarigsjplying watershed segmentation, the system
extracts both the dark and bright tumors using minimum ceoésopy multi-thresholding. The results ob-
tained show the effective efficiency of our approach. Besigéile evaluating our algorithm on data sets
other than the ones provided for the contest, we have fagasigms for segmenting tumors completely
lying on the boundary in some particular clinical protocdisoreover, since traditional multi-thresholding
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Figure 8: Results of the watershed segmentation in dat@set 1

Figure 9: Final results of the complete workflow for datasethé liver is segmented (blue line) and the
lesions are highlighted (blue regions)

techniques could be computationally expensive, we wanptionize our system using genetic algorithms.
We are currently investigating the possible applicatiomwf approach to other abdominal structures, such
as the pancreas.
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