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Abstract

Liver cancer is the fifth most commonly diagnosed cancer and the third most common cause of death
from cancer worldwide. A precise analysis of the lesions would help in the staging of the tumor and
in the evaluation of the possible applicable therapies. In this paper we present the workflow we have
developed for the semi-automatic segmentation of liver tumors in the data sets provided for the MICCAI
Liver Tumor Segmentation contest. Since we wanted to develop a system that could be as automatic
as possible and to follow the segmentation process in every single step starting from the image loading
to the lesion extraction, we decided to subdivide the workflow in two main steps: first we focus on the
segmentation of the liver and once we have extracted the organ structure we segment the lesions applying
an adaptive multi-thresholding system.
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In the Introduction we analyze the problem of segmenting theliver lesions from the clinical point of view.
Then we overview the state-of-the-art in the field of liver tumor segmentation. In Section2 we describe the
complete workflow from the analysis of the dataset to the finalextraction of the lesions. In the Results part
(Section3) we present the results obtained and in Section4 we discuss the future improvements we would
like to apply to our approach to further optimize the resultsobtained so far.
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1 Introduction

In 2008, an estimated 21,370 adults (15,190 men and 6,180 women) in the United States will be diagnosed
with primary liver cancer. An estimated 18,410 deaths (12,570 men and 5,840 women) from the disease
will occur this year. Liver cancer is the fifth most common cause of cancer death among men, and ninth
most common cause of cancer death among women [12]. The five-year relative survival rate (percentage
of patients who survive at least five years after the cancer isdetected, excluding those who die from other
diseases) of patients with liver cancer is 11%. Unlike many other forms of cancer, the number of people who
develop and die from liver cancer is increasing. Liver cancer is much more common in developing countries
within Africa and East Asia. In some countries, it is the mostcommon cancer type and it is predicted that
for 2030 it will enter the top 20 causes of death [6]. The liver is the second most commonly involved organ
by metastatic disease, after the lymph nodes. In Europe and the United States, a focal liver lesion is more
likely to represent a metastatic deposit than a primary malignancy. The true prevalence of metastatic liver
disease is unknown because most figures are based on autopsy series that reflect the end stage of a disease
process. However, depending on the site of the primary tumor30-70% of patients dying of cancer have liver
metastases.

Prognosis for liver cancer is poor so incidence and mortality patterns are very similar. In order to improve the
curability of liver cancer, early detection and accurate staging are critical. Staging is a way of describing a
cancer, such as where it is located, if or where it has spread,and if it is affecting the functions of other organs
in the body. Doctors use diagnostic tests to determine the cancer stage, and CT scans are widely accepted
as the gold standard for liver tumor detection. Knowing the stage helps the doctor decide what kind of
treatment is best suited and can help predict a patient’s prognosis (chance of recovery). Moreover a proper
estimation of the tumor size is useful for several applications such as evaluating the effect of therapies on
tumor and changing the treatment plans. Although the largest tumor diameter is widely used as an indication
of the lesion size, because of 3D shape of the tumor it may not reflect a proper assessment of this tumor
attributes [8]. The tumor volume, on the other hand, suggests an appropriate representation of the tumor
size.

One way to find an estimation of tumor volume is to use segmentation algorithms. Even if many research
groups have developed different approaches for liver segmentation and volume construction in the last few
years, only few have proposed systems for the segmentation of the hepatic lesions. Seo and Chung [10]
have developed a method that involves the segmentation and binarization of the hepatic structure, the cre-
ation of the image based bounding box and the segmentation ofthe convex deficiencies. Large convex
deficiencies are selected by pixel area estimation, they arethen transformed to gray-level deficiencies and
finally the boundary tumor is selected by evaluating their variance. As stated by the authors, this approach
is only applicable to homogeneous boundary tumors. BesidesSeo in [9] worked up the previous approach
to segment all the hepatic lesions: after the segmentation of the liver, the optimal threshold is calculated by
composite hypotheses and minimum total probability error.Finally, hepatic tumors are segmented using the
optimal threshold value. Promising results are shown, evenif the approach produce diverse false positives,
especially for small tumors. Massoptier and Casciaro [5] first segment the liver by adopting a statistical
model-based approach and then apply a wavelet analysis for classifying the tumors. The method proposed
reaches good results in terms of sensitivity and specificity, even if it doesn’t take into account lesions that
show pixel intensity values similar to the vessels. In fact primary and secondary liver tumors show different
attenuation values in the different contrast-enhancementphases, therefore their conspicuity to the normal
liver will change according to the phase that is analyzed. Most primary tumors and many secondary tumors
are hyperdense to the normal liver parenchyma (i.e. hypervascular) in the arterial phase, whereas nearly all
malignant lesions (both primary and secondary) are hypodense in the portal and in the delayed phase.
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Figure 1: Segmentation of the ribs

2 Materials and Methods

To develop a system which could be as automatic as possible, we decided to proceed sequentially starting
from the liver segmentation followed by the lesions segmentation. Our workflow is mainly divided into 2
steps:

• Segmentation of the liver using the ribs and diaphragm constraints.

• Segmentation of the tumor from the segmented liver using multi-thresholding approach.

2.1 Segmentation of the liver

Segmentation of the ribs

With a simple thresholding method we extract the bones, thenwe subdivide the skeleton in three parts from
the axial view and take into account only the first third on theleft side, in order to consider only those parts
of the ribs that surround the liver. In Fig1 the extraction and volumetric reconstruction of the ribs isshown.
After obtaining the ribs data for different slices we apply acurve interpolation slice by slice using Cubic-
Hermite shape preserving interpolation. Since the ribs data is clustered, the mean point for each ribs cluster
in a slice is used for the interpolation. All the voxels in theexternal part of these resulting boundaries are
set to 0.

Segmentation of the diaphragm

One of the main problems in liver segmentation is the close proximity between the liver itself and the heart.
These two tissues have almost the same density and using region growing methods usually results in the heart
being classified as part of the liver. To try to automatize ouralgorithm as much as possible, we implemented
a procedure to identify the diaphragm so that it could be usedto constrain the region where the algorithm
look for the liver. This idea has already been used in [2], but we implemented a different approach which
is computationally more efficient. We have defined this approach since our focus is not in segmenting the
liver accurately but in finding the region where it is located, which will then be used as starting point for our
tumor segmentation module. The first step toward our goal is to segment the lungs which is an easy task
since they are full of air whose Hounsfield value is known. We can then construct a map of the diaphragm
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Figure 2: Representation of a section of the lungs surface seen in the coronal plane

Figure 3: Diaphragm dome approximation

simply considering an axial plane whose dimensions are the same as those of the CT-scan, and assigning to
each pixel of the plane the minimum value of the z-axis in the corresponding lung region. This result in an
approximation which is wrong in the central part, where the lungs walls are almost vertical. To obtain the
correct results, we must interpolate lungs surfaces so thatthey will be correctly closed (see Fig.2 ).

To do this we consider the curves obtained sectioning the surface with the coronal plane; each one of
them will have an empty space around the center (where the esophagus is placed) which we identify and,
starting from the center of this space, we look in both directions until we find the two points of the lungs
surface where the slope reaches a threshold. By connecting these two points, we obtain an approximation
of the diaphragm for this section. After this procedure is repeated for all slices, we obtain a very good
approximation of the entire diaphragm dome, and then all thevoxels which are above it are set to 0 (In Fig.
3 these parts are highlighed in blue).

Extraction of liver contours

Since the focus of our work consists in the extraction of hepatic lesions, we only need to identify approximate
liver boundaries. In our approach, first of all, we require that the user identifies a slice where the liver appears
as the biggest organ or, in cases where it is not possible (i.e. when there are very large tumors), he selects
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a point inside the organ. With this initialization, the algorithm, as described in Fig.4, starts. The algorithm
computes the gradient magnitude of the image and then it processes the results to highlight boundaries and
normalize image intensities.

We apply the watershed segmentation algorithm that has beenintroduced in [13] and then used and extended
in many fields. Watershed has two parameters that must be specified, the threshold value (below which
everything is set to 0 in the input image) and the minimum height of the basins. Both parameters need to be
selected to limit the oversegmentation that watershed usually creates.

If the user has previously identified a point inside the liver, we consider the class containing that point as the
one representing the liver. If a point has not been selected,classes are ordered by their area and we consider
the first one having mean and variance values (computed usingoriginal image values) compatible with that
of the liver.

Given this first slice of the liver, we estimate its mean (¯µ) and variance (̄σ), so as to calibrate our system
on the specific dataset being studied, and the system starts asequence of post-processing tasks in order to
obtain a mask to be used in subsequent steps. This post-processing includes level-set smoothing and dilation
of the region. The resulting region of interest (ROI) will then be used in the next slice as a binary mask such
that, after the magnitude gradient and the watershed have been computed, only classes inside the mask will
be considered. For each classi, mean (µi ) and variance (σi) are estimated and if the conditions in (1) are
satisfied, the class is considered as part of the liver.

‖µi − µ̄‖ <
3
2

σ̄ and |σi − σ̄| ≤ σ̄/2 (1)

In (1) we compare both the mean value and the variance, since in theproximity of the liver there could
be many structures whose mean values are close to the one of the liver, but the texture may differ. Hence,
comparing theσ gives us a hint to distinguish them. A more precise method that we are investigating consists
in using textures modelling to better discriminate liver from other organs, as in [7].

This process is repeated for each slice and ends when the areaof the liver becomes too small (i.e. below 25
pixels for standard images with resolution 512x512)

Since the process doesn’t start from a particular slice, after the last slice has been reached it is necessary to
repeat it again from the starting slice in the other direction. At the end, using all the slices a 3D model of
the liver is obtained. In Fig5 all the aforementioned steps are shown for the liver of dataset 5.

2.2 Segmentation of the tumors

Using the liver data obtained, a Haar Wavelet based de-noising algorithm is used for removing the noise from
the liver images. Then a minimum cross-entropy multi- thresholding algorithm segments out the tumors.
In order to smoothen the final results the system applies morphological closing and 3D level sets to the
bidimensional contours obtained. In the next paragraphs these processing steps are described more in detail.

2D segmentation using wavelet based de-noising followed by multi-thresholding

The first step is applying wavelet based de-noising to reducethe high frequency noise in the liver images.
For de-noising, a Haar wavelet transform is computed from the original image: the number of scales of
decomposition depends on the amount of noise present in the image. Noise level at each wavelet scale is
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Figure 4: Flowchart of liver segmentation technique

estimated separately and eliminated using soft thresholding. The computation of the thresholds for hori-
zontal, vertical and diagonal coefficient matrices at different wavelet scales is done using the BayesShrink
thresholding technique. Then an inverse wavelet transformis applied on the coefficient matrices generating
the de-noised image with the tumor region being more uniformas compared to the tumor in noisy image
(Fig. 7 a,b).

On the de-noised liver images, a cross-entropy minimization based multi-thresholding technique [4] is ap-
plied slice by slice to segment out the tumor. De-noising is necessary before thresholding otherwise the
system would segment the tumor along with other regions (mostly noise) connected to it as shown in Fig.
7 c,d. The cross entropy was first proposed by Kullback in [3]. The cross entropy D between 2 probability
distributionsF = f1, f2, . . . , fN andG = g1,g2, . . . , ,gN is an information theoretic distance defined by

D(F,G) =
N

∑
i=1

fi log
fi
gi

(2)



2.2 Segmentation of the tumors 7

(a) (b)

(c) (d)

Figure 5: Watershed segmentation step on dataset 5: (a) original image (slice 140), (b) gradient image, (c)
result of the watershed segmentation and (d) computed livermask

The aforementioned approach selects the thresholds by minimizing the relative entropy between the original
image and its thresholded version. LetI be an image withh(i), i = 1,2, ...n as the corresponding histogram
with n being the number of gray levels. The minimum cross entropy thresholding tries to calculate the
thresholds (t1, t2andt3) by minimizing the cross entropy, given by

D(t1, t2, t3) =
4

∑
j=0

t j+1−1

∑
i=t j

ih(i) log

(

i
µ(t j , t j+1)

)

, t0 = 1, t4 = n+1 (3)

where

µ(a,b) =
b−1

∑
i=a

ih(i)/
b−1

∑
i=a

h(i) (4)

The number of thresholds applied in each slice is 3 and withina particular slice the dark (i.e. hypodense)
tumors lie below the first threshold while the bright (i.e. hyperdense) tumors lie above the third threshold.
While moving from a normal liver slice to a slice which contains the tumor, there is a sufficient amount of
shift in the first threshold but while moving among slices containing the tumor the first threshold value almost
remains the same. This criterion is used for differentiating the pathological slices from the normal ones and
estimating a global threshold below which the tumors in these slices lie. The bright tumors are always
segmented as white regions lying above the third threshold.The 3D regions obtained after thresholding
constitute the dark and the bright tumors as well as other tissues having the intensity similar as the tumors.
The second stage involves segmentation of the tumor of interest taking an input point from the user.
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(a) (b)

(c) (d)

Figure 6: (a) Original image, (b) de-noised image, (c) thresholding applied on the original image and (d)
thresholding applied on the de-noised image

Segmentation refinement of the thresholded tumors

For each segmented 3D region, mean (µ) and variance (σ) are computed. A 3D neighbourhood connected
region growing is then initiated from the centre of that region taking the lower threshold limit as (µ−6σ) and
upper threshold limit as (µ+ 2σ). This method refines the boundary of all the regions segmented and also
segments the complete tumor in those datasets in which the liver region excludes the lesion as we discuss in
Section3. The next step is to eliminate the noise attached to the segmented regions using slice connectivity
criteria. Starting from the first slice of each region, we correct the segmentation error by eliminating the
artifacts attached to the regions using the fact that the contours in adjacent slices must be similar. While
moving among slices we expand and smoothen the boundary of the region in the current slice using 2D
level sets and considering only that part of the region in thenext slice which lies within this boundary.
The bi-dimensional region contours obtained are subjectedto morphological dilation and closing to fill the
holes and obtain smoother 2D contours. After this step we obtain different 3D structures that have to be
classified in order to distinguish between tumors and other elements, e.g. vessels or non-filtered noise. For
this purpose the system applies shape constraints. For eachstructure, a singular value decomposition is
estimated and the eigenvalues{λi}i=1..3 obtained are analyzed applying the following rules:

• if the λs have almost the same values, the structure is spherical. Evaluate its mean Hounsfield value:
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if its lower than the average pixel intensity of the liver, classify it as a tumor;

• if two λs are very big with respect to the third one, then let it unclassified;

• if one λ has a very large value compared to the other two and the Hounsfield value is higher than the
average pixel intensity of the liver, classify it as a vessel;

• leave all the other regions as unclassified.

Surface smoothening using 3D Level sets

To further improve on smoothness, 3D Min/Max flow is applied to the segmented tumor [11]. Min/Max
Flow is a kind of level set method based on the partial differential equation

It = −Fmin/max|∇I | (5)

whereIt is the temporal derivative of the time-varying image function, ∇ the spatial gradient,Fmin/max the
propagation speed. The latter is calculated as

Fmin/max=

{

max(−κ,0) if averageκ(x,y) < 0
min(−κ,0) otherwise

(6)

Hereκ is the curvature,averageκ the average intensity value within radiusκ around a point(x,y). For 3D
case we computeκ as follows:

κ3D =
(Iyy+ Izz)I2

x +(Ixx+ Iyy)I2
z +(Ixx+ Izz)I2

y −2IxIyIxy−2IxIzIxz−2IyIzIyz

(I2
x + I2

y + I2
z )3/2

(7)

Examples of the smooth surface of the tumor after applying Min/Max flow are demonstrated in Fig.7.

At the end, all the unclassified regions, as well as the tumors, are highlighted to the user who can click on
those he recognizes to be of interest.

Figure 7: Results of the 3D level set smoothening step on tumor L2 of dataset 7
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Table 1: Results of the comparison metrics and scores for allten test tumors
Overlap Error Volume Diff. Avg. Surf. Dist. RMS Surf. Dist. Max. Surf. Dist.

Tumor (%) Score (%) Score (mm) Score (mm) Score (mm) Score Tot.
IMG05 L1 35.10 73 19.69 80 2.74 31 3.79 47 12.87 68 60
IMG05 L2 29.68 77 25.65 73 1.00 75 1.41 80 6.03 85 78
IMG05 L3 43.66 66 35.66 63 1.86 53 2.63 63 7.68 81 65
IMG06 L1 30.34 77 9.52 90 0.77 81 1.03 86 4.23 89 84
IMG06 L2 35.27 73 28.10 71 0.77 80 1.09 85 5.21 87 79
IMG07 L1 23.88 82 2.87 97 3.07 23 4.27 40 18.69 53 59
IMG07 L2 30.47 76 5.88 94 1.56 60 2.10 71 9.10 77 76
IMG08 L1 17.85 86 11.61 88 1.99 50 2.76 61 11.72 71 71
IMG09 L1 45.65 65 78.18 19 2.11 47 2.60 64 9.74 76 54
IMG10 L1 29.53 77 8.61 91 1.78 55 2.27 68 7.64 81 75
Average 32.14 75 22.58 77 1.77 56 2.40 67 9.29 77 70

3 Results

Our method has been applied to 10 CT datasets of oncological patients. Some functions are implemented
using the Insight Toolkit [1]. For the gradient magnitude filter,σ value of 1.7 was found to work perfectly for
all the cases. For the watershed segmentation, the level andthreshold parameters depended on the protocol
used to acquire the data. A higher threshold value resulted in a smooth liver boundary but it also led to
the disappearance of weaker edges between the liver and the nearby organs in images with poor resolution.
A lower level value resulted in oversegmentation of the liver because of the high amount of noise present
inside the organ. However, for most of the cases the optimal threshold value for watershed segmentation
was determined to be 0.1 after contrast enhancement of the gradient magnitude image. For de-noising the
number of decomposition levels was either 2 or 3 depending onthe extent of noise present in the image and
the non-homogeneity of the tumor regions (e.g. for dataset 5this value was set to 3 and for dataset 6 it was
set to 2). The system evaluates the segmentation accuracy bycomparing the segmentation results with the
manual segmentation done by experienced radiologists. This system has been successfully applied to the
data sets provided for the contest, with a final score of 70. Asevident from the Table1, the accuracy was
greater in case of uniform and smaller tumors while for bigger one the accuracy was lower mainly due to
greater non-uniformity in their intensities. There were some problems with the watershed segmentation of
the liver in datasets in which the tumor occupied a major partof the organ, like dataset 10 (Fig8) and hence
the tumor was left out. But since we have some slices of the liver containing the lesion, so by initiating 3D
region growing from any of these tumor slices obtained afterthresholding, we can segment out the complete
tumor from the dataset. Therefore, we decided to apply 3D region growing as a post processing step to refine
the segmentation of the tumor in all datasets.

4 Discussion and Future Work

In this work we have developed a complete workflow aimed at thesemi-automatic segmentation of hep-
atic lesions. After the extraction of the organ boundaries by applying watershed segmentation, the system
extracts both the dark and bright tumors using minimum crossentropy multi-thresholding. The results ob-
tained show the effective efficiency of our approach. Besides, while evaluating our algorithm on data sets
other than the ones provided for the contest, we have faced problems for segmenting tumors completely
lying on the boundary in some particular clinical protocols. Moreover, since traditional multi-thresholding
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Figure 8: Results of the watershed segmentation in dataset 10

Figure 9: Final results of the complete workflow for dataset 7: the liver is segmented (blue line) and the
lesions are highlighted (blue regions)

techniques could be computationally expensive, we want to optimize our system using genetic algorithms.
We are currently investigating the possible application ofour approach to other abdominal structures, such
as the pancreas.
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